
Published as a conference paper at ICLR 2018

HIERARCHICAL REPRESENTATIONS FOR
EFFICIENT ARCHITECTURE SEARCH

Hanxiao Liu∗
Carnegie Mellon University
hanxiaol@cs.cmu.edu

Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, Koray Kavukcuoglu
DeepMind
{simonyan,vinyals,chrisantha,korayk}@google.com

ABSTRACT

We explore efficient neural architecture search methods and show that a simple
yet powerful evolutionary algorithm can discover new architectures with excellent
performance. Our approach combines a novel hierarchical genetic representation
scheme that imitates the modularized design pattern commonly adopted by human
experts, and an expressive search space that supports complex topologies. Our
algorithm efficiently discovers architectures that outperform a large number of
manually designed models for image classification, obtaining top-1 error of 3.6%
on CIFAR-10 and 20.3% when transferred to ImageNet, which is competitive with
the best existing neural architecture search approaches. We also present results
using random search, achieving 0.3% less top-1 accuracy on CIFAR-10 and 0.1%
less on ImageNet whilst reducing the search time from 36 hours down to 1 hour.

1 INTRODUCTION

Discovering high-performance neural network architectures required years of extensive research by
human experts through trial and error. As far as the image classification task is concerned, state-of-
the-art convolutional neural networks are going beyond deep, chain-structured layout (Simonyan &
Zisserman, 2014; He et al., 2016a) towards increasingly more complex, graph-structured topologies
(Szegedy et al., 2015; 2016; 2017; Larsson et al., 2016; Xie et al., 2016; Huang et al., 2016). The
combinatorial explosion in the design space makes handcrafted architectures not only expensive to
obtain, but also likely to be suboptimal in performance.

Recently, there has been a surge of interest in using algorithms to automate the manual process of
architecture design. Their goal can be described as finding the optimal architecture in a given search
space such that the validation accuracy is maximized on the given task. Representative architecture
search algorithms can be categorized as random with weights prediction (Brock et al., 2017), Monte
Carlo Tree Search (Negrinho & Gordon, 2017), evolution (Stanley & Miikkulainen, 2002; Xie &
Yuille, 2017; Miikkulainen et al., 2017; Real et al., 2017), and reinforcement learning (Baker et al.,
2016; Zoph & Le, 2016; Zoph et al., 2017; Zhong et al., 2017), among which reinforcement learning
approaches have demonstrated the strongest empirical performance so far.

Architecture search can be computationally very intensive as each evaluation typically requires train-
ing a neural network. Therefore, it is common to restrict the search space to reduce complexity and
increase efficiency of architecture search. Various constraints that have been used include: growing
a convolutional “backbone” with skip connections (Real et al., 2017), a linear sequence of filter
banks (Brock et al., 2017), or a directed graph where every node has exactly two predecessors
(Zoph et al., 2017). In this work we constrain the search space by imposing a hierarchical network
structure, while allowing flexible network topologies (directed acyclic graphs) at each level of the
hierarchy. Starting from a small set of primitives such as convolutional and pooling operations at
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the bottom level of the hierarchy, higher-level computation graphs, or motifs, are formed by us-
ing lower-level motifs as their building blocks. The motifs at the top of the hierarchy are stacked
multiple times to form the final neural network. This approach enables search algorithms to imple-
ment powerful hierarchical modules where any change in the motifs is propagated across the whole
network immediately. This is analogous to the modularized design patterns used in many hand-
crafted architectures, e.g. VGGNet (Simonyan & Zisserman, 2014), ResNet (He et al., 2016a), and
Inception (Szegedy et al., 2016) are all comprised of building blocks. In our case, a hierarchical
architecture is discovered through evolutionary or random search.

