
Workshop track - ICLR 2018

NAM - UNSUPERVISED CROSS-DOMAIN IMAGE MAP-
PING WITHOUT CYCLES OR GANS

Yedid Hoshen, Lior Wolf
{yedidh, wolf}@fb.com

ABSTRACT

Several methods were recently proposed for Unsupervised Domain Mapping,
which is the task of translating images between domains without prior knowledge
of correspondences. Current approaches suffer from an instability in training due
to relying on GANs which are powerful but highly sensitive to hyper-parameters
and suffer from mode collapse. In addition, most methods rely heavily on “cy-
cle” relationships between the domains, which enforce a one-to-one mapping.
In this work, we introduce an alternative method: NAM. NAM relies on a pre-
trained generative model of the source domain, and aligns each target image with
an image sampled from the source distribution while jointly optimizing the do-
main mapping function. Experiments are presented validating the effectiveness of
our method.

1 INTRODUCTION

Humans can easily imagine how a scene observed by day, would appear at night. This is an in-
stance of mapping across domains. This ability is not limited to domains such as day and night, for
which exact correspondence can be obtained simply by revisiting the same scene after a few hours.
Humans can also visually adapt domains between which they have never seen any correspondences
such as, imagining how a Picasso painting would appear if painted by Rembrandt. This motivates
Unsupervised Domain Mapping, visually mapping between domains when no correspondences are
given between samples in the training set. Unsupervised Domain Mapping typically operates by
finding a function for mapping images between the domains so that after mapping, the distribution
of mapped source images is identical to that of the target images.

Due to its scientific and practical importance, Unsupervised Domain Adaptation has recently at-
tracted significant interest from the research community, particularly for visual domains. Successful
recent approaches, e.g. DTN (Taigman et al., 2017), CycleGANs (Zhu et al., 2017) and Disco-
GAN (Kim et al., 2017), utilize Generative Adversarial Networks (GANs) to model the distributions
of the two domains, X and Y . GANs are very effective tools for generative models of images, how-
ever they suffer from instability in training, making their use challenging. The instability typically
requires careful choice of hyper-parameters and often multiple initializations due to mode collapse.
Current methods also make additional assumptions that can be restrictive, e.g., DTN assumes that a
pre-trained high-quality domain specific feature extractor exists which is effective for both domains.
This assumption is good for the domain of faces (which is the main application of DTN) but may not
be valid for all cases. CycleGAN and DiscoGAN make the assumption that a transformation TXY

can be found for every X -domain image x to a unique Y-domain image y, and another transforma-
tion TY X exists between the B domain and the original A-domain image y = TXY (x), x = TY X(y).
This is problematic if the actual mapping is many-to-one or one-to-many, as in super-resolution or
subsampling.

We suggest a novel method for removing the reliance on GANs for domain mapping. Our algorithm
leverages a generative model of domain X to synthesize a matching image x for every image y in
domain Y such that y = T (x), where T () is a learned mapping function.

Our method consists of 3 parts:

1. An accurate parametric model for the domain X . This model, G(z), is parametrized by a
vector z. The model is trained using some state-of-the-art method including: GLO (Bo-

1



Workshop track - ICLR 2018

janowski et al., 2017), VAE (Kingma & Welling, 2013), GAN (Goodfellow et al., 2014) or
a differentiable hand-crafted physical simulation.

2. A mapping function T () which translates images from the X domain to the Y domain. The
mapping is learned as a part of our algorithm.

3. A set of target images y ∈ Y . For each target image y we find an image G(z) such that
y = T (G(z)).

Our model is very different from existing unsupervised image-to-image mapping models in that no
adversarial training takes place when mapping between the domains and so doing escapes the need
to use cycles or GANs (although GANs can optionally be used for obtaining a generative model for
the X domain).

2 UNSUPERVISED IMAGE MAPPING WITHOUT GANS

In this section, we present our method - NAM - for unsupervised domain mapping. Our method is
related to GLO by Bojanowski et al. (2017) which we shall briefly highlight.

2.1 GENERATIVE LATENT OPTIMIZATION (GLO)

GLO was recently introduced by Bojanowski et al. (2017). Let us define the set of training images
as {x ∈ X}. For each image x, we learn a latent representation zx and we jointly learn a general
generator function G(.), which takes as input a latent representation z′, and generates an image
G(z′). The objective is to optimize G(.) and the set of latent representations {zx ∈ Z} such that
they recover the training images.

