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ABSTRACT

A widely observed phenomenon in deep learning is the degradation problem: in-
creasing the depth of a network leads to a decrease in performance on both test
and training data. Novel architectures such as ResNets and Highway networks
have addressed this issue by introducing various flavors of skip-connections or
gating mechanisms. However, the degradation problem persists in the context of
plain feed-forward networks. In this work we propose a simple method to address
this issue. The proposed method poses the learning of weights in deep networks
as a constrained optimization problem where the presence of skip-connections is
penalized by Lagrange multipliers. This allows for skip-connections to be in-
troduced during the early stages of training and subsequently phased out in a
principled manner. We demonstrate the benefits of such an approach with ex-
periments on MNIST, fashion-MNIST, CIFAR-10 and CIFAR-100 where the pro-
posed method is shown to greatly decrease the degradation effect and is often
competitive with ResNets.

1 INTRODUCTION

The representation view of deep learning suggests that neural networks learn an increasingly abstract
representation of input data in a hierarchical fashion (Zeiler & Fergus, 2014; Goodfellow et al.,
2016; Greff et al., 2016). Such representations may then be exploited to perform various tasks such
as image classification, machine translation and speech recognition.

A natural conclusion of the representation view is that deeper networks will learn more detailed and
abstract representations as a result of their increased capacity. However, in the case of feed-forward
networks it has been observed that performance deteriorates beyond a certain depth, even when
the network is applied to training data. Recently, Residual Networks (ResNets; He et al. 2016a)
and Highway Networks (Srivastava et al., 2015) have demonstrated that introducing various flavors
of skip-connections or gating mechanisms makes it possible to train increasingly deep networks.
However, the aforementioned degradation problem persists in the case of plain deep networks (i.e.,
networks without skip-connections of some form).

A widely held hypothesis explaining the success of ResNets is that the introduction of skip-
connections serves to improve the conditioning of the optimization manifold as well as the statistical
properties of gradients employed during training. Raiko et al. (2012) and Schraudolph (2012) show
that the introduction of specially designed skip-connections serves to diagonalize the Fisher infor-
mation matrix, thereby bringing standard gradient steps closer to the natural gradient. More recently,
Balduzzi et al. (2017) demonstrated that the introduction of skip-connections helps retain the cor-
relation structure across gradients. This is contrary to the gradients of deep feed-forward networks,
which resemble white noise. More generally, the skip-connections are thought to reduce the effects
of vanishing gradients by introducing a linear term (He et al., 2016b).

The goal of this work is to address the degradation issue in plain feed-forward networks by lever-
aging some of the desirable optimization properties of ResNets. We approach the task of learning
parameters for a deep network under the framework of constrained optimization. This strategy al-
lows us to introduce skip-connections penalized by Lagrange multipliers into the architecture of our
network. In our setting, skip-connections play an important role during the initial training of the
network and are subsequently removed in a principled manner. Throughout a series of experiments
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we demonstrate that such an approach leads to improvements in generalization error when compared
to architectures without skip-connections and is competitive with ResNets in some cases.

The contributions of this work are as follows:

• We propose alternative training strategy for plain feed-forward networks which reduces the
degradation in performance as the depth of the network increases. The proposed method
introduces skip-connections which are penalized by Lagrange multipliers. This allows for
the presence of skip-connections to be iteratively phased out during training in a principled
manner. The proposed method is thereby able to enjoy the optimization benefits associated
with skip-connections during the early stages of training.

• A number of benchmark datasets are used to demonstrate the empirical capabilities of the
proposed method. In particular, the proposed method greatly reduces the degradation effect
compared to plain networks and is on several occasions competitive with ResNets.

2 RELATED WORK

The hierarchical nature of many feed-forward networks is loosely inspired by the structure of the
visual cortex where neurons in early layers capture simple features (e.g., edges) which are subse-
quently aggregated in deeper layers (Hubel & Wiesel, 1962). This interpretation of neural networks
suggests that the depth of a network should be maximized, thereby allowing the network to learn
more abstract (and hopefully useful) representations (Bengio et al., 2013). However, a widely re-
ported phenomenon is that deeper networks are more difficult to train. This is often termed the
degradation effect in deep networks (Srivastava et al., 2015; He et al., 2016a). This effect has been
partially attributed to optimization challenges such as vanishing and shattered gradients (Hochreiter
et al., 2001; Balduzzi et al., 2017).

