
Under review as a conference paper at ICLR 2017

MODULARIZED MORPHING OF NEURAL NETWORKS

Tao Wei†
University at Buffalo
Buffalo, NY 14260
taowei@buffalo.edu

Changhu Wang
Microsoft Research
Beijing, China, 100080
chw@microsoft.com

Chang Wen Chen
University at Buffalo
Buffalo, NY 14260
chencw@buffalo.edu

ABSTRACT

In this work we study the problem of network morphism, an effective learning
scheme to morph a well-trained neural network to a new one with the network
function completely preserved. Different from existing work where basic morph-
ing types on the layer level were addressed, we target at the central problem of net-
work morphism at a higher level, i.e., how a convolutional layer can be morphed
into an arbitrary module of a neural network. To simplify the representation of a
network, we abstract a module as a graph with blobs as vertices and convolutional
layers as edges, based on which the morphing process is able to be formulated as a
graph transformation problem. Two atomic morphing operations are introduced to
compose the graphs, based on which modules are classified into two families, i.e.,
simple morphable modules and complex modules. We present practical morphing
solutions for both of these two families, and prove that any reasonable module can
be morphed from a single convolutional layer. Extensive experiments have been
conducted based on the state-of-the-art ResNet on benchmark datasets, and the
effectiveness of the proposed solution has been verified.

1 INTRODUCTION

Deep convolutional neural networks have continuously demonstrated their excellent performances
on diverse computer vision problems. In image classification, the milestones of such networks can
be roughly represented by LeNet (LeCun et al., 1989), AlexNet (Krizhevsky et al., 2012), VGG net
(Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2014), and ResNet (He et al., 2015),
with networks becoming deeper and deeper. However, the architectures of these network are signifi-
cantly altered and hence are not backward-compatible. Considering a life-long learning system, it is
highly desired that the system is able to update itself from the original version established initially,
and then evolve into a more powerful one, rather than re-learning a brand new one from scratch.

Network morphism (Wei et al., 2016) is an effective way towards such an ambitious goal. It can
morph a well-trained network to a new one with the knowledge entirely inherited, and hence is
able to update the original system to a compatible and more powerful one based on further training.
Network morphism is also a performance booster and architecture explorer for convolutional neural
networks, allowing us to quickly investigate new models with significantly less computational and
human resources. However, the network morphism operations proposed in (Wei et al., 2016), in-
cluding depth, width, and kernel size changes, are quite primitive and have been limited to the level
of layer in a network. For practical applications where neural networks usually consist of dozens or
even hundreds of layers, the morphing space would be too large for researchers to practically design
the architectures of target morphed networks, when based on these primitive morphing operations
only.

Different from previous work, we investigate in this research the network morphism from a higher
level of viewpoint, and systematically study the central problem of network morphism on the mod-
ule level, i.e., whether and how a convolutional layer can be morphed into an arbitrary module1,
where a module refers to a single-source, single-sink acyclic subnet of a neural network. With this

†Tao Wei performed this work while being an intern at Microsoft Research Asia.
1Although network morphism generally does not impose constraints on the architecture of the child network,

in this work we limit the investigation to the expanding mode.

1

Under review as a conference paper at ICLR 2017

modularized network morphing, instead of morphing in the layer level where numerous variations
exist in a deep neural network, we focus on the changes of basic modules of networks, and explore
the morphing space in a more efficient way. The necessities for this study are two folds. First, we
wish to explore the capability of the network morphism operations and obtain a theoretical upper
bound for what we are able to do with this learning scheme. Second, modern state-of-the-art convo-
lutional neural networks have been developed with modularized architectures (Szegedy et al., 2014;
He et al., 2015), which stack the construction units following the same module design. It is highly
desired that the morphing operations could be directly applied to these networks.

To study the morphing capability of network morphism and figure out the morphing process, we
introduce a simplified graph-based representation for a module. Thus, the network morphing process
can be formulated as a graph transformation process. In this representation, the module of a neural
network is abstracted as a directed acyclic graph (DAG), with data blobs in the network represented
as vertices and convolutional layers as edges. Furthermore, a vertex with more than one outdegree
(or indegree) implicitly includes a split of multiple copies of blobs (or a joint of addition). Indeed,
the proposed graph abstraction suffers from the problem of dimension compatibility of blobs, for
different kernel filters may result in totally different blob dimensions. We solve this problem by
extending the blob and filter dimensions from finite to infinite, and the convergence properties will
also be carefully investigated.

Two atomic morphing operations are adopted as the basis for the proposed graph transformation,
based on which a large family of modules can be transformed from a convolutional layer. This
family of modules are called simple morphable modules in this work. A novel algorithm is proposed
to identify the morphing steps by reducing the module into a single convolutional layer. For any
module outside the simple morphable family, i.e., complex module, we first apply the same reduction
process and reduce it to an irreducible module. A practical algorithm is then proposed to solve
for the network morphism equation of the irreducible module. Therefore, we not only verify the
morphability to an arbitrary module, but also provide a unified morphing solution. This demonstrates
the generalization ability and thus practicality of this learning scheme.

