Workshop track - ICLR 2018

GRAPH PRIORS FOR DEEP NEURAL NETWORKS

Francis Dutil* & Joseph Paul Cohen* & Martin Weiss & Yoshua Bengio
Montreal Institute for Learning Algorithms

Université of Montréal

{dutilf, cohenjos,weissmar,bengioy}@iro.umontreal.ca

Georgy Derevyanko

Department of Chemistry and Biochemistry

Centre for Research in Molecular Modeling (CERMM)
Concordia University
georgy.derevyanko@gmail.com

ABSTRACT

In this work we explore how gene-gene interaction graphs can be used as a prior
for the representation of a model to construct features based on known interactions
between genes. Most existing machine learning work on graphs focuses on build-
ing models when data is confined to a graph structure. In this work we focus on
using the information from a graph to build better representations in our models.
We use the percolate task, determining if a path exists across a grid for a set of
node values, as a proxy for gene pathways. We create variants of the percolate
task to explore where existing methods fail. We test the limits of existing methods
in order to determine what can be improved when applying these methods to a real
task. This leads us to propose new methods based on Graph Convolutional Net-
works (GCN) that use pooling and dropout to deal with noise in the graph prior.

1 INTRODUCTION

Gene expression data produced from RNA-Seq or MicroArray is typically thought of as many ar-
bitrary variables without taking advantage of observed relationships between genes. As researchers
piece together how they relate to each other, gene network graphs are being built from the papers
they publish. Genes are said to interact with each other if they (or the protein they code for) have
a physical or a functional association. We can also consider correlations mined from large gene
expression datasets implying unknown relationships.

We explore how these graphs can be used as priors influencing the representation learned by a model
in order to guide learning toward more relevant features. This can help the model to ignore noise
which correlates with a target prediction by chance, which happens a lot in datasets where there
are more input variables than training examples. If done correctly, we can also reduce the overall
number of parameters, analogous to what can be done with a Convolutional Neural Network.

In order to build a better understanding of these complex biological systems and in order determine
how existing methods can be improved we model the system as a percolation task [Broadbent &
Hammersley| (1957)] representing a biological pathway. The percolation task is: given a graph with
a set of source nodes, sink nodes, and intermediate nodes, with input values {0, 1} for each node
does there exist a path from a source to a sink. If so this graph is said to percolate. We modify
this task by changing the graph data in three ways to simulate problems in real datasets as shown in
Figure[I] We can add extra uninformative unconnected nodes which are not part of the graph and not
needed to solve the percolation task. We can also add extra uninformative connected nodes which are
present in the graph and act as incorrect gene relationships or relationships that are unrelated to the
task. We can also degrade the percolation graph itself by removing edges to simulate not-yet-known
interactions.

2 GRAPH PRIORS

Most existing work focuses on building models when data is confined to a graph structure. In this
work we focus on using the information from a graph (or graphs) to build better representations in

Workshop track - ICLR 2018

Percolation path

\ Py
- e o o
g
e ® L L
<
£ []] L
o
8 I @ ® o
&
L [] o L]
Unconnected Connected Connected Unconnected
Informative Informative Uninformative Uninformative
Nodes Nodes Nodes Nodes

Figure 1: We model how gene-gene interaction graphs can overlap real data using the percolate task
as a proxy for a pathway between genes. Blue nodes represent the source and sink of which signal
must propagate through Green nodes to percolate. Red nodes are unrelated to the problem and may
or may not have edges in the graph which would be a distraction to the main problem.

our models. When working with point clouds, social networks, or protein structures the graph is
fundamental and unchangeable. With gene expression information the graphs are complementary
to the main task and can act as a prior. With low numbers of samples, a common setting in biol-
ogy, relationships between variables can provide signal to help a model avoid learning erroneous
correlations.

Via regularization: The method proposed by Min et al.| (2016)) is to regularize the weights of a
Sparse Logistic Regression (SLR) based on the connectivity of the nodes found in the interaction
graph. This is achieved by adding a regularization term \|w|” L|w|, with the graph Laplacian L to
a logistic regression loss. This regularization encourages the weights to associate with nodes that
have a high number of interactions to remain important.

Via convolution: We can also use the structure of the graph as a prior. By performing convolution
operations on a node to incorporate its neighbors we can extract and propagate the features along the
edges of the graph, like what happens inside a Convolution Neural Network with adjacent pixels.
This convolution over the features 6 % X is not trivial when the structure of the graph is highly
complex. In|Bruna et al.| (2014) they explore the use of highly sparse MLPs where each feature is
only linked to its neighbours. [Bruna et al.| (2014) also used spectral convolution, by projecting the
parameters into the spectral space of the Laplacian matrix L: X't = 0 x X! = Udiag(0)UT X,
where U contains the eigenvectors of the Laplacian L.

However, the full projection of the eigenvectors represents paths of infinite length and will therefore
take into account all nodes at once and prevent the network from reasoning about interactions with
neighbors. This mean that no locality is present in the convolution, which makes the interpretability
and the sharing of the parameters a lot more difficult. To obtain this locality in the convolution,
we can utilize methods in Defferrard et al.| (2016) and |Kipf & Welling| (2016) and approximate the
convolution to the first neighbouring layers (paths of length 1) for each nodes. With A’ = A + Iy
and D; = > A;; this leave us with:
X = diag(0) « X* ~ D'"12A' D712 X1

To increase the receptive field of each nodes, we can then simply add convolution layers on top
of each other. This approach however doesn’t allow us to have different types of interactions (all
nodes are aggregated before any transformation is done). While it is possible to have different
sets of parameters for different interactions like in Bruna et al.|(2014), not all graphs (specifically
gene interaction graphs) have different types of edges for each type of interaction between genes.
In Duvenaud et al.| (2015) they deal with this problem by considering the degree of each node as
different kinds of interaction. However, in the case of genes, the distribution of the degree of the
nodes varies too much for this trick to be practical. In our case, we have done like in|Hamilton et al.
(2017) and added a skip connection at each convolution layer, which essentially preserves two kinds
of signals: the neighbourhood and the node itself. We can utilize this method to combine multiple
graph priors in the same network. The full convolution can then be constructed in layers with an
activation function and aggregation clustering method:

Xt = Aggregate(ReLU (AX 6, + X65))

In this paper, we have used hierarchical clustering based on the node connectivity in the interaction
graph to reduce the number of nodes by 2 after each convolution. A max pooling is then done on
each resulting clusters.

