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ABSTRACT

Natural language processing (NLP) models often require a massive number of pa-
rameters for word embeddings, resulting in a large storage or memory footprint.
Deploying neural NLP models to mobile devices requires compressing the word
embeddings without any significant sacrifices in performance. For this purpose,
we propose to construct the embeddings with few basis vectors. For each word,
the composition of basis vectors is determined by a hash code. To maximize
the compression rate, we adopt the multi-codebook quantization approach instead
of binary coding scheme. Each code is composed of multiple discrete numbers,
such as (3, 2, 1, 8), where the value of each component is limited to a fixed range.
We propose to directly learn the discrete codes in an end-to-end neural network
by applying the Gumbel-softmax trick. Experiments show the compression rate
achieves 98% in a sentiment analysis task and 94% ∼ 99% in machine translation
tasks without performance loss. In both tasks, the proposed method can improve
the model performance by slightly lowering the compression rate. Compared to
other approaches such as character-level segmentation, the proposed method is
language-independent and does not require modifications to the network architec-
ture.

1 INTRODUCTION

Word embeddings play an important role in neural-based natural language processing (NLP) models.
Neural word embeddings encapsulate the linguistic information of words in continuous vectors.
However, as each word is assigned an independent embedding vector, the number of parameters
in the embedding matrix can be huge. For example, when each embedding has 500 dimensions,
the network has to hold 100M embedding parameters to represent 200K words. In practice, for a
simple sentiment analysis model, the word embedding parameters account for 98.8% of the total
parameters.

As only a small portion of the word embeddings is selected in the forward pass, the giant embedding
matrix usually does not cause a speed issue. However, the massive number of parameters in the
neural network results in a large storage or memory footprint. When other components of the neural
network are also large, the model may fail to fit into GPU memory during training. Moreover, as
the demand for low-latency neural computation for mobile platforms increases, some neural-based
models are expected to run on mobile devices. Thus, it is becoming more important to compress the
size of NLP models for deployment to devices with limited memory or storage capacity.

In this study, we attempt to reduce the number of parameters used in word embeddings without
hurting the model performance. Neural networks are known for the significant redundancy in the
connections (Denil et al., 2013). In this work, we further hypothesize that learning independent
embeddings causes more redundancy in the embedding vectors, as the inter-similarity among words
is ignored. Some words are very similar regarding the semantics. For example, “dog” and “dogs”
have almost the same meaning, except one is plural. To efficiently represent these two words, it
is desirable to share information between the two embeddings. However, a small portion in both
vectors still has to be trained independently to capture the syntactic difference.

Following the intuition of creating partially shared embeddings, instead of assigning each word a
unique ID, we represent each word w with a code Cw = (C1

w, C
2
w, ..., C

M
w ). Each component Ciw is
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Figure 1: Comparison of embedding computations between the conventional approach (a) and com-
positional coding approach (b) for constructing embedding vectors

an integer number in [1,K]. Ideally, similar words should have similar codes. For example, we may
desire Cdog = (3, 2, 4, 1) and Cdogs = (3, 2, 4, 2). Once we have obtained such compact codes for
all words in the vocabulary, we use embedding vectors to represent the codes rather than the unique
words. More specifically, we create M codebooks E1, E2, ..., EM , each containing K codeword
vectors. The embedding of a word is computed by summing up the codewords corresponding to all
the components in the code as

E(Cw) =

M∑
i=1

Ei(C
i
w), (1)

(2)

where Ei(Ciw) is the Ciw-th codeword in the codebook Ei. In this way, the number of vectors in the
embedding matrix will be M ×K, which is usually much smaller than the vocabulary size. Fig. 1
gives an intuitive comparison between the compositional approach and the conventional approach
(assigning unique IDs). The codes of all the words can be stored in an integer matrix, denoted by C.
Thus, the storage footprint of the embedding layer now depends on the total size of the combined
codebook E and the code matrix C.