In the past these challenges have been partially addressed via the use of supervised and unsupervised
pre-training (Bengio et al., 2009) and more recently through careful parameter initialization (Glorot
& Bengio, 2010; He et al., 2015) and batch normalization (Ioffe & Szegedy, 2015). In the past
couple of years further improvements have been obtained via the introduction of skip-connections.
ResNets (He et al., 2016a;b) introduce residual blocks consisting of a residual function F together
with a skip-connection. Formally, the residual block is defined as:

xl+1 = Fl(xl,Wl) +W′
lxl (1)

whereFl : Rn → Rn′
represents some combination of affine transformation, non-linearity and batch

normalization parameterized by Wl. The matrix W′
l parameterizes a linear projection to ensure

the dimensions are aligned1. More generally, ResNets are closely related to Highway Networks
(Srivastava et al., 2015) where the output of each layer is defined as:

xl+1 = Fl(xl,Wl) · T (xl,Hl) + xl · (1− T (xl,Hl)), (2)

where · denotes element-wise multiplication. In Highway Networks the output of each layer is
determined by a gating function

T (xl,Hl) = sigmoid (Hlxl)

inspired from LSTMs. We note that both ResNets and Highway Networks were introduced with
the explicit goal of training deeper networks. Inspired by the success of the these methods, many
variations have been proposed. Huang et al. (2016a) propose DenseNet, where skip-connections are
passed from all previous activations. Huang et al. (2016b) propose to shorten networks during train-
ing by randomly dropping entire layers, leading to better gradient flow and information propagation,
while using the full network at test time.

Recently, the goal of learning deep networks without skip-connections has begun to receive more
attention. Zagoruyko & Komodakis (2017) propose a novel re-parameterization of weights in feed-
forward networks which they call the Dirac parameterization. Instead of explicitly adding a skip-
connection, they model the weights as a residual of the Dirac function, effectively moving the skip-
connection inside the non-linearity. In related work, Balduzzi et al. (2017) propose to initialize

1Unless stated otherwise we will assume F retains the dimension of xl and set W′
l to the identity.
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weights in a CReLU activation function in order to preserve linearity during the initial phases of
training. This is achieved by initializing the weights in a mirrored block structure. During training
the weights are allowed to diverge, resulting in non-linear activations.

Finally, we note that while the aforementioned approaches have sought to train deeper networks via
modifications to the network architecture (i.e., by adding skip-connections) success has also been
obtained by modifying the non-linearities (Clevert et al., 2015; Klambauer et al., 2017).

3 VARIABLE ACTIVATION NETWORKS

The goal of this work is to train deep feed-forward networks without suffering from the degradation
problem described in previous sections. To set notation, we denote x0 as the input and xL as the
output of a feed-forward network with L layers. Given training data {y,x0} it is possible to learn
parameters {Wl}Ll=1 by locally minimizing some objective function

{Ŵl}Ll=1 = argmin C
(
y,xL; {Wl}Ll=1

)
. (3)

First-order methods are typically employed due to the complexity of the objective function in equa-
tion (3). However, directly minimizing the objective is not practical in the context of deep networks:
beyond a certain depth performance quickly deteriorates on both test and training data. Such a phe-
nomenon does not occur in the presence of skip-connections. Accordingly, we take inspiration from
ResNets and propose to modify equation (1) in the following manner2:

xl+1 = Fl(xl,Wl) + (1−αl) · xl (4)

where αl ∈ [0, 1]n determines the weighting given to the skip-connection. More specifically, αl is
a vector were the entry i dictates the presence and magnitude of a skip-connection for neuron i in
layer l. Due to the variable nature of parameters αl in equation (4), we refer to networks employing
such residual blocks as Variable Activation Networks (VAN).