Extensive experiments have been conducted based on ResNet (He et al., 2015) to show the effective-
ness of the proposed morphing solution. With only 1.2x or less computation, the morphed network
can achieve up to 25% relative performance improvement over the original ResNet. Such an im-
provement is significant in the sense that the morphed 20-layered network is able to achieve an error
rate of 6.60% which is even better than a 110-layered ResNet (6.61%) on the CIFAR10 dataset,
with only around 1/5 of the computational cost. It is also exciting that the morphed 56-layered net-
work is able to achieve 5.37% error rate, which is even lower than those of ResNet-110 (6.61%) and
ResNet-164 (5.46%). The effectiveness of the proposed learning scheme has also been verified on
the CIFAR100 and ImageNet datasets.

2 RELATED WORK

Knowledge Transfer. Network morphism originated from knowledge transferring for convolutional
neural networks. Early attempts were only able to transfer partial knowledge of a well-trained net-
work. For example, a series of model compression techniques (Bucilu et al., 2006; Ba & Caruana,
2014; Hinton et al., 2015; Romero et al., 2014) were proposed to fit a lighter network to predict
the output of a heavier network. Pre-training (Simonyan & Zisserman, 2014) was adopted to pre-
initialize certain layers of a deeper network with weights learned from a shallower network. How-
ever, network morphism requires the knowledge being fully transferred, and existing work includes
Net2Net (Chen et al., 2015) and NetMorph (Wei et al., 2016). Net2Net achieved this goal by padding
identity mapping layers into the neural network, while NetMorph decomposed a convolutional layer
into two layers by deconvolution. Note that the network morphism operations in (Chen et al., 2015;
Wei et al., 2016) are quite primitive and at a micro-scale layer level. In this research, we study
the network morphism at a meso-scale module level, and in particular, we investigate its morphing
capability.

Modularized Network Architecture. The evolution of convolutional neural networks has been from
sequential to modularized. For example, LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al.,
2012), and VGG net (Simonyan & Zisserman, 2014) are sequential networks, and their difference
is primarily on the number of layers, which is 5, 8, and up to 19 respectively. However, recently

2

Under review as a conference paper at ICLR 2017

𝐵𝑖 𝐵𝑗
Conv
𝐺𝑙

𝐵𝑖 𝐵𝑙
Conv
𝐹𝑙

Conv
𝐹𝑙+1

𝐵𝑗

(a) Network morphism in depth.

𝑠 𝑡

𝑠 𝑡 𝑠 𝑡

𝐺𝑙

𝐹𝑙
1

𝐹𝑙
2

TYPE-I TYPE-II
(b) Atomic morphing types.

Figure 1: Illustration of atomic morphing types. (a) One convolutional layer is morphed into two
convolutional layers; (b) TYPE-I and TYPE-II atomic morphing types.

proposed networks, such as GoogLeNet (Szegedy et al., 2014; 2015) and ResNet (He et al., 2015),
follow a modularized architecture design, and have achieved the state-of-the-art performance. This
is why we wish to study network morphism at the module level, so that its operations are able to
directly apply to these modularized network architectures.

3 NETWORK MORPHISM VIA GRAPH ABSTRACTION

In this section, we present a systematic study on the capability of network morphism learning
scheme. We shall verify that a convolutional layer is able to be morphed into any single-source,
single-sink DAG subnet, named as a module here. We shall also present the corresponding morph-
ing algorithms.

For simplicity, we first consider convolutional neural networks with only convolutional layers. All
other layers, including the non-linearity and batch normalization layers, will be discussed later in
this paper.

3.1 BACKGROUND AND BASIC NOTATIONS

For a 2D deep convolutional neural network (DCNN), as shown in Fig. 1a, the convolution is defined
by:

Bj(cj) =
∑
ci

Bi(ci) ∗Gl(cj , ci), (1)

where the blob B∗ is a 3D tensor of shape (C∗, H∗,W∗) and the convolutional filter Gl is a 4D
tensor of shape (Cj , Ci,Kl,Kl). In addition, C∗, H∗, and W∗ represent the number of channels,
height and width of B∗. Kl is the convolutional kernel size2.

In a network morphism process, the convolutional layer Gl in the parent network is morphed into
two convolutional layers Fl and Fl+1 (Fig. 1a), where the filters Fl and Fl+1 are 4D tensors of
shapes (Cl, Ci,K1,K1) and (Cj , Cl,K2,K2). This process should follow the morphism equation:

G̃l(cj , ci) =
∑
cl

Fl(cl, ci) ∗ Fl+1(cj , cl), (2)

where G̃l is a zero-padded version of Gl whose effective kernel size is K̃l = K1 +K2 − 1 ≥ Kl.
(Wei et al., 2016) showed a sufficient condition for exact network morphism:

max(ClCiK
2
1 , CjClK

2
2) ≥ CjCi(K1 +K2 − 1)2. (3)

For simplicity, we shall denote equations (1) and (2) as Bj = Gl ~Bi and G̃l = Fl+1 ~ Fl, where
~ is a non-communicative multi-channel convolution operator. We can also rewrite equation (3) as
max(|Fl|, |Fl+1|) ≥ |G̃l|, where | ∗ | measures the size of the convolutional filter.