The optimization is performed as follows:

argminG,zx

∑
x

Lp(G(zx), x), (1)

where Lp is the Laplacian pyramid loss, which was found to be significantly better than the Eu-
clidean loss for this purpose.

2.2 NON-ADVERSARIAL MAPPING (NAM)

Differently from GLO we tackle the task of unsupervised image mapping between domains. We
are given sets of images X and Y , without correspondences. Our task is to obtain for every image
y ∈ Y , an image x′ that appears to come from domain X and that the mapping T (x′) is similar to y.

We assume that a generative model of domain X was obtained by a previous method. This method
can be GLO (Bojanowski et al., 2017), VAE (Kingma & Welling, 2013), GAN (Goodfellow et al.,
2014) or a hand designed simulator (see for example Wolf et al. (2017)). The generative model of
X consists of a function G(.) which for every z, yields image G(z) which appears to come from
domain X .

We introduce mapping function T (.) which will be trained during the optimization of NAM. T (.)
takes an X domain image and maps it to an image appearing to come from the Y domain.

For every image y ∈ Y , we find latent vector sy such that T (G(sy)) = y. This is achieved by
both training domain mapping function T (.) as well as latent vector sy for every y ∈ Y . The X
generative model G() is kept fixed.

argminT,sy

∑
y

LV GG(T (G(sy)), y), (2)

Differently from GLO, we use a VGG perceptual loss rather than the Laplacian pyramid. The VGG
perceptual loss was found by several recent papers (Chen & Koltun, 2017; Zhang et al., 2018) to
give perceptually pleasing results.

2



Workshop track - ICLR 2018

Table 1: NAM (center row) vs. DiscoGAN/CycleGAN (top row) for a given input (bottom row).
Edges2Handbags Edges2Shoes

SVHN→MNIST MNIST→SVHN

NAM mapping from a single source image (shown last) for different random initializations

3 EXPERIMENTS

We evaluate our method NAM against DiscoGAN/CycleGAN on several datasets: Edges2Handbags,
Edges2Shoes, SVHN → MNIST and MNIST → SVHN. For each column of images: the image
mapped by the baseline (DiscoGAN for Edges2Shoes/Handbags and CycleGAN for SVHN and
MNIST) is shown on the top row. The image mapped by NAM is shown in the center, the source
image is shown at the bottom. From looking at the results we can see that NAM is better at rendering
textures. Additionally CycleGAN failed on (MNIST → SVHN) whereas NAM had more success, as
it does not rely on cycle constraints. Generally, the images mapped by NAM appear more realistic
and have fewer holes, probably due to the superior quality of the pre-trained generative model rather
the one trained on the fly in the baseline domain mapping. Another attractive property of NAM is
the variability in mapping for the same image by multiple random initializations.

4 DISCUSSION

Unsupervised mapping between domains is an exciting technology with many applications. While
existing work is currently dominated by adversarial training, we present results that support other
forms of training.

Adversarial constraints operate at the distribution level, while circularity based work, such as Zhu
et al. (2017); Kim et al. (2017), augment these constraints with bidirectional per-sample constraints.
Our work focuses entirely on unidirectional per-sample constraints.

Our method relies on having a high quality pre-trained unsupervised generative model for the X
domain. With the recent advent of very high resolution generative models, e.g., by Karras et al.
(2017), our method can be scaled to very large images.

3



Workshop track - ICLR 2018

REFERENCES

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing the latent space
of generative networks. arXiv preprint arXiv:1707.05776, 2017.

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks.
ICCV, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pp. 2672–2680.
2014.

Yedid Hoshen and Lior Wolf. Identifying analogies across domains. International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=BkN_
r2lR-.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. arXiv preprint arXiv:1703.05192,
2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In The International Confer-
ence on Learning Representations (ICLR), 2016.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. In
International Conference on Learning Representations (ICLR), 2017.

Lior Wolf, Yaniv Taigman, and Adam Polyak. Unsupervised creation of parameterized avatars. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1530–
1538, 2017.

Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In CVPR,
2014.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. arXiv preprint arXiv:1801.03924, 2018.

Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipu-
lation on the natural image manifold. In European Conference on Computer Vision, pp. 597–613.
Springer, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networkss. arXiv preprint arXiv:1703.10593, 2017.