The evolution of neural architectures was studied as a sub-task of neuroevolution (Holland, 1975;
Miller et al., 1989; Yao, 1999; Stanley & Miikkulainen, 2002; Floreano et al., 2008), where the
topology of a neural network is simultaneously evolved along with its weights and hyperparameters.
The benefits of indirect encoding schemes, such as multi-scale representations, have historically
been discussed in Gruau et al. (1994); Kitano (1990); Stanley (2007); Stanley et al. (2009). Despite
these pioneer studies, evolutionary or random architecture search has not been investigated at larger
scale on image classification benchmarks until recently (Real et al., 2017; Miikkulainen et al., 2017;
Xie & Yuille, 2017; Brock et al., 2017; Negrinho & Gordon, 2017). Our work shows that the power
of simple search methods can be substantially enhanced using well-designed search spaces.

Our experimental setup resembles Zoph et al. (2017), where an architecture found using reinforce-
ment learning obtained the state-of-the-art performance on ImageNet. Our work reveals that random
or evolutionary methods, which so far have been seen as less efficient, can scale and achieve com-
petitive performance on this task if combined with a powerful architecture representation, whilst
utilizing significantly less computational resources.

To summarize, our main contributions are:

1. We introduce hierarchical representations for describing neural network architectures.
2. We show that competitive architectures for image classification can be obtained even with

simplistic random search, which demonstrates the importance of search space construction.
3. We present a scalable variant of evolutionary search which further improves the results and

achieves the best published results1 among evolutionary architecture search techniques.

2 ARCHITECTURE REPRESENTATIONS

We first describe flat representations of neural architectures (Sect. 2.1), where each architecture is
represented as a single directed acyclic graph of primitive operations. Then we move on to hier-
archical representations (Sect. 2.2) where smaller graph motifs are used as building blocks to form
larger motifs. Primitive operations are discussed in Sect. 2.3.

2.1 FLAT ARCHITECTURE REPRESENTATION

We consider a family of neural network architectures represented by a single-source, single-sink
computation graph that transforms the input at the source to the output at the sink. Each node of
the graph corresponds to a feature map, and each directed edge is associated with some primitive
operation (e.g. convolution, pooling, etc.) that transforms the feature map in the input node and
passes it to the output node.

Formally, an architecture is defined by the representation (G,o), consisting of two ingredients:

1. A set of available operations o = {o1, o2, . . . }.
2. An adjacency matrix G specifying the neural network graph of operations, where Gij = k

means that the k-th operation ok is to be placed between nodes i and j.

The architecture is obtained by assembling operations o according to the adjacency matrix G:

arch = assemble(G,o) (1)

1at the moment of paper submission; see Real et al. (2018) for a more recent study of evolutionary methods
for architecture search.
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Figure 1: An example of a three-level hierarchical architecture representation. The bottom row
shows how level-1 primitive operations o(1)1 , o

(1)
2 , o

(1)
3 are assembled into a level-2 motif o(2)1 . The

top row shows how level-2 motifs o(2)1 , o
(2)
2 , o

(2)
3 are then assembled into a level-3 motif o(3)1 .

in a way that the resulting neural network sequentially computes the feature map xi of each node i
from the feature maps xj of its predecessor nodes j following the topological ordering:

xi = merge
[
{oGij

(xj)}j<i

]
, i = 2, . . . , |G| (2)

Here, |G| is the number of nodes in a graph, and merge is an operation combining multiple feature
maps into one, which in our experiments was implemented as depthwise concatenation. An alter-
native option of element-wise addition is less flexible as it requires the incoming feature maps to
contain the same number of channels, and is strictly subsumed by concatenation if the resulting xi

is immediately followed by a 1× 1 convolution.

2.2 HIERARCHICAL ARCHITECTURE REPRESENTATION

The key idea of the hierarchical architecture representation is to have several motifs at different
levels of hierarchy, where lower-level motifs are used as building blocks (operations) during the
construction of higher-level motifs.