2Generally speaking, Gl is a 4D tensor of shape (Cj , Ci,K
H
l ,KW

l), where convolutional kernel sizes for
blob height and width are not necessary to be the same. However, in order to simplify the notations, we assume
that KH

l = KW
l , but the claims and theorems in this paper apply equally well when they are different.

3

Under review as a conference paper at ICLR 2017

3.2 ATOMIC NETWORK MORPHISM

We start with the simplest cases. Two atomic morphing types are considered, as shown in Fig. 1b: 1)
a convolutional layer is morphed into two convolutional layers (TYPE-I); 2) a convolutional layer is
morphed into two-way convolutional layers (TYPE-II). For the TYPE-I atomic morphing operation,
equation (2) is satisfied, while For TYPE-II, the filter split is set to satisfy

Gl = F 1
l + F 2

l . (4)

In addition, for TYPE-II, at the source end, the blob is split with multiple copies; while at the sink
end, the blobs are joined by addition.

3.3 GRAPH ABSTRACTION

To simplify the representation, we introduce the following graph abstraction for network morphism.
For a convolutional neural network, we are able to abstract it as a graph, with the blobs represented
by vertices, and convolutional layers by edges. Formally, a DCNN is represented as a DAG M =
(V,E), where V = {Bi}Ni=1 are blobs and E = {el = (Bi, Bj)}Ll=1are convolutional layers. Each
convolutional layer el connects two blobs Bi and Bj , and is associated with a convolutional filter
Fl. Furthermore, in this graph, if outdegree(Bi) > 1, it implicitly means a split of multiple copies;
and if indegree(Bi) > 1, it is a joint of addition.

Based on this abstraction, we formally introduce the following definition for modular network mor-
phism:
Definition 1. Let M0 = ({s, t}, e0) represent the graph with only a single edge e0 that connects the
source vertex s and sink vertex t. M = (V,E) represents any single-source, single-sink DAG with
the same source vertex s and the same sink vertex t. We call such an M as a module. If there exists
a process that we are able to morph M0 to M , then we say that module M is morphable, and the
morphing process is called modular network morphism.

Hence, based on this abstraction, modular network morphism can be represented as a graph trans-
formation problem. As shown in Fig. 2b, module (C) in Fig. 2a can be transformed from module
M0 by applying the illustrated network morphism operations.

For each modular network morphing, a modular network morphism equation is associated:
Definition 2. Each module essentially corresponds to a function from s to t, which is called a module
function. For a modular network morphism process from M0 to M , the equation that guarantees the
module function unchanged is called modular network morphism equation.

It is obvious that equations (2) and (4) are the modular network morphism equations for TYPE-I
and TYPE-II atomic morphing types. In general, the modular network morphism equation for a
module M is able to be written as the sum of all convolutional filter compositions, in which each
composition is actually a path from s to t in the module M . Let {(Fp,1, Fp,2, · · · , Fp,ip) : p =
1, · · · , P, and ip is the length of path p} be the set of all such paths represented by the convolutional
filters. Then the modular network morphism equation for module M can be written as

Gl =
∑
p

Fp,ip ~ Fp,ip−1 ~ · · ·~ Fp,1. (5)

As an example illustrated in Fig. 2a, there are four paths in module (D), and its modular network
morphism equation can be written as

Gl = F5 ~ F1 + F6 ~ (F3 ~ F1 + F4 ~ F2) + F7 ~ F2, (6)

where Gl is the convolutional filter associated with e0 in module M0.

3.4 THE COMPATIBILITY OF NETWORK MORPHISM EQUATION

One difficulty in this graph abstraction is in the dimensional compatibility of convolutional filters or
blobs. For example, for the TYPE-II atomic morphing in Fig. 1b, we have to satisfy Gl = F 1

l +F 2
l .

Suppose that Gl and F 2
l are of shape (64, 64, 3, 3), while F 1

l is (64, 64, 1, 1), they are actually not
addable. Formally, we define the compatibility of modular network morphism equation as follows:

4

Under review as a conference paper at ICLR 2017

𝑠 𝑡

𝑠 𝑡

(B)

(D)

𝑡𝑠

(A)

(C)

𝑠 𝑡 𝐹1

𝐹2

𝐹3

𝐹4

𝐹5
𝐹6

𝐹7

(a) Example modules.

𝑠 𝑡

?
Module (C)

Module (D)

𝑠 𝑡𝑠 𝑡

𝑠 𝑡𝑠 𝑡𝑠 𝑡

(b) Morphing process for module (C) and (D).