Although the number of embedding vectors can be greatly reduced by using such coding approach,
we want to prevent any serious degradation in performance compared to the models using normal
embeddings. In other words, given a set of baseline word embeddings Ẽ(w), we wish to find a set
of codes Ĉ and combined codebook Ê that can produce the embeddings with the same effectiveness
as Ẽ(w). A safe and straight-forward way is to minimize the squared distance between the baseline
embeddings and the composed embeddings as

(Ĉ, Ê) = argmin
C,E

1

|V |
∑
w∈V
||E(Cw)− Ẽ(w)||2 (3)

= argmin
C,E

1

|V |
∑
w∈V
||
M∑
i=1

Ei(C
i
w)− Ẽ(w)||2 , (4)

where |V | is the vocabulary size. The baseline embeddings can be a set of pre-trained vectors such
as word2vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014) embeddings.

In Eq. 3, the baseline embedding matrix Ẽ is approximated byM codewords selected fromM code-
books. The selection of codewords is controlled by the code Cw. Such problem of learning compact
codes with multiple codebooks is formalized and discussed in the research field of compression-
based source coding, known as product quantization (Jégou et al., 2011) and additive quantization
(Babenko & Lempitsky, 2014; Martinez et al., 2016). Previous works learn compositional codes
so as to enable an efficient similarity search of vectors. In this work, we utilize such codes for a
different purpose, that is, constructing word embeddings with drastically fewer parameters.

Due to the discreteness in the hash codes, it is usually difficult to directly optimize the objective
function in Eq. 3. In this paper, we propose a simple and straight-forward method to learn the
codes in an end-to-end neural network. We utilize the Gumbel-softmax trick (Maddison et al., 2016;
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Jang et al., 2016) to find the best discrete codes that minimize the loss. Besides the simplicity, this
approach also allows one to use any arbitrary differentiable loss function, such as cosine similarity.

The contribution of this work can be summarized as follows:

• We propose to utilize the compositional coding approach for constructing the word em-
beddings with significantly fewer parameters. In the experiments, we show that over
98% of the embedding parameters can be eliminated in sentiment analysis task without
affecting performance. In machine translation tasks, the loss-free compression rate reaches
94% ∼ 99%.

• We propose a direct learning approach for the codes in an end-to-end neural network, with
a Gumbel-softmax layer to encourage the discreteness.

• The neural network for learning codes will be packaged into a tool1. With the learned
codes and basis vectors, the computation graph for composing embeddings is fairly easy to
implement, and does not require modifications to other parts in the neural network.

2 RELATED WORK

Existing works for compressing neural networks include low-precision computation (Vanhoucke
et al., 2011; Hwang & Sung, 2014; Courbariaux et al., 2014; Anwar et al., 2015), quantization (Chen
et al., 2015; Han et al., 2016; Zhou et al., 2017), network pruning (LeCun et al., 1989; Hassibi &
Stork, 1992; Han et al., 2015; Wen et al., 2016) and knowledge distillation (Hinton et al., 2015).
Network quantization such as HashedNet (Chen et al., 2015) forces the weight matrix to have few
real weights, with a hash function to determine the weight assignment. To capture the non-uniform
nature of the networks, DeepCompression (Han et al., 2016) groups weight values into clusters
based on pre-trained weight matrices. The weight assignment for each value is stored in the form of
Huffman codes. However, as the embedding matrix is tremendously big, the number of hash codes
a model need to maintain is still large even with Huffman coding.

Network pruning works in a different way that makes a network sparse. Iterative pruning (Han et al.,
2015) prunes a weight value if its absolute value is smaller than a threshold. The remaining network
weights are retrained after pruning. Some recent works (See et al., 2016; Zhang et al., 2017) also
apply iterative pruning to prune 80% of the connections for neural machine translation models. In
this paper, we compare the proposed method with iterative pruning.