4

https://openreview.net/forum?id=BkN_r2lR-
https://openreview.net/forum?id=BkN_r2lR-


Workshop track - ICLR 2018

A IMPLEMENTATION DETAILS

In this section we give a detailed description of the procedure used to create the results shown in the
experimental section of this abstract.

X domain generative model G(.): Our method takes as input a pre-trained generative model for
the X domain. Although many choices of generative models are available, we opted for the most
commonly used. Therefore all G(.) used in our experiments were trained with the DCGAN model.
We used the PyTorch code released by Radford et al. (2015). For Edges2Shoes (Yu & Grauman,
2014) and Edges2Handbags (Zhu et al., 2016) we used 100 latent dimensions, for SVHN (Netzer
et al., 2011) and MNIST (LeCun & Cortes, 2010) we used 32 latent dimensions. All other hyper-
parameters were unchanged from the GitHub code. For some datasets the DCGAN experienced
divergence after about 30 epochs, in such cases the model checkpoint before the divergence occurred
were selected.

For completeness we mention that we also performed the experiments with GLO (Bojanowski et al.,
2017) based G(.). The method worked successfully however the visual quality of the resulting G()
did not surpass that of DCGAN.

Mapping function T (.): There were several considerations in the design of the mapping function:

1. Being powerful enough to describe the mappings between the domains.

2. Not being too large as to overfit.

3. Being able to model the similar behavior in different areas of the spatial pyramids in corre-
sponding images in the two domains.

We elected to use a network with an architecture based on Chen & Koltun (2017). We found that
quite small networks achieved better matches between the domains (as visually evaluated between
G(sy) and y).

For the network accepting 64X64 inputs (used on the Edges2Shoes and Edges2Handbags datasets),
we used an architecture starting from a 4X4 downsampled input image. The first layer consisted of
128 channels, all convolutions had support of 3X3. The number of channels was halved for every
layer in the network. All convolutional layers were followed by BatchNorm (Ioffe & Szegedy,
2015), and a Leaky ReLU non-linearity with negative slope of 0.2. The output of each layer was
upsampled bilinearly by a factor of 2. It was then concatenated with the input image downsampled
to the appropriate resolution. This process was repeated until the final resolution (64X64) was
achieved. A final convolutional layer reduced the channel count to 3.

The T (.) function used in the 32X32 (MNIST and SVHN) experiments was identical to the above
expect for using only 32 channels in the first layer, and scaling only up to 32X32 (one fewer layer).

Optimization: We carried out SGD optimization using the ADAM (Kingma & Ba, 2016) method.
For all datasets we used a learning rate of 0.03 for the latent codes zx and 0.001 for the mapping
function T (.). The difference in learning rate is due to T (.) being updated every batch but any given
sy is updated once an epoch. Momentum was set to 0.5 and no weight-decay was used. 50 training
epochs were used for the Edges2Shoes dataset and 110 epochs for all other datasets (results were
not very sensitive to the number of training epochs as long as it was larger than 40).

On all datasets training was performed on 2000 randomly selected examples from the Y domain.
Using larger training sets was not found to be helpful, due to the further increasing the disparity in
update rate between the T (.) and every sy . It is possible that by changing the training procedure it
would be possible to use larger training sets, but this procedure worked best in our experiments.

Generating results: To map a Y domain image y, we calculated sy and presented G(sy) as the
result of the method. The results of G(sy) (for mapping Y → X) were typically better than those
obtained T (x) (for mapping X → Y ), due to the weak architecture selected for T (.). In case that
a strong T (.) is required, we suggest to calculate a set of matching G(sy) and y obtained using the
procedure described above, and training a network T (.) with a large capacity architecture using a
fully supervised technique (e.g. as described by Chen & Koltun (2017)). A similar procedure was
carried out in Hoshen & Wolf (2018).

5



Workshop track - ICLR 2018

Multiple mappings for the same Y domain image y: To obtain multiple mapped images for the same
input image, we first trained function T (.) (as well as sy for the training set) as described in the
paper. For a new image y, we solved for sy that minimizes the loss ‖T (G(sy)), y‖V GG multiple
times, each with sy initialized with a random normal distributed value. In all runs T (.) and G(.)
were fixed and only sy was trained. Different runs displayed significant variation in G(sy), while
(typically) appearing to be plausible mappings of y.

6


	Introduction
	Unsupervised Image Mapping without GANs
	Generative Latent Optimization (GLO)
	Non-Adversarial Mapping (NAM)

	Experiments
	Discussion
	Implementation Details