Figure 2: Example modules and morphing processes. (a) Modules (A)-(C) are simple morphable,
while (D) is not; (b) a morphing process for module (C), while for module (D), we are not able to
find such a process.

Definition 3. The modular network morphism equation for a module M is compatible if and only
if the mathematical operators between the convolutional filters involved in this equation are well-
defined.

In order to solve this compatibility problem, we need not to assume that blobs {Bi} and filters {Fl}
are finite dimension tensors. Instead they are considered as infinite dimension tensors defined with a
finite support3, and we call this as an extended definition. An instant advantage when we adopt this
extended definition is that we will no longer need to differentiate Gl and G̃l in equation (2), since
G̃l is simply a zero-padded version of Gl.

Lemma 4. The operations + and ~ are well-defined for the modular network morphism equation.
Namely, if F 1 and F 2 are infinite dimension 4D tensors with finite support, let G = F 1 + F 2 and
H = F 2 ~ F 1, then both G and H are uniquely defined and also have finite support.

Sketch of Proof. It is quite obvious that this lemma holds for the operator +. For the operator ~, if
we have this extended definition, the sum in equation (2) will become infinite over the index cl. It is
straightforward to show that this infinite sum converges, and also that H is finitely supported with
respect to the indices cj and ci. Hence H has finite support.

As a corollary, we have:

Corollary 5. The modular network morphism equation for any module M is always compatible if
the filters involved in M are considered as infinite dimension tensors with finite support.

3.5 SIMPLE MORPHABLE MODULES

In this section, we introduce a large family of modules, i.e, simple morphable modules, and then
provide their morphing solutions. We first introduce the following definition:

Definition 6. A module M is simple morphable if and only if it is able to be morphed with only
combinations of atomic morphing operations.

Several example modules are shown in Fig. 2a. It is obvious that modules (A)-(C) are simple
morphable, and the morphing process for module (C) is also illustrated in Fig. 2b.

For a simple morphable module M , we are able to identity a morphing sequence from M0 to
M . The algorithm is illustrated in Algorithm 1. The core idea is to use the reverse operations
of atomic morphing types to reduce M to M0. Hence, the morphing process is just the reverse
of the reduction process. In Algorithm 1, we use a four-element tuple (M, e1, {e2, e3}, type) to
represent the process of morphing edge e1 in module M to {e2, e3} using TYPE-<TYPE> atomic
operation. Two auxiliary functions CHECKTYPEI and CHECKTYPEII are further introduced. Both

3A support of a function is defined as the set of points where the function value is non-zero, i.e.,
support(f) = {x|f(x) 6= 0}.

5

Under review as a conference paper at ICLR 2017

Algorithm 1 Algorithm for Simple Morphable Modules

Input: M0; a simple morphable module M
Output: The morphing sequence Q that morphs M0 to M using atomic morphing operations
Q = ∅
while M 6= M0 do

while CHECKTYPEI(M) is not FALSE do
// Let (Mtemp, e1, {e2, e3}, type) be the return value of CHECKTYPEI(M)
Q.prepend((Mtemp, e1, {e2, e3}, type)) and M ←Mtemp

end while
while CHECKTYPEII(M) is not FALSE do

// Let (Mtemp, e1, {e2, e3}, type) be the return value of CHECKTYPEII(M)
Q.prepend((Mtemp, e1, {e2, e3}, type)) and M ←Mtemp

end while
end while

Algorithm 2 Algorithm for Irreducible Modules

Input: Gl; an irreducible module M
Output: Convolutional filters {Fi}ni=1 of M
Initialize {Fi}ni=1 with random noise.
Calculate the effective kernel size of M , expand Gl to G̃l by padding zeros.
repeat

for j = 1 to n do
Fix {Fi : i 6= j}, and calculate Fj = deconv(G̃l, {Fi : i 6= j})
Calculate loss l = ‖G̃l − conv({Fi}ni=1)‖2

end for
until l = 0 or maxIter is reached

of them return either FALSE if there is no such atomic sub-module in M , or a morphing tuple
(M, e1, {e2, e3}, type) if there is. The algorithm of CHECKTYPEI only needs to find a vertex sat-
isfying indegree(Bi) = outdegree(Bi) = 1, while CHECKTYPEII looks for the matrix elements
> 1 in the adjacent matrix representation of module M .

Is there a module not simple morphable? The answer is yes, and an example is the module (D) in
Fig. 2a. A simple try does not work as shown in Fig. 2b. In fact, we have the following proposition:

Proposition 7. Module (D) in Fig. 2a is not simple morphable.

Sketch of Proof. A simple morphable module M is always able to be reverted back to M0. However,
for module (D) in Fig. 2a, both CHECKTYPEI and CHECKTYPEII return FALSE.