Consider a hierarchy of L levels where the `-th level contains M` motifs. The highest-level ` = L
contains only a single motif corresponding to the full architecture, and the lowest level ` = 1 is the
set of primitive operations. We recursively define o

(`)
m , the m-th motif in level `, as the composition

of lower-level motifs o(`−1) =
{
o
(`−1)
1 , o

(`−1)
2 , ..., o

(`−1)
M(`−1)

}
according to its network structure G(`)

m :

o(`)m = assemble
(
G(`)

m ,o(`−1)
)
, ∀` = 2, . . . , L (3)

A hierarchical architecture representation is therefore defined by
({
{G(`)

m }M`
m=1

}L

`=2
,o(1)

)
, as it is

determined by network structures of motifs at all levels and the set of bottom-level primitives. The
assembly process is illustrated in Fig. 1.

2.3 PRIMITIVE OPERATIONS

We consider the following six primitives at the bottom level of the hierarchy (` = 1,M` = 6):

• 1× 1 convolution of C channels

• 3× 3 depthwise convolution

• 3× 3 separable convolution of C channels

• 3× 3 max-pooling
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• 3× 3 average-pooling

• identity

If applicable, all primitives are of stride one and the convolved feature maps are padded to pre-
serve their spatial resolution. All convolutional operations are followed by batch normalization and
ReLU activation (Ioffe & Szegedy, 2015); their number of channels is fixed to a constant C. We
note that convolutions with larger receptive fields and more channels can be expressed as motifs of
such primitives. Indeed, large receptive fields can be obtained by stacking 3 × 3 convolutions in a
chain structure (Simonyan & Zisserman, 2014), and wider convolutions with more channels can be
obtained by merging the outputs of multiple convolutions through depthwise concatenation.

We also introduce a special none op, which indicates that there is no edge between nodes i and j. It
is added to the pool of operations at each level.

3 EVOLUTIONARY ARCHITECTURE SEARCH

Evolutionary search over neural network architectures can be performed by treating the representa-
tions of Sect. 2 as genotypes. We first introduce an action space for mutating hierarchical genotypes
(Sect. 3.1), as well as a diversification-based scheme to obtain the initial population (Sect. 3.2). We
then describe tournament selection and random search in Sect. 3.3, and our distributed implementa-
tion in Sect. 3.4.

3.1 MUTATION

A single mutation of a hierarchical genotype consists of the following sequence of actions:

1. Sample a target non-primitive level ` ≥ 2.

2. Sample a target motif m in the target level.

3. Sample a random successor node i in the target motif.

4. Sample a random predecessor node j in the target motif.

5. Replace the current operation o
(`−1)
k between j and i with a randomly sampled operation

o
(`−1)
k′ .

In the case of flat genotypes which consist of two levels (one of which is the fixed level of primitives),
the first step is omitted and ` is set to 2. The mutation can be summarized as:

[G(`)
m ]ij = k′ (4)

where `,m, i, j, k′ are randomly sampled from uniform distributions over their respective domains.
Notably, the above mutation process is powerful enough to perform various modifications on the
target motif, such as:

1. Add a new edge: if o(`−1)k = none and o
(`−1)
k′ 6= none.

2. Alter an existing edge: if o(`−1)k 6= none and o
(`−1)
k′ 6= none and o

(`−1)
k′ 6= o

(`−1)
k .

3. Remove an existing edge: if o(`−1)k 6= none and if o(`−1)k′ = none.

3.2 INITIALIZATION

To initialize the population of genotypes, we use the following strategy:

1. Create a “trivial” genotype where each motif is set to a chain of identity mappings.

2. Diversify the genotype by applying a large number (e.g. 1000) of random mutations.

In contrast to several previous works where genotypes are initialized by trivial networks (Stanley
& Miikkulainen, 2002; Real et al., 2017), the above diversification-based scheme not only offers a