The problem of learning compact codes considered in this paper is closely related to learning to
hash (Weiss et al., 2008; Kulis & Darrell, 2009; Liu et al., 2012), which aims to learn the hash codes
for vectors to facilitate the approximate nearest neighbor search. Initiated by product quantization
(Jégou et al., 2011), subsequent works such as additive quantization (Babenko & Lempitsky, 2014)
explore the use of multiple codebooks for source coding, resulting in compositional codes. We also
adopt the coding scheme of additive quantization for its storage efficiency. Previous works mainly
focus on performing efficient similarity search of image descriptors. In this work, we put more
focus on reducing the codebook sizes and learning efficient codes to avoid performance loss. Joulin
et al. (2016) utilizes an improved version of product quantization to compress text classification
models. However, to match the baseline performance, much longer hash codes are required by
product quantization. This will be detailed in Section 5.2. Concurrent to this work, Chen et al.
(2017) also explores the similar idea and obtained positive results in language modeling tasks. Also,
Raunak (2017) tried to reduce dimension of embeddings using PCA.

To learn the codebooks and code assignment, additive quantization alternatively optimizes the code-
books and the discrete codes. The learning of code assignment is performed by Beam Search algo-
rithm when the codebooks are fixed. In this work, we propose a straight-forward method to directly
learn the code assignment and codebooks simutaneously in an end-to-end neural network.

Some recent works (Xia et al., 2014; Liu et al., 2016; Yang et al., 2017) in learning to hash also
utilize neural networks to produce binary codes by applying binary constrains (e.g., sigmoid func-
tion). In this work, we encourage the discreteness with the Gumbel-Softmax trick for producing
compositional codes.

1The code can be found in https://github.com/zomux/neuralcompressor
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As an alternative to our approach, one can also reduce the number of unique word types by forcing a
character-level segmentation. Kim et al. (2016) proposed a character-based neural language model,
which applies a convolutional layer after the character embeddings. Botha et al. (2017) propose to
use char-gram as input features, which are further hashed to save space. Generally, using character-
level inputs requires modifications to the model architecture. Moreover, some Asian languages
such as Japanese and Chinese retain a large vocabulary at the character level, which makes the
character-based approach difficult to be applied. In contrast, our approach does not suffer from
these limitations.

3 ADVANTAGE OF COMPOSITIONAL CODES

In this section, we formally describe the compositional coding approach and analyze its merits for
compressing word embeddings. The coding approach follows the scheme in additive quantization
(Babenko & Lempitsky, 2014). We represent each wordw with a compact codeCw that is composed
of M components such that Cw ∈ ZM+ . Each component Ciw is constrained to have a value in
[1,K], which also indicates that M log2K bits are required to store each code. For convenience, K
is selected to be a number of a multiple of 2, so that the codes can be efficiently stored.

If we restrict each component Ciw to values of 0 or 1, the code for each word Cw will be a binary
code. In this case, the code learning problem is equivalent to a matrix factorization problem with
binary components. Forcing the compact codes to be binary numbers can be beneficial, as the learn-
ing problem is usually easier to solve in the binary case, and some existing optimization algorithms
in learning to hash can be reused. However, the compositional coding approach produces shorter
codes and is thus more storage efficient.

As the number of basis vectors is M ×K regardless of the vocabulary size, the only uncertain factor
contributing to the model size is the size of the hash codes, which is proportional to the vocabulary
size. Therefore, maintaining short codes is cruicial in our work. Suppose we wish the model to
have a set of N basis vectors. Then in the binary case, each code will have N/2 bits. For the
compositional coding approach, if we can find a M × K decomposition such that M × K = N ,
then each code will haveM log2K bits. For example, a binary code will have a length of 256 bits to
support 512 basis vectors. In contrast, a 32 × 16 compositional coding scheme will produce codes
of only 128 bits.

#vectors computation code length (bits)
conventional |V | 1 -

binary N N/2 N/2
compositional MK M M log2K

Table 1: Comparison of different coding approaches. To support N basis vectors, a binary code
will have N/2 bits and the embedding computation is a summation over N/2 vectors. For the
compositional approach with M codebooks and K codewords in each codebook, each code has
M log2K bits, and the computation is a summation over M vectors.

A comparison of different coding approaches is summarized in Table 1. We also report the number
of basis vectors required to compute an embedding as a measure of computational cost. For the con-
ventional approach, the number of vectors is identical to the vocabulary size and the computation is
basically a single indexing operation. In the case of binary codes, the computation for constructing
an embedding involves a summation over N/2 basis vectors. For the compositional approach, the
number of vectors required to construct an embedding vector is M . Both the binary and compo-
sitional approaches have significantly fewer vectors in the embedding matrix. The compositional
coding approach provides a better balance with shorter codes and lower computational cost.