3.6 MODULAR NETWORK MORPHISM THEOREM

For a module that is not simple morphable, which is called a complex module, we are able to apply
Algorithm 1 to reduce it to an irreducible module M first. For M , we propose Algorithm 2 to
solve the modular network morphism equation. The core idea of this algorithm is that, if only
one convolutional filter is allowed to change with all others fixed, the modular network morphism
equation will reduce to a linear system. The following argument guarantees the correctness of
Algorithm 2.

Correctness of Algorithm 2. Let Gl and {Fi}ni=1 be the convolutional filter(s) associated with M0

and M . We further assume that one of {Fi}, e.g., Fj , is larger or equal to G̃l, where G̃l is the zero-
padded version of Gl (this assumption is a strong condition in the expanding mode). The module
network morphism equation for M can be written as

G̃l = C1 ~ Fj ~ C2 + C3, (7)

6

Under review as a conference paper at ICLR 2017

Input OutputReLU+

3x3
Conv

BN ReLU
3x3

Conv
BN

𝐼𝑑

(a) ResNet module:

(b) morph_1c1 module:

Input OutputReLU+

3x3
Conv

BN ReLU
3x3

Conv
BN

1x1
Conv

PReLU
1x1

Conv

0.5𝐼𝑑

BN BN

Figure 3: Detailed architectures of the ResNet module and the morph 1c1 module.

0.5

1x1 1x1

3x3 3x3 3x3 3x3

0.5

3x3 1x1

3x3 3x3

1x1 1x1

3x3 3x3

(a) ResNet (b) morph_1c1 (c) morph_3c1 (e) morph_1c1_2branch

1x1 1x10.5

3x3 3x3

3x3 3x3

(d) morph_3c3

Figure 4: Sample modules adopted in the proposed experiments. (a) and (b) are the graph abstrac-
tions of modules illustrated in Fig. 3(a) and (b).

where C1, C2, and C3 are composed of other filters {Fi : i 6= j}. It can be checked that equation
(7) is a linear system with |G̃l| constraints and |Fj | free variables. Since we have |Fj | ≥ |G̃l|, the
system is non-deterministic and hence solvable as random matrices are rarely inconsistent.

For a general module M , whether simple morphable or not, we apply Algorithm 1 to reduce M to an
irreducible module M ′, and then apply Algorithm 2 to M ′. Hence we have the following theorem:

Theorem 8. A convolutional layer can be morphed to any module (any single-source, single-sink
DAG subnet).

This theorem answers the core question of network morphism, and provides a theoretical upper
bound for the capability of this learning scheme.

3.7 NON-LINEARITY AND BATCH NORMALIZATION IN MODULAR NETWORK MORPHISM

Besides the convolutional layers, a neural network module typically also involves non-linearity lay-
ers and batch normalization layers, as illustrated in Fig. 3. In this section, we shall describe how do
we handle these layers for modular network morphism.

For the non-linear activation layers, we adopt the solution proposed in (Wei et al., 2016). Instead
of directly applying the non-linear activations, we are using their parametric forms. Let ϕ be any
non-linear activation function, and its parametric form is defined to be

P -ϕ = {ϕa}|a∈[0,1] = {(1− a) · ϕ+ aϕid}|a∈[0,1]. (8)

The shapes of the parametric form of the non-linear activation ϕ is controlled by the parameter a.
When a is initialized (a = 1), the parametric form is equivalent to an identity function, and when the
value of a has been learned, the parametric form will become a non-linear activation. In Fig. 3b, the
non-linear activation for the morphing process is annotated as PReLU to differentiate itself with the

7

Under review as a conference paper at ICLR 2017

Table 1: Experimental results of networks morphed from ResNet-20, ResNet-56, and ResNet-110
on the CIFAR10 dataset. Results annotated with † are from (He et al., 2015).

Net Arch. Intermediate Error Abs. Perf. Rel. Perf. #Params. #Params. FLOP (million) Rel. FLOPPhases Improv. Improv. (MB) Rel.

resnet20† - 8.75% - - 1.048 1x 40.8 1x
morph20 1c1 - 7.35% 1.40% 16.0% 1.138 1.09x 44.0 1.08x

morph20 3c1
- 7.10% 1.65% 18.9% 1.466 1.40x 56.5 1.38x

1c1 6.83% 1.92% 21.9%

morph20 3c3
- 6.97% 1.78% 20.3% 1.794 1.71x 69.1 1.69x

1c1,3c1 6.66% 2.09% 23.9%

morph20 1c1 2branch
- 7.26% 1.49% 17.0% 1.227 1.17x 47.1 1.15x

1c1,half 6.60% 2.15% 24.6%

resnet56† - 6.97% - - 3.289 1x 125.7 1x
morph56 1c1 half - 5.68% 1.29% 18.5% 3.468 1.05x 132.0 1.05x

morph56 1c1
- 5.94% 1.03% 14.8% 3.647 1.11x 138.3 1.10x

1c1 half 5.37% 1.60% 23.0%

resnet110† - 6.61%±0.16 - - 6.649 1x 253.1 1x
morph110 1c1 half - 5.74% 0.87% 13.2% 7.053 1.06x 267.3 1.06x

morph110 1c1
- 5.93% 0.68% 10.3% 7.412 1.11x 279.9 1.11x

1c1 half 5.50% 1.11% 16.8%

Table 2: Comparison results between learning from morphing and learning from scratch for the
same network architectures on the CIFAR10 dataset.