4



Published as a conference paper at ICLR 2018

Algorithm 1: ASYNCEVO Asynchronous Evolution (Controller)
Input: Data queue Q containing initial genotypes; Memory tableM recording evaluated

genotypes and their fitness.
while True do

if HASIDLEWORKER() then
genotype← ASYNCTOURNAMENTSELECT(M)
genotype′ ← MUTATE(genotype)
Q ← Q∪ genotype′

Algorithm 2: ASYNCEVO Asynchronous Evolution (Worker)
Input: Training set T , validation set V; Shared memory tableM and data queue Q.
while True do

if |Q| > 0 then
genotype← Q.pop()
arch← ASSEMBLE(genotype)
model← TRAIN(arch, T )
fitness← EVALUATE(model,V)
M←M∪ (genotype, fitness)

good initial coverage of the search space with non-trivial architectures, but also helps to avoid an
additional bias introduced by handcrafted initialization routines. In fact, this strategy ensures initial
architectures are reasonably well-performing even without any search, as suggested by our random
sample results in Table 1.

3.3 SEARCH ALGORITHMS

Our evolutionary search algorithm is based on tournament selection (Goldberg & Deb, 1991). Start-
ing from an initial population of random genotypes, tournament selection provides a mechanism to
pick promising genotypes from the population, and to place its mutated offspring back into the pop-
ulation. By repeating this process, the quality of the population keeps being refined over time. We
always train a model from scratch for a fixed number of iterations, and we refer to the training and
evaluation of a single model as an evolution step. The genotype with the highest fitness (validation
accuracy) among the entire population is selected as the final output after a fixed amount of time.

A tournament is formed by a random set of genotypes sampled from the current effective popula-
tion, among which the individual with the highest fitness value wins the tournament. The selection
pressure is controlled by the tournament size, which is set to 5% of the population size in our case.
We do not remove any genotypes from the population, allowing it to grow with time, maintaining
architecture diversity. Our evolution algorithm is similar to the binary tournament selection used in
a recent large-scale evolutionary method (Real et al., 2017).

We also investigated random search, a simpler strategy which has not been sufficiently explored in
the literature, as an alternative to evolution. In this case, a population of genotypes is generated
randomly, the fitness is computed for each genotype in the same way as done in evolution, and the
genotype with the highest fitness is selected as the final output. The main advantage of this method
is that it can be run in parallel over the entire population, substantially reducing the search time.

3.4 IMPLEMENTATION

Our distributed implementation is asynchronous, consisting of a single controller responsible for
performing evolution over the genotypes, and a set of workers responsible for their evaluation. Both
parties have access to a shared tabular memoryM recording the population of genotypes and their
fitness, as well as a data queue Q containing the genotypes with unknown fitness which should be
evaluated.
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Specifically, the controller will perform tournament selection of a genotype from M whenever a
worker becomes available, followed by the mutation of the selected genotype and its insertion into
Q for fitness evaluation (Algorithm 1). A worker will pick up an unevaluated genotype from Q
whenever there is one available, assemble it into an architecture, carry out training and validation,
and then record the validation accuracy (fitness) inM (Algorithm 2). Architectures are trained from
scratch for a fixed number of steps with random weight initialization. We do not rely on weight
inheritance as in (Real et al., 2017), though incorporating it into our system is possible. Note that
during architecture evolution no synchronization is required, and all workers are fully occupied.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

In our experiments, we use the proposed search framework to learn the architecture of a convolu-
tional cell, rather than the entire model. The reason is that we would like to be able to quickly
compute the fitness of the candidate architecture and then transfer it to a larger model, which is
achieved by using less cells for fitness computation and more cells for full model evaluation. A
similar approach has recently been used in (Zoph et al., 2017; Zhong et al., 2017).