4 CODE LEARNING WITH GUMBEL-SOFTMAX

Let Ẽ ∈ R|V |×H be the original embedding matrix, where each embedding vector has H dimen-
sions. By using the reconstruction loss as the objective function in Eq. 3, we are actually finding
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Figure 2: The network architecture for learning compositional compact codes. The Gumbel-softmax
computation is marked with dashed lines.

an approximate matrix factorization Ẽ ≈ ∑M
i=0D

iAi, where Ai ∈ RK×H is a basis matrix for
the i-th component. Di is a |V | ×K code matrix in which each row is an K-dimensional one-hot
vector. If we let diw be the one-hot vector corresponding to the code component Ciw for word w, the
computation of the word embeddings can be reformulated as

E(Cw) =

M∑
i=0

A>i d
i
w. (5)

Therefore, the problem of learning discrete codes Cw can be converted to a problem of finding a
set of optimal one-hot vectors d1w, ...,d

M
w and source dictionaries A1, ...,AM , that minimize the

reconstruction loss. The Gumbel-softmax reparameterization trick (Maddison et al., 2016; Jang
et al., 2016) is useful for parameterizing a discrete distribution such as the K-dimensional one-hot
vectors diw in Eq. 5. By applying the Gumbel-softmax trick, the k-th elemement in diw is computed
as (

diw
)
k
= softmaxτ (logα

i
w +G)k (6)

=
exp((log (αi

w)k +Gk)/τ)∑K
k′=1 exp((log (αi

w)k′ +Gk′)/τ)
, (7)

whereGk is a noise term that is sampled from the Gumbel distribution− log(− log(Uniform[0, 1])),
whereas τ is the temperature of the softmax. In our model, the vector αi

w is computed by a simple
neural network with a single hidden layer as

αi
w = softplus(θ′i

>
hw + b′i), (8)

hw = tanh(θ>Ẽ(w) + b) . (9)

In our experiments, the hidden layer hw always has a size of MK/2. We found that a fixed
temperature of τ = 1 just works well. The Gumbel-softmax trick is applied to αi

w to obtain diw.
Then, the model reconstructs the embeddingE(Cw) with Eq. 5 and computes the reconstruction loss
with Eq. 3. The model architecture of the end-to-end neural network is illustrated in Fig. 2, which
is effectively an auto-encoder with a Gumbel-softmax middle layer. The whole neural network for
coding learning has five parameters (θ, b,θ′, b′,A).

Once the coding learning model is trained, the code Cw for each word can be easily obtained by
applying argmax to the one-hot vectors d1w, ...,d

M
w . The basis vectors (codewords) for composing

the embeddings can be found as the row vectors in the weight matrixA.

For general NLP tasks, one can learn the compositional codes from publicly available word vectors
such as GloVe vectors. However, for some tasks such as machine translation, the word embeddings
are usually jointly learned with other parts of the neural network. For such tasks, one has to first train
a normal model to obtain the baseline embeddings. Then, based on the trained embedding matrix,
one can learn a set of task-specific codes. As the reconstructed embeddings E(Cw) are not identical
to the original embeddings Ẽ(w), the model parameters other than the embedding matrix have to
be retrained again. The code learning model cannot be jointly trained with the machine translation
model as it takes far more iterations for the coding layer to converge to one-hot vectors.
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5 EXPERIMENTS

In our experiments, we focus on evaluating the maximum loss-free compression rate of word em-
beddings on two typical NLP tasks: sentiment analysis and machine translation. We compare the
model performance and the size of embedding layer with the baseline model and the iterative prun-
ing method (Han et al., 2015). Please note that the sizes of other parts in the neural networks are
not included in our results. For dense matrices, we report the size of dumped numpy arrays. For the
sparse matrices, we report the size of dumped compressed sparse column matrices (csc matrix)
in scipy. All float numbers take 32 bits storage. We enable the “compressed” option when dumping
the matrices, without this option, the file size is about 1.1 times bigger.