Net Arch. Error Error Abs. Perf. Rel. Perf.
(scratch) (morph) Improv. Improv.

morph20 1c1 8.01% 7.35% 0.66% 8.2%
morph20 1c1 2branch 7.90% 6.60% 1.30% 16.5%

morph56 1c1 7.37% 5.37% 2.00% 27.1%
morph110 1c1 8.16% 5.50% 2.66% 32.6%

other ReLU activations. In the proposed experiments, for simplicity, all ReLUs are replaced with
PReLUs.

The batch normalization layers (Ioffe & Szegedy, 2015) can be represented as

newdata =
data−mean√

var + eps
· gamma+ beta. (9)

It is obvious that if we set gamma =
√
var + eps and beta = mean, then a batch normalization

layer is reduced to an identity mapping layer, and hence it can be inserted anywhere in the network.
Although it is possible to calculate the values of gamma and beta from the training data, in this
research, we adopt another simpler approach by setting gamma = 1 and beta = 0. In fact, the
value of gamma can be set to any nonzero number, since the scale is then normalized by the latter
batch normalization layer (lower right one in Fig. 3b). Mathematically and strictly speaking, when
we set gamma = 0, the network function is actually changed. However, since the morphed filters
for the convolutional layers are roughly randomized, even though the mean of data is not strictly
zero, it is still approximately zero. Plus with the fact that the data is then normalized by the latter
batch normalization layer, such small perturbation for the network function change can be neglected.
In the proposed experiments, only statistical variances in performance are observed for the morphed
network when we adopt setting gamma to zero. The reason we prefer such an approach to using the
training data is that it is easier to implement and also yields slightly better results when we continue
to train the morphed network.

4 EXPERIMENTAL RESULTS

In this section, we report the results of the proposed morphing algorithms based on current state-of-
the-art ResNet (He et al., 2015), which is the winner of 2015 ImageNet classification task.

8

Under review as a conference paper at ICLR 2017

Table 3: Experimental results of networks morphed from ResNet-20, ResNet-56, and ResNet-110
on the CIFAR100 dataset.

Net Arch. Intermediate Error Abs. Perf. Rel. Perf. #Params. #Params.
FLOP (million) Rel. FLOP

Phases Improv. Improv. (MB) Rel.

resnet20 - 32.82% - - 1.070 1x 40.8 1x
morph20 1c1 - 31.70% 1.12% 3.4% 1.160 1.08x 44.0 1.08x
resnet56 - 29.83% - - 3.311 1x 125.8 1x

morph56 1c1 1c1 half 27.52% 2.31% 7.7% 3.670 1.11x 138.3 1.10x
resnet110 - 28.46% - - 6.672 1x 253.2 1x

morph110 1c1 1c1 half 26.81% 1.65% 5.8% 7.434 1.11x 279.9 1.11x

Table 4: Comparison results between learning from morphing and learning from scratch for the
same network architectures on the CIFAR100 dataset.

Net Arch. Error Error Abs. Perf. Rel. Perf.
(scratch) (morph) Improv. Improv.

morph20 1c1 33.63% 31.70% 1.93% 5.7%
morph56 1c1 32.58% 27.52% 5.06% 15.5%
morph110 1c1 31.94% 26.81% 5.13% 16.1%

4.1 NETWORK ARCHITECTURES OF MODULAR NETWORK MORPHISM

We first introduce the network architectures used in the proposed experiments. Fig. 3a shows the
module template in the design of ResNet (He et al., 2015), which is actually a simple morphable
two-way module. The first path consists of two convolutional layers, and the second path is a
shortcut connection of identity mapping. The architecture of the ResNet module can be abstracted
as the graph in Fig. 4a. For the morphed networks, we first split the identity mapping layer in
the ResNet module into two layers with a scaling factor of 0.5. Then each of the scaled identity
mapping layers is able to be further morphed into two convolutional layers. Fig. 3b illustrates the
case with only one scaled identity mapping layer morphed into two convolutional layers, and its
equivalent graph abstraction is shown in Fig. 4b. To differentiate network architectures adopted in
this research, the notation morph <k1>c<k2> is introduced, where k1 and k2 are kernel sizes
in the morphed network. If both of scaled identity mapping branches are morphed, we append a
suffix of ‘ 2branch’. Some examples of morphed modules are illustrated in Fig. 4. We also use
the suffix ‘ half’ to indicate that only one half (odd-indexed) of the modules are morphed, and the
other half are left as original ResNet modules.