Architecture search is carried out entirely on the CIFAR-10 training set, which we split into two
sub-sets of 40K training and 10K validation images. Candidate models are trained on the training
subset, and evaluated on the validation subset to obtain the fitness. Once the search process is over,
the selected cell is plugged into a large model which is trained on the combination of training and
validation sub-sets, and the accuracy is reported on the CIFAR-10 test set. We note that the test set
is never used for model selection, and it is only used for final model evaluation. We also evaluate the
cells, learned on CIFAR-10, in a large-scale setting on the ImageNet challenge dataset (Sect. 4.3).
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Figure 2: Image classification models constructed using the cells optimized with architecture search.
Top-left: small model used during architecture search on CIFAR-10. Top-right: large CIFAR-10
model used for learned cell evaluation. Bottom: ImageNet model used for learned cell evaluation.

For CIFAR-10 experiments we use a model which consists of 3 × 3 convolution with c0 channels,
followed by 3 groups of learned convolutional cells, each group containing N cells. After each cell
(with c input channels) we insert 3×3 separable convolution which has stride 2 and 2c channels if it
is the last cell of the group, and stride 1 and c channels otherwise. The purpose of these convolutions
is to control the number of channels as well as reduce the spatial resolution. The last cell is followed
by global average pooling and a linear softmax layer.

For fitness computation we use a smaller model with c0 = 16 and N = 1, shown in Fig. 2 (top-left).
It is trained using SGD with 0.9 momentum for 5000 steps, starting with the learning rate 0.1, which
is reduced by 10x after 4000 and 4500 steps. The batch size is 256, and the weight decay value is
3 ·10−4. We employ standard training data augmentation where a 24×24 crop is randomly sampled
from a 32× 32 image, followed by random horizontal flipping. The evaluation is performed on the
full size 32× 32 image.
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A note on variance. We found that the variance due to optimization was non-negligible, and we
believe that reporting it is important for performing a fair comparison and assessing model capabil-
ities. When training CIFAR models, we have observed standard deviation of up to 0.2% using the
exact same setup. The solution we adopted was to compute the fitness as the average accuracy over
4 training-evaluation runs.

For the evaluation of the learned cell architecture on CIFAR-10, we use a larger model with c0 =
64 and N = 2, shown in Fig. 2 (top-right). The larger model is trained for 80K steps, starting
with a learning rate 0.1, which is reduced by 10x after 40K, 60K, and 70K steps. The rest of the
training settings are the same as used for fitness computation. We report mean and standard deviation
computed over 5 training-evaluation runs.

For the evaluation on the ILSVRC ImageNet challenge dataset (Russakovsky et al., 2015), we use
an architecture similar to the one used for CIFAR, with the following changes. An input 299× 299
image is passed through two convolutional layers with 32 and 64 channels and stride 2 each. It
is followed by 4 groups of convolutional cells where the first group contains a single cell (and has
c0 = 64 input channels), and the remaining three groups have N = 2 cells each (Fig. 2, bottom). We
use SGD with momentum which is run for 200K steps, starting with a learning rate of 0.1, which is
reduced by 10x after 100K, 150K, and 175K steps. The batch size is 1024, and weight decay is 10−4.
We did not use auxiliary losses, weight averaging, label smoothing or path dropout empirically found
effective in (Zoph et al., 2017). The training augmentation is the same as in (Szegedy et al., 2016),
and consists in random crops, horizontal flips and brightness and contrast changes. We report the
single-crop top-1 and top-5 error on the ILSVRC validation set.

4.2 ARCHITECTURE SEARCH ON CIFAR-10

Figure 3: Fitness and number of parameters vs evolution step for flat and hierarchical represen-
tations. Left: fitness of a genotype generated at each evolution step. Middle: maximum fitness
across all genotypes generated before each evolution step. Right: number of parameters in the small
CIFAR-10 model constructed using the genotype generated at each evolution step.