5.1 CODE LEARNING

To learn efficient compact codes for each word, our proposed method requires a set of baseline em-
bedding vectors. For the sentiment analysis task, we learn the codes based on the publicly available
GloVe vectors. For the machine translation task, we first train a normal neural machine transla-
tion (NMT) model to obtain task-specific word embeddings. Then we learn the codes using the
pre-trained embeddings.

We train the end-to-end network described in Section 4 to learn the codes automatically. In each it-
eration, a small batch of the embeddings is sampled uniformly from the baseline embedding matrix.
The network parameters are optimized to minimize the reconstruction loss of the sampled embed-
dings. In our experiments, the batch size is set to 128. We use Adam optimizer (Kingma & Ba,
2014) with a fixed learning rate of 0.0001. The training is run for 200K iterations. Every 1,000 it-
erations, we examine the loss on a fixed validation set and save the parameters if the loss decreases.
We evenly distribute the model training to 4 GPUs using the nccl package, so that one round of code
learning takes around 15 minutes to complete.

5.2 SENTIMENT ANALYSIS

Dataset: For sentiment analysis, we use a standard separation of IMDB movie review dataset
(Maas et al., 2011), which contains 25k reviews for training and 25K reviews for testing purpose.
We lowercase and tokenize all texts with the nltk package. We choose the 300-dimensional uncased
GloVe word vectors (trained on 42B tokens of Common Crawl data) as our baseline embeddings.
The vocabulary for the model training contains all words appears both in the IMDB dataset and the
GloVe vocabulary, which results in around 75K words. We truncate the texts of reviews to assure
they are not longer than 400 words.

Model architecture: Both the baseline model and the compressed models have the same compu-
tational graph except the embedding layer. The model is composed of a single LSTM layer with 150
hidden units and a softmax layer for predicting the binary label. For the baseline model, the embed-
ding layer contains a large 75K × 300 embedding matrix initialized by GloVe embeddings. For the
compressed models based on the compositional coding, the embedding layer maintains a matrix of
basis vectors. Suppose we use a 32× 16 coding scheme, the basis matrix will then have a shape of
512 × 300, which is initialized by the concatenated weight matrices [A1;A2; ...;AM ] in the code
learning model. The embedding parameters for both models remain fixed during the training. For
the models with network pruning, the sparse embedding matrix is finetuned during training.

Training details: The models are trained with Adam optimizer for 15 epochs with a fixed learning
rate of 0.0001. At the end of each epoch, we evaluate the loss on a small validation set. The
parameters with lowest validation loss are saved.

Results: For different settings of the number of components M and the number of codewords
K, we train the code learning network. The average reconstruction loss on a fixed validation set is
summarized in the left of Table 2. For reference, we also report the total size (MB) of the embedding
layer in the right table, which includes the sizes of the basis matrix and the hash table. We can see
that increasing either M or K can effectively decrease the reconstruction loss. However, setting
M to a large number will result in longer hash codes, thus significantly increase the size of the
embedding layer. Hence, it is important to choose correct numbers for M and K to balance the
performance and model size.
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loss M=8 M=16 M=32 M=64
K=8 29.1 25.8 21.9 15.5
K=16 27.0 22.8 19.1 11.5
K=32 24.4 20.4 14.3 9.3
K=64 21.9 16.9 12.1 7.6

size (MB) M=8 M=16 M=32 M=64
K=8 0.28 0.56 1.12 2.24
K=16 0.41 0.83 1.67 3.34
K=32 0.62 1.24 2.48 4.96
K=64 0.95 1.91 3.82 7.64

Table 2: Reconstruction loss and the size of embedding layer (MB) of difference settings

To see how the reconstructed loss translates to the classification accuracy, we train the sentiment
analysis model for different settings of code schemes and report the results in Table 3. The baseline
model using 75k GloVe embeddings achieves an accuracy of 87.18 with an embedding matrix using
78 MB of storage. In this task, forcing a high compression rate with iterative pruning degrades the
classification accuracy.