20-layer 56-layer 110-layer
3
4
5
6
7
8
9

10

er
ro

r r
at

e
(%

) 8.75

6.97
6.616.60

5.37 5.50

resnet morphnet

(a) CIFAR10

20-layer 56-layer 110-layer
24

26

28

30

32

34

er
ro

r r
at

e
(%

)

32.82

29.83

28.46

31.70

27.52
26.81

resnet morphnet

(b) CIFAR100

Figure 5: Comparison results of ResNet and morphed networks on the CIFAR10 and CIFAR100
datasets.

9

Under review as a conference paper at ICLR 2017

4.2 EXPERIMENTAL RESULTS ON THE CIFAR10 DATASET

CIFAR10 (Krizhevsky & Hinton, 2009) is a benchmark dataset on image classification and neural
network investigation. It consists of 32×32 color images in 10 categories, with 50,000 training
images and 10,000 testing images. In the training process, we follow the same setup as in (He et al.,
2015). We use a decay of 0.0001 and a momentum of 0.9. We adopt the simple data augmentation
with a pad of 4 pixels on each side of the original image. A 32×32 view is randomly cropped from
the padded image and a random horizontal flip is optionally applied.

Table 1 shows the results of different networks morphed from ResNet (He et al., 2015). Notice that it
is very challenging to further improve the performance, for ResNet has already boosted the number
to a very high level. E.g., ResNet (He et al., 2015) made only 0.36% performance improvement
by extending the model from 56 to 110 layers (Table 1). From Table 1 we can see that, with only
1.2x or less computational cost, the morphed networks achieved 2.15%, 1.60%, 1.11% performance
improvements over the original ResNet-20, ResNet-56, and ResNet-110 respectively. Notice that
the relative performance improvement can be up to 25%. Table 1 also compares the number of
parameters of the original network architectures and the ones after morphing. As can be seen, the
morphed ones only have a little more parameters than the original ones, typically less than 1.2x.

Except for large error rate reduction achieved by the morphed network, one exciting indication from
Table 1 is that the morphed 20-layered network morph20 3c3 is able to achieve slightly lower
error rate than the 110-layered ResNet (6.60% vs 6.61%), and its computational cost is actually less
than 1/5 of the latter one. Similar results have also been observed from the morphed 56-layered
network. It is able to achieve a 5.37% error rate, which is even lower than those of ResNet-110
(6.61%) and ResNet-164 (5.46%) (He et al., 2016). These results are also illustrated in Fig. 5(a).

Several different architectures of the morphed networks were also explored, as illustrated in Fig. 4
and Table 1. First, when the kernel sizes were expanded from 1 × 1 to 3 × 3, the morphed net-
works (morph20 3c1 and morph20 3c3) achieved better performances. Similar results were
reported in (Simonyan & Zisserman, 2014) (Table 1 for models C and D). However, because the
morphed networks almost double the computational cost, we did not adopt this approach. Sec-
ond, we also tried to morph the other scaled identity mapping layer into two convolutional layers
(morph20 1c1 2branch), the error rate was further lowered for the 20-layered network. How-
ever, for the 56-layered and 110-layered networks, this strategy did not yield better results.

We also found that the morphed network learned with multiple phases could achieve a lower
error rate than that learned with single phase. For example, the networks morph20 3c1 and
morph20 3c3 learned with intermediate phases achieved better results in Table 1. This is quite
reasonable as it divides the optimization problem into sequential phases, and thus is possible to
avoid being trapped into a local minimum to some extent. Inspired by this observation, we then
used a 1c1 half network as an intermediate phase for the morph56 1c1 and morph110 1c1
networks, and better results have been achieved.

We compared the proposed learning scheme against learning from scratch for the networks with
the same architectures. These results are illustrated in Table 2. As can be seen, networks learned
by morphing is able to achieve up to 2.66% absolute performance improvement and 32.6% relative
performance improvement comparing against learning from scratch for the morph110 1c1 net-
work architecture. These results are quite reasonable as when networks are learned by the proposed
morphing scheme, they have already been regularized and shall have lower probability to be trapped
into a bad-performing local minimum in the continual training process than the learning from scratch
scheme. One may also notice that, morph110 1c1 actually performed worse than resnet110
when learned from scratch. This is because the network architecture morph 1c1 is proposed for
morphing, and the identity shortcut connection is scaled with a factor of 0.5. It was also reported
that residual networks with a constant scaling factor of 0.5 actually led to a worse performance in
(He et al., 2016) (Table 1), while this performance degradation problem could be avoided by the
proposed morphing scheme.

Finally, it is worth noting that another advantage of the proposed learning scheme against the learn-
ing from scratch scheme is on model exploration. One can quickly check whether a morphed archi-
tecture deserves further exploration by continuing to train the morphed network in a finer learning
rate (e.g. 1e-5), to see if the performance is improved. Hence, one does not have to wait for days
or even months of training time to tell whether the new network architecture is able to achieve a

10

Under review as a conference paper at ICLR 2017

Table 5: Experimental results of networks morphed from ResNet-18 on the ImageNet dataset.