The objective of the proposed method is to train a feed-forward network under the constraint that
αl = 1 for all layers, l. When the constraint is satisfied all skip-connections are removed. The
advantage of such a strategy is that we only require αl = 1 at the end of training. This allows
us to initialize αl to some other value, thereby relaxing the optimization problem and obtaining
the advantages associated with ResNets during the early stages of training. In particular, whenever
αl 6= 1 information is allowed to flow through the skip-connections, alleviating issues associated
with shattered and vanishing gradients.

As a result of the equality constraint on αl, the proposed activation function effectively does not
introduce any additional parameters. All remaining weights can be trained by solving the following
constrained optimization problem:

{Ŵl}Ll=1 = argmin C
(
y,xL; {Wl,αl}Ll=1

)
such that αl = 1 for l = 1, . . . , L. (5)

The associated Lagrangian takes the following simple form (Boyd & Vandenberghe, 2004):

L = C
(
y,xL; {Wl,αl}Ll=1

)
+

L∑
l=1

λT
l (αl − 1), (6)

where each λl ∈ Rn are the Lagrange multipliers associated with the constraints on αl. In practice,
we iteratively update αl via stochastic gradients descent (SGD) steps of the form:

αl ← αl − η
(
∂C
∂αl

+ λl

)
(7)

where η is the step-size parameter for SGD. Throughout the experiments we will often take the
non-linearity in Fl to be ReLU. Although not strictly required, we clip the values αl to ensure they
remain in the interval [0, 1]n.

2Our original formulation consisted of a convex sum over F and xl. However, we found this approach to be
the most successful empirically. Appendix A provides a comparison to original formulations as well as some
theoretical justifications for this improvement in performance.
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From equation (6), we have that the gradients with respect to Lagrange multipliers are of the form:

λl ← λl + η′ (αl − 1) , (8)

We note that since we require αl ∈ [0, 1]n, the values of λl are monotonically decreasing. As the
value of Lagrange multiplier decreases, this in turn pushes αl towards 1 in equation (7). We set the
step-size for the Lagrange multipliers, η′, to be a fraction of η. The motivation behind such a choice
is to allow the network to adjust as we enforce the constraint on αl.

4 EXPERIMENTS

The purpose of the experiments presented in this section is to demonstrate that the proposed method
serves to effectively alleviate the degradation problem in deep networks. We first demonstrate the
capabilities of the proposed method using a simple, non-convolutional architecture on the MNIST
and Fashion-MNIST datasets (Xiao et al., 2017) in Section 4.1. More extensive comparisons are
then considered on the CIFAR datasets (Krizhevsky & Hinton, 2009) in Section 4.2.

4.1 MNIST AND FASHION-MNIST

Networks of varying depths were trained on both MNIST and Fashion-MNIST datasets. Following
Srivastava et al. (2015) the networks employed in this section were thin, with each layer containing
50 hidden units. In all networks the first layer was a fully connected plain layer followed by l layers
or residual blocks (depending on the architecture) and a final softmax layer. The proposed method is
benchmarked against several popular architectures such as ResNets and Highway Networks as well
as the recently proposed DiracNets (Zagoruyko & Komodakis, 2017). Plain networks without skip-
connections are also considered. Finally, we also considered VAN network where the constraint
αl = 1 was not enforced. This corresponds to the case where λl = 0 for all l. This comparison is
included in order to study the capacity and flexibility of VAN networks without the need to satisfy
the constraint to remove skip-connections. For clarity, refer to such networks as VAN (λ = 0)
networks.

For all architectures the ReLU activation function was employed together with batch-normalization.
In the case of ResNets and VAN, the residual function consisted of batch-normalization followed by
ReLU and a linear projection.

The depth of the network varied from l = 1 to l = 30 hidden layers. All networks were trained using
SGD with momentum. The learning rate is fixed at η = 0.001 and the momentum parameter at 0.9.
Training consisted of 50 epochs with a batch-size of 128. In the case of VAN networks the αl values
were initialized to 0 for all layers. As such, during the initial stages of training VAN networks where
equivalent to ResNets. The step-size parameter for Lagrange multipliers, η′, was set to be one half
of the SGD step-size, η. Finally, all Lagrange multipliers, λl, are initialized to -1.