#vectors vector size code len code size total size accuracy
GloVe baseline 75102 78 MB - - 78 MB 87.18

prune 80% 75102 21 MB - - 21 MB 86.25
prune 90% 75102 11 MB - - 11 MB 84.96

NPQ (10× 256) 256 0.26 MB 80 bits 0.71 MB 0.97 MB 86.21
NPQ (60× 256) 256 0.26 MB 480 bits 4.26 MB 4.52 MB 87.11
8× 64 coding 512 0.52 MB 48 bits 0.42 MB 0.94 MB 86.66
16× 32 coding 512 0.52 MB 80 bits 0.71 MB 1.23 MB 87.37
32× 16 coding 512 0.52 MB 128 bits 1.14 MB 1.66 MB 87.80
64× 8 coding 512 0.52 MB 192 bits 1.71 MB 2.23 MB 88.15

Table 3: Trade-off between the model performance and the size of embedding layer on IMDB
sentiment analysis task

We also show the results using normalized product quantization (NPQ) (Joulin et al., 2016). We
quantize the filtered GloVe embeddings with the codes provided by the authors, and train the models
based on the quantized embeddings. To make the results comparable, we report the codebook size
in numpy format. For our proposed methods, the maximum loss-free compression rate is achieved
by a 16 × 32 coding scheme. In this case, the total size of the embedding layer is 1.23 MB, which
is equivalent to a compression rate of 98.4%. We also found the classification accuracy can be
substantially improved with a slightly lower compression rate. The improved model performance
may be a byproduct of the strong regularization.

5.3 MACHINE TRANSLATION

Dataset: For machine translation tasks, we experiment on IWSLT 2014 German-to-English trans-
lation task (Cettolo et al., 2014) and ASPEC English-to-Japanese translation task (Nakazawa et al.,
2016). The IWSLT14 training data contains 178K sentence pairs, which is a small dataset for ma-
chine translation. We utilize moses toolkit (Koehn et al., 2007) to tokenize and lowercase both sides
of the texts. Then we concatenate all five TED/TEDx development and test corpus to form a test set
containing 6750 sentence pairs. We apply byte-pair encoding (Sennrich et al., 2016) to transform
the texts to subword level so that the vocabulary has a size of 20K for each language. For evaluation,
we report tokenized BLEU using “multi-bleu.perl”.

The ASPEC dataset contains 300M bilingual pairs in the training data with the automatically esti-
mated quality scores provided for each pair. We only use the first 150M pairs for training the models.
The English texts are tokenized by moses toolkit whereas the Japanese texts are tokenized by kytea
(Neubig et al., 2011). The vocabulary size for each language is reduced to 40K using byte-pair
encoding. The evaluation is performed using a standard kytea-based post-processing script for this
dataset.

Model architecture: In our preliminary experiments, we found a 32 × 16 coding works well for
a vanilla NMT model. As it is more meaningful to test on a high-performance model, we applied
several techniques to improve the performance. The model has a standard bi-directional encoder
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composed of two LSTM layers similar to Bahdanau et al. (2015). The decoder contains two LSTM
layers. Residual connection (He et al., 2016) with a scaling factor of

√
1/2 is applied to the two

decoder states to compute the outputs. All LSTMs and embeddings have 256 hidden units in the
IWSLT14 task and 1000 hidden units in ASPEC task. The decoder states are firstly linearly trans-
formed to 600-dimensional vectors before computing the final softmax. Dropout with a rate of 0.2 is
applied everywhere except the recurrent computation. We apply Key-Value Attention (Miller et al.,
2016) to the first decoder, where the query is the sum of the feedback embedding and the previous
decoder state and the keys are computed by linear transformation of encoder states.

Training details: All models are trained by Nesterov’s accelerated gradient (Nesterov, 1983) with
an initial learning rate of 0.25. We evaluate the smoothed BLEU (Lin & Och, 2004) on a validation
set composed of 50 batches every 7,000 iterations. The learning rate is reduced by a factor of 10 if
no improvement is observed in 3 validation runs. The training ends after the learning rate is reduced
three times. Similar to the code learning, the training is distributed to 4 GPUs, each GPU computes
a mini-batch of 16 samples.