Net Arch. Eval. Mode Top-1 Error Abs. Perf. Rel. Perf.
FLOP (billion) Rel. FLOP

Improv. Improv.

resnet18
1-view 32.56% - - 1.814 1x10-view 30.86% - -

morph18 1c1
1-view 31.69% 0.87% 2.7% 1.917 1.06x10-view 29.90% 0.96% 3.1%

resnet34
1-view 29.08% - - 3.664 1x10-view 27.32% - -

morph34 1c1
1-view 27.90% 1.18% 4.1% 3.972 1.08x10-view 26.20% 1.12% 4.1%

better performance. This could save human time for deciding which network architecture is worth
for exploring.

4.3 EXPERIMENTAL RESULTS ON THE CIFAR100 DATASET

CIFAR100 (Krizhevsky & Hinton, 2009) is another benchmark dataset for tiny images that consists
of 100 categories. There are 500 training images and 100 testing images per category. The proposed
experiments on CIFAR100 follows the same setup as in the experiments on CIFAR10. The experi-
mental results are illustrated in Table 3 and Fig. 5(b). As shown, the performance improvement is
also significant: with only around 1.1x computational cost, the absolute performance improvement
can be up to 2% and the relative performance improvement can be up to 8%. For the morphed
56-layered network, it also achieves better performance than the 110-layered ResNet (27.52% vs
28.46%), and with only around one half of the computation. Table 4 also compares the proposed
learning scheme against learning from scratch. More than 5% absolute performance improvement
and around 16% relative performance improvement were achieved.

4.4 EXPERIMENTAL RESULTS ON THE IMAGENET DATASET

10 20 30 40 50 60 70
epoch

30

35

40

45

50

55

60

er
ro

r (
%

)

resnet18
morph18_1c1

(a) 18-layer.

10 20 30 40 50 60 70
epoch

25
30
35
40
45
50
55
60
65

er
ro

r (
%

)

resnet34
morph34_1c1

(b) 34-layer.

Figure 6: Evaluation errors on the ImageNet dataset.

We also evaluate the proposed
scheme on the ImageNet dataset
(Russakovsky et al., 2014). This
dataset consists of 1,000 ob-
ject categories, with 1.28 mil-
lion training images and 50K
validation images. For the train-
ing process, we use a decay of
0.0001 and a momentum of 0.9.
The image is resized to guar-
antee its shorter edge is ran-
domly sampled from [256,480]
for scale augmentation. A 224×
224 patch or its horizontal flip is
randomly cropped from the re-
sized image, with the image data per-channel normalized. We train the networks using SGD with a
batch size of 256. The learning rate starts from 0.1 and is decreased with a factor of 0.1 for every 30
epochs. The networks are trained for a total of 70 epochs.

The comparison results of the morphed and original ResNets for both 18-layer and 34-layer networks
are illustrated in Table 5 and Fig. 6. As shown in Table 5, morph18 1c1 and morph34 1c1
are able to achieve lower error rates than ResNet-18 and ResNet-34 respectively, and the absolute
performance improvements can be up to 1.2%. We also draw the evaluation error curves in Fig.
6, which shows that the morphed networks morph18 1c1 and morph34 1c1 are much more
effective than the original ResNet-18 and ResNet-34 respectively.

11

Under review as a conference paper at ICLR 2017

5 CONCLUSIONS

This paper presented a systematic study on the problem of network morphism at a higher level, and
tried to answer the central question of such learning scheme, i.e., whether and how a convolutional
layer can be morphed into an arbitrary module. To facilitate the study, we abstracted a modular
network as a graph, and formulated the process of network morphism as a graph transformation
process. Based on this formulation, both simple morphable modules and complex modules have
been defined and corresponding morphing algorithms have been proposed. We have shown that
a convolutional layer can be morphed into any module of a network. We have also carried out
experiments to illustrate how to achieve a better performing model based on the state-of-the-art
ResNet with minimal extra computational cost on benchmark datasets. The experimental results
have demonstrated the effectiveness of the proposed morphing approach.

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural Informa-
tion Processing Systems, pp. 2654–2662, 2014. 2

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 535–541. ACM, 2006. 2

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015. 1, 2, 1, 4, 4.1, 4.2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. arXiv preprint arXiv:1603.05027, 2016. 4.2

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. 2

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 3.7

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
4.2, 4.3

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pp. 1097–1105,
2012. 1, 2

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989. 1

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 2

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, pp. 1–42, 2014. 4.4

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 1, 2, 4.2

12

Under review as a conference paper at ICLR 2017

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
arXiv preprint arXiv:1409.4842, 2014. 1, 2

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015.
2

Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. International
Conference on Machine Learning, 2016. 1, 2, 3.1, 3.7

13