We run the evolution on flat and hierarchical genotypes for 7000 steps using 200 GPU workers. The
initial size of the randomly initialized population is 200, which later grows as a result of tournament
selection and mutation (Sect. 3). For the hierarchical representation, we use three levels (L = 3),
with M1 = 6,M2 = 6,M3 = 1. Each of the level-2 motifs is a graph with |G(2)| = 4 nodes, and the
level-3 motif is a graph with |G(3)| = 5 nodes. Each level-2 motif is followed by a 1×1 convolution
with the same number of channels as on the motif input to reduce the number of parameters. For the
flat representation, we used a graph with 11 nodes to achieve a comparable number of edges.

The evolution process is visualized in Fig. 3. The left plot shows the fitness of the genotype gener-
ated at each step of evolution: the fitness grows fast initially, and plateaus over time. The middle plot
shows the best fitness observed by each evolution step. Since the first 200 steps correspond to a ran-
dom initialization and mutation starts after that, the best architecture found at step 200 corresponds
to the output of random search over 200 architectures.
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Fig. 3 (right) shows the number of parameters in the small network (used for fitness computation),
constructed using the genotype produced at each step. Notably, flat genotypes achieve higher fitness,
but at the cost of larger parameter count. We thus also consider a parameter-constrained variant of
the flat genotype, where only the genotypes with the number of parameters under a fixed threshold
are permitted; the threshold is chosen so that the flat genotype has a similar number of parameters
to the hierarchical one. In this setting hierarchical and flat genotypes achieve similar fitness.

To demonstrate that improvement in fitness of the hierarchical architecture is correlated with the
improvement in the accuracy of the corresponding large model trained till convergence, we plot the
relative accuracy improvements in Fig. 4.

Figure 4: Accuracy improvement over the course of evolution, measured with respect to the first
random genotype. The small model is the model used for fitness computation during evolution (its
absolute fitness value is shown with the red curve in Fig. 3 (middle)). The large model is the model
where the evolved cell architecture is deployed for training and evaluation.

As far as the architecture search time is concerned, it takes 1 hour to compute the fitness of one
architecture on a single P100 GPU (which involves 4 rounds of training and evaluation). Using
200 GPUs, it thus takes 1 hour to perform random search over 200 architectures and 1.5 days to do
the evolutionary search with 7000 steps. This is significantly faster than 11 days using 250 GPUs
reported by (Real et al., 2017) and 4 days using 450 GPUs reported by (Zoph et al., 2017).

Search Method CIFAR-10 error (%) ImageNet
Top-1/Top-5 error (%)

Flat repr-n, random architecture 4.56± 0.11 21.4/5.8
Flat repr-n, random search (200 samples) 4.02± 0.11 20.8/5.7
Flat repr-n, evolution (7000 samples) 3.92± 0.06 20.6/5.6
Flat repr-n, parameter-constrained, evolution (7000 samples) 4.17± 0.08 21.2/5.8

Hier. repr-n, random architecture 4.21± 0.11 21.5/5.8
Hier. repr-n, random search (200 samples) 4.04± 0.2 20.4/5.3
Hier. repr-n, random search (7000 samples) 3.91± 0.15 21.0/5.5
Hier. repr-n, evolution (7000 samples) 3.75 ± 0.12 20.3/5.2

Table 1: Classification results on the CIFAR-10 test set and ILSVRC validation set obtained using
the architectures found using various representations and search methods.

4.3 ARCHITECTURE EVALUATION ON CIFAR-10 AND IMAGENET

We now turn to the evaluation of architectures found using random and evolutionary search on
CIFAR-10 and ImageNet. The results are presented in Table 1.