Workshop track - ICLR 2018

-+4+- SLR MLP -+- GCN - GCN (Pooling) —— GCN (Dropout)
Percolate Task Percolate Task Percolate Task
with Connected Uninformative Nodes with Unconnected Uninformative Nodes with Removed Edges
1.0 — —
T = ” R
" by 'TV\M ot M ot

: u;‘\‘:{;‘\ﬁ? 7\77* }“H\ll || _____ L i’
) { ’ |

06 | ‘ +‘\\+,”/ \‘{\ *4\ ‘
A [P | *;4

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 0 5 10 15 20

Mean AUROC

of Connected Uninformative Nodes # of Unconnected Uninformative Nodes # of Edges Removed

Figure 2: Here we vary the two types of extra nodes and how many edges are removed beyond a base
4x4 percolate graph. We generate 1000 samples split into train/valid/test split with 60%/20%/20%
proportions and present the average test AUC over 10 runs.

Dataset Random SLR MLP GCN GCN (with pooling) GCN (with dropout)
GBM-Survival 51.3%+3.8 64.5%+1.5 609%+5.1 61.5%+2.4 66.6%+2.2 64.0%+1.7
Percolate-Equiv = 47.5%+1.5 543%4+3.2 51.0%+1.6 51.2%+3.6 52.8%+2.0 51.2%+2.3

Table 1: Here we evaluate these models on large real and synthetic datasets. (AUC over 10 runs).
Currently these numbers do not show a significant increase in performance but our analysis at a
smaller scale indicates that we are closer to a method that may one day work.

To help with the low amount of data, we also experiment with Drop-out |Srivastava et al.| (2014).
After each convolution layer, each node has a 40% change of being dropped. The model can’t then
rely on some specific node and has to pass the important information across the network, which in
turn can make the learning of important features easier.

3 EXPERIMENTS

To explore existing methods in Figure [2] we utilize our modified percolate task which differentiates
existing methods well when varying the extra nodes or missing edges. We explore the limits of
these methods in order to provide signal on what can be improved when applying to a real task.
We find that the MLP model is not capable of handling extra connected or unconnected nodes and
performance drops immediately while the GCN models are able to better deal with this noise. We
find that utilizing dropout with the GCN yields almost no performance drop unless informative edges
are removed. We interpret this as when nodes are connected they can pass information through their
neighbors and avoid being impacted by dropped out nodes. We also observe that pooling helps when
edges are missing which could be attributed to the imputation of missing edges. The extra connected
nodes and disconnected edges explore how important the quality of the graph is because noise in the
graph removes the effect of the prior. These results suggest that high quality biological interaction
graphs should be used as prior to help any given task.

In Table [T we evaluate these methods on a prototypical biological dataset used by Min et al.| (2016)
composed of gene expression profiles for 440 glioblastoma (GBM) patients in the TCGA database
[The Cancer Genome Atlas et al.|(2013)] and a Protein-Protein Interaction (PPI) graph from Pathway
Commons [[Cerami et al.| (2011))]. The task is to predict 440 patient’s survival within one year. We
construct a Percolate-Equiv dataset which is a version of the percolate task at a scale to match the
GBM problem. We consider a 6x6 percolate graph as the core pathway to be learned and add 1260
uninformative connected and 1000 uninformative unconnected nodes as noise.

To conclude, we present a proxy task to study how to incorporate gene pathway networks into
deep learning models. We gain insights into where the limitations are of the existing algorithms.
We propose applying GCNs in order to utilize one or many gene networks and we find that using
dropout maintains performance while other methods cannot handle the noise.

Workshop track - ICLR 2018

REFERENCES

Simon R Broadbent and John M Hammersley. Percolation processes: 1. Crystals and mazes. In
Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press,
1957.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally
Connected Networks on Graphs. In International Conference on Learning Representations, 2014.

Ethan G Cerami, Benjamin E Gross, Emek Demir, Igor Rodchenkov, Ozgiin Babur, Nadia Anwar,
Nikolaus Schultz, Gary D Bader, and Chris Sander. Pathway Commons, a web resource for
biological pathway data. Nucleic acids research, 2011.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks on
Graphs with Fast Localized Spectral Filtering. In Neural Information Processing Systems, 2016.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gémez-Bombarelli, Tim-
othy Hirzel, Aldn Aspuru-Guzik, and Ryan P. Adams. Convolutional Networks on Graphs for
Learning Molecular Fingerprints. In Neural Information Processing Systems, 2015.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Neural Information Processing Systems, 2017.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. International Conference on Learning Representations, 2016.

Wenwen Min, Juan Liu, and Shihua Zhang. Network-regularized Sparse Logistic Regression Mod-
els for Clinical Risk Prediction and Biomarker Discovery. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research, 2014.

John N. The Cancer Genome Atlas, John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna
R Mills Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M
Stuart. The Cancer Genome Atlas Pan-Cancer analysis project. Nature genetics, 2013.

	Introduction
	Graph Priors
	Experiments