RESULTS

The results are shown in Figure 1 where the test accuracy is shown as a function of the network depth
for both the MNIST and Fashion-MNIST datasets. In both cases we see clear evidence of the degra-
dation effect: the performance of plain networks deteriorates significantly once the network depth
exceeds some critical value (approximately 10 layers). As would be expected, this is not the case for
ResNets, Highway Networks and DiracNets as such architectures have been explicitly designed to
avoid this behavior. We note that VAN networks do not suffer such a pronounced degradation as the
depth increases. This provides evidence that the gradual removal of skip-connections via Lagrange
multipliers leads to improved generalization performance compared to plain networks. Finally, we
note that VAN networks obtain competitive results across all depths. Crucially, we note that VAN
networks outperform plain networks across all depths, suggesting that the introduction of variable
skip-connections may lead to convergence at local optima with better generalization performance.
Finally, we note that VAN (λ = 0) networks, where no constraint is placed on skip-connections,
obtain competitive results across all depths.
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Figure 1: Results on MNIST (left) and fashion-MNIST (right) for various different architectures
as the depth of the network varies from 1 to 30. Mean average test accuracy over 10 independent
training sessions is shown. We note that with the exception of plain networks, the performance of
all remaining architectures is stable as the number of layers increases.

4.2 CIFAR

As a more challenging benchmark we consider the CIFAR-10 and CIFAR-100 datasets. These
consist of 60000 32×32 pixel color images with 10 and 100 classes respectively. The datasets are
divided into 50000 training images and 10000 test images.

We follow He et al. (2016a) and train deep convolutional networks consisting of four
blocks each consisting of n residual layers. The residual function is of the form
conv-BN-ReLU-conv-BN-ReLU. This corresponds to the pre-activation function (He et al.,
2016b). The convolutional layers consist of 3 × 3 filters with downsampling at the beginning of
blocks 2, 3 and 4. The network ends with a fully connected softmax layer, resulting in a depth of
8n+ 2. The architecture is described in Table 1.

Networks were trained using SGD with momentum over 165 epochs. The learning rate was set to
η = 0.1 and divided by 10 at the 82nd and 125th epoch. The momentum parameter was set to
0.9. Networks were trained using mini-batches of size 128. Data augmentation followed Lee et al.
(2015): this involved random cropping and horizontal flips. Weights were initialized following He
et al. (2015). As in Section 4.1, we initialize αl = 0 for all layers. Furthermore, we set the step-size
parameter for the Lagrange multipliers, η′, to be one tenth of η and all Lagrange multipliers, λl,
are initialized to -1. On CIFAR-10 we ran experiments with n ∈ {1, 2, 3, 4, 5, 6, 8, 10} yielding
networks with depths ranging from 10 to 82. For CIFAR-100 experiments were run with n ∈
{1, 2, 3, 4}.

Table 1: Architecture of varying depth employed on CIFAR-10 and CIFAR-100 datasets. Down-
sampling occurs at the beginning of block 2, 3 and 4 with a stride of two.

Layer name Output size Convolution
conv1 32× 32 3× 3, 64

Block 1 32× 32
[
3×3,64
3×3,64

]
× n

Block 2 16× 16
[
3×3,128
3×3,128

]
× n

Block 3 8× 8
[
3×3,256
3×3,256

]
× n

Block 4 4× 4
[
3×3,512
3×3,512

]
× n
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Figure 2: Left: Results on CIFAR-10 dataset are shown as the depth of networks increase. We note
that the performance of both VAN and plain networks deteriorates as the depth increases, but the
effect is far less pronounced for VAN networks. Right: Training and test error curves are shown for
networks with 26 layers. We also plot the mean α residuals: 1

L

∑L
l=1(1−αl)

2 on the right axis.