First, we note that randomly sampled architectures already perform surprisingly well, which we
attribute to the representation power of our architecture spaces. Second, random search over 200 ar-
chitectures achieves very competitive results on both CIFAR-10 and ImageNet, which is remarkable
considering it took 1 hour to carry out. This demonstrates that well-constructed architecture repre-
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sentations, coupled with diversified sampling and simple search form a simple but strong baseline
for architecture search. Our best results are achieved using evolution over hierarchical representa-
tions: 3.75%± 0.12% classification error on the CIFAR-10 test set (using c0 = 64 channels), which
is further improved to 3.63%± 0.10% with more channels (c0 = 128). On the ImageNet validation
set, we achieve 20.3% top-1 classification error and 5.2% top-5 error. We put these results in the
context of the state of the art in Tables 2 and 3. We achieve the best published results on CIFAR-10
using evolutionary architecture search, and also demonstrate competitive performance compared to
the best published methods on both CIFAR-10 and ImageNet. Our ImageNet model has 64M pa-
rameters, which is comparable to Inception-ResNet-v2 (55.8M) but larger than NASNet-A (22.6M).

Model Error (%)

ResNet-1001 + pre-activation (He et al., 2016b) 4.62
Wide ResNet-40-10 + dropout (Zagoruyko & Komodakis, 2016) 3.8
DenseNet (k=24) (Huang et al., 2016) 3.74
DenseNet-BC (k=40) (Huang et al., 2016) 3.46

MetaQNN (Baker et al., 2016) 6.92
NAS v3 (Zoph & Le, 2016) 3.65
Block-QNN-A (Zhong et al., 2017) 3.60
NASNet-A (Zoph et al., 2017) 3.41

Evolving DNN (Miikkulainen et al., 2017) 7.3
Genetic CNN (Xie & Yuille, 2017) 7.10
Large-scale Evolution (Real et al., 2017) 5.4
SMASH (Brock et al., 2017) 4.03

Evolutionary search, hier. repr., c0 = 64 3.75± 0.12
Evolutionary search, hier. repr., c0 = 128 3.63± 0.10

Table 2: Classification error on the CIFAR-10 test set obtained using state-of-the-art models as
well as the best-performing architecture found using the proposed architecture search framework.
Existing models are grouped as (from top to bottom): handcrafted architectures, architectures found
using reinforcement learning, and architectures found using random or evolutionary search.

Model Top-1 error (%) Top-5 error (%)

Inception-v3 (Szegedy et al., 2016) 21.2 5.6
Xception (Chollet, 2016) 21.0 5.5
Inception-ResNet-v2 (Szegedy et al., 2017) 19.9 4.9
NASNet-A (Zoph et al., 2017) 19.2 4.7

Evolutionary search, hier. repr., c0 = 64 20.3 5.2

Table 3: Classification error on the ImageNet validation set obtained using state-of-the-art models
as well as the best-performing architecture found using our framework.

The evolved hierarchical cell is visualized in Appendix A, which shows that architecture search have
discovered a number of skip connections. For example, the cell contains a direct skip connection
between input and output: nodes 1 and 5 are connected by Motif 4, which in turn contains a di-
rect connection between input and output. The cell also contains several internal skip connections,
through Motif 5 (which again comes with an input-to-output skip connection similar to Motif 4).

5 CONCLUSION

We have presented an efficient evolutionary method that identifies high-performing neural archi-
tectures based on a novel hierarchical representation scheme, where smaller operations are used as
the building blocks to form the larger ones. Notably, we show that strong results can be obtained
even using simplistic search algorithms, such as evolution or random search, when coupled with a
well-designed architecture representation. Our best architecture yields the state-of-the-art result on
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CIFAR-10 among evolutionary methods and successfully scales to ImageNet with highly competi-
tive performance.
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A ARCHITECTURE VISUALIZATION

Visualization of the learned cell and motifs of our best-performing hierarchical architecture. Note
that only motifs 1,3,4,5 are used to construct the cell, among which motifs 3 and 5 are dominating.
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Figure 7: Motif 2
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Figure 9: Motif 4

1(2) 3 4

3× 3 separable

3× 3 separable

3× 3 separable

Figure 10: Motif 5

1 2 3 4
3× 3 depthwise

max-pooling

3× 3 separable

max-pooling avg-pooling

Figure 11: Motif 6
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