RESULTS

Results for experiments on CIFAR-10 are shown in Figure 2. The left panel shows the mean test
accuracy over five independent training sessions for ResNets, VAN, VAN (λ = 0) and plain net-
works. While plain networks provide competitive results for networks with fewer than 30 layers,
their performance quickly deteriorates thereafter. We note that a similar phenomenon is observed in
VAN networks but the effect is not as dramatic. In particular, the performance of VANs is similar
to ResNets for networks with up to 40 layers. Beyond this depth, ResNets outperform VAN by an
increasing margin. This holds true for both VAN and VAN (λ = 0) networks, however, the differ-
ence is reduced in magnitude in the case of VAN (λ = 0) networks. These results are in line with
He et al. (2016b), who argue that scalar modulated skip-connections (as is the case in VANs where
the scalar is 1 − αl) will either vanish or explode in very deep networks whenever the scalar is not
the identity.

The right panel of Figure 2 shows the training and test error for a 26 layer network. We note that
throughout all iterations, both the test and train accuracy of the VAN network dominates that of
the plain network. The thick gold line indicates the mean residuals of the αl parameters across all
layers. This is defined as 1

L

∑L
l=1(1−αl)

2 and is a measure of the extent to which skip-connections
are present in the network. Recall that if all αl values are set to one then all skip-connections are
removed (see equation (4)). From Figure 2, it follows that skip-connections are fully removed from
the VAN network at approximately the 120th iteration. More detailed traces of Lagrange multipliers
and αl are provided in Appendix B.

A comparison of the performance of VAN networks in provided in Table 2. We note that while
VAN networks do not outperform ResNets, they do outperform other alternatives such as Highway
networks and FitNets (Romero et al., 2014) when networks of similar depths considered. However,
it is important to note that both Highway networks and FitNets did not employ batch-normalization,
which is a strong regularizer. In the case of both VAN and VAN (λ = 0) networks, the best per-
formance is obtained with networks of 26 layers while ResNets continue to improve their perfor-
mance as depth increases. Finally, current state-of-the-art performance, obtained by Wide ResNets
(Zagoruyko & Komodakis, 2016) and DenseNet Huang et al. (2016a), are also provided in Table 2

Figure 3 provides results on the CIFAR-100 dataset. This dataset is considerably more challenging
as it consists of a larger number of classes as well as fewer examples per class. As in the case of
CIFAR-10, we observe a fall in the performance of both VAN and plain networks beyond a certain
depth; in this case approximately 20 layers for plain networks and 30 layers for VANs. Despite this
drop in performance, Table 2 indicates that the performance of VAN networks with both 18 and
26 layers are competitive with many alternatives proposed in the literature. Furthermore, we note
that the performance of VAN (λ = 0) networks is competitive with ResNets in the context of the
CIFAR-100 dataset.
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Figure 3: Left: Results on CIFAR-100 dataset are shown as the depth increases from 10 to 34 layers.
We note that the performance of both VAN and plain networks deteriorates as the depth increases,
but the effect is far less pronounced for plain networks. Right: Training and test error curves are
shown for VAN and plain networks with 18 layers. The mean α residuals, 1

L

∑L
l=1(1 − αl)

2, are
shown in gold along the right axis.

Training curves are shown on the right hand side of Figure 3. As in the equivalent plot for CIFAR-10,
the introduction and subsequent removal of skip-connections during training leads to improvements
in generalization error.

Table 2: Comparison of VAN networks to results of other convolutional networks on CIFAR-10 and
CIFAR-100. For VAN networks we report the best value as well as the mean and standard deviation
over five independent training runs (in brackets). Results are ordered by performance on CIFAR-10.
We add a ∗ to denote results which did not employ batch-normalization.

Architecture # Layers CIFAR-10 (test error %) CIFAR-100 (test error %)
Highway Network∗ 32 8.80 -
FitNet∗ 19 8.39 35.04
Highway Network∗ 19 7.54 32.39
DiracNet (width-1) 34 7.10 -
ELU∗ 18 6.55 24.28
VAN (λ = 0) 26 6.29 (6.40± 0.16) 27.04 (27.42 ± 0.26)
VAN (λ = 0) 34 6.28 (6.45± 0.14) 26.46 (26.81 ± 0.31)
VAN 18 6.23 (6.49± 0.16) 28.20 (28.42 ± 0.36)
VAN 26 6.08 (6.35± 0.21) 27.70 (28.01 ± 0.39)
DiracNet (width-2) 34 5.60 26.72
ResNet 164 5.46 24.33
Wide ResNet (width-10) 28 4.00 19.25
DenseNet 160 3.46 17.18

5 DISCUSSION

This manuscript presents a simple method for training deep feed-forward networks which greatly
reduces the degradation problem. In the past, the degradation issue has been successfully addressed
via the introduction of skip-connections. As such, the goal of this work is to propose a new training
regime which retains the optimization benefits associated with ResNets while ultimately phasing
out skip-connections. This is achieved by posing network training as a constrained optimization
problem where skip-connections are introduced during the early stages of training and subsequently
phased out in a principled manner using Lagrange multipliers.

Throughout a series of experiments we demonstrate that the performance of VAN networks is stable,
displaying a far smaller drop in performance as depth increases and thereby largely mitigating the
degradation problem.
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A VAN RE-FORMULATION

The original formulation for the VAN residual block was as follows:

xl+1 = αl · Fl(xl,Wl) + (1−αl) · xl. (9)

We thank an anonymous reviewer for suggesting that such a formulation may be detrimental to the
performance of very deep VAN networks. The reason for this is that scaling constant within each
block is always less than one, implying that the contributions of lower layers vanish exponentially
as the depth increases. This argument is also provided in He et al. (2016b) who perform similar
experiments with ResNets.

In order to validate this hypothesis, we compare the performance of VAN networks employing the
residual block described in equation (4) and the residual block described in equation (9). The results,
shown in Figure 4, provide evidence in favor of the proposed hypothesis. While both formulations
for VAN networks obtain similar performances for shallow networks, as the depth of the network
increases there is a more pronounced drop in the performance of VAN networks which employ
residual blocks described in equation (9).

In a further experiment, we also studied the performance of ResNets with the following residual
block:

xl+1 = 0.5 · Fl(xl,Wl) + 0.5 · xl. (10)

The results in Figure 4 demonstrate that ResNets which employ the residual blocks defined in equa-
tion (10) show a clear deterioration in performance as the depth of the network increases. Such a
degradation in performance is not present when standard ResNets are employed.

Figure 4: Results are shown VAN and ResNet networks with various different residual blocks. We
note that the use of residual blocks with non-identity scaling coefficients leads to a larger drop in
performance as the network depth increases. This drop is attributed to vanishing contributions from
lower blocks (as all scalings are less than one).
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B LAGRANGE MULTIPLIER TRACES

In this section we provide addition figures demonstrating the evolution of Lagrange multipliers, λl

throughout training. We note that the updates to Lagrange multipliers are directly modulated by the
current value of each αl (see equation (8)). As such, we also visualize the mean residuals of the αl

parameters across all layers. This is defined as 1
L

∑L
l=1(1 − αl)

2 and is a measure of the extent to
which skip-connections are present in the network. Once all skip-connections have been removed,
this residual will be zero and the values of Lagrange multipliers will no longer change.

This is precisely what we find in Figure 5. The left panel plots the mean value of Lagrange multi-
pliers across all layers, while the right panel shows the mean residual of αl . We observe that for
networks of different depths, once the constraint to remove skip-connections is satisfied, the value
of Lagrange multipliers remains constant. This occurs at different times; sooner for more shallow
networks whilst later on for deeper networks.

Figure 5: Lagrange multipliers, λl are shown on the left panel for networks of varying depth. After a
certain number of iterations, the values of the Lagrange multiplier plateau as the constraint to remove
skip-connections is satisfied. This results in no updates to the values of the Lagrange multipliers
(see equation (8)). The right panel shows the mean αl residual. This residual directly modulates the
magnitude of changes in Lagrange multipliers.
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