We firstly train a baseline NMT model to obtain the task-specific embeddings for all in-vocabulary
words in both languages. Then based on these baseline embeddings, we obtain the hash codes and
basis vectors by training the code learning model. Finally, the NMT models using compositional
coding are retrained by plugging in the reconstructed embeddings. Note that the embedding layer is
fixed in this phase, other parameters are retrained from random initial values.

Results: The experimental results are summarized in Table 4. All translations are decoded by
the beam search with a beam size of 5. The performance of iterative pruning varies between tasks.
The loss-free compression rate reaches 92% on ASPEC dataset by pruning 90% of the connections.
However, with the same pruning ratio, a modest performance loss is observed in IWSLT14 dataset.

For the models using compositional coding, the loss-free compression rate is 94% for the IWSLT14
dataset and 99% for the ASPEC dataset. Similar to the sentiment analysis task, a significant perfor-
mance improvement can be observed by slightly lowering the compression rate. Note that the sizes
of NMT models are still quite large due to the big softmax layer and the recurrent layers, which are
not reported in the table. Please refer to existing works such as Zhang et al. (2017) for the techniques
of compressing layers other than word embeddings.

coding #vectors vector size code len code size total size BLEU(%)

De → En

baseline 40000 35 MB - - 35 MB 29.45
prune 90% 40000 5.21 MB - - 5.21 MB 29.34
prune 95% 40000 2.63 MB - - 2.63 MB 28.84
32× 16 512 0.44 MB 128 bits 0.61 MB 1.05 MB 29.04
64× 16 1024 0.89 MB 256 bits 1.22 MB 2.11 MB 29.56

En → Ja

baseline 80000 274 MB - - 274 MB 37.93
prune 90% 80000 41 MB - - 41 MB 38.56
prune 98% 80000 8.26 MB - - 8.26 MB 37.09
32× 16 512 1.75 MB 128 bits 1.22 MB 2.97 MB 38.10
64× 16 1024 3.50 MB 256 bits 2.44 MB 5.94 MB 38.89

Table 4: Trade-off between the model performance and the size of embedding layer in machine
translation tasks

6 QUALITATIVE ANALYSIS

6.1 EXAMPLES OF LEARNED CODES

In Table 5, we show some examples of learned codes based on the 300-dimensional uncased GloVe
embeddings used in the sentiment analysis task. We can see that the model learned to assign similar
codes to the words with similar meanings. Such a code-sharing mechanism can significantly reduce
the redundancy of the word embeddings, thus helping to achieve a high compression rate.
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category word 8× 8 code 16× 16 code
dog 0 7 0 1 7 3 7 0 7 7 0 8 3 5 8 5 B 2 E E 0 B 0 A

animal cat 7 7 0 1 7 3 7 0 7 7 2 8 B 5 8 C B 2 E E 4 B 0 A
penguin 0 7 0 1 7 3 6 0 7 7 E 8 7 6 4 C F D E 3 D 8 0 A

go 7 7 0 6 4 3 3 0 2 C C 8 2 C 1 1 B D 0 E 0 B 5 8
verb went 4 0 7 6 4 3 2 0 B C C 6 B C 7 5 B 8 6 E 0 D 0 4

gone 7 7 0 6 4 3 3 0 2 C C 8 0 B 1 5 B D 6 E 0 2 5 A

Table 5: Examples of learned compositional codes based on GloVe embedding vectors

6.2 ANALYSIS OF CODE EFFICIENCY

Besides the performance, we also care about the storage efficiency of the codes. In the ideal situation,
all codewords shall be fully utilized to convey a fraction of meaning. However, as the codes are
automatically learned, it is possible that some codewords are abandoned during the training. In
extreme cases, some “dead” codewords can be used by none of the words.

To analyze the code efficiency, we count the number of words that contain a specific subcode in
each component. Figure 3 gives a visualization of the code balance for three coding schemes. Each
column shows the counts of the subcodes of a specific component. In our experiments, when using
a 8 × 8 coding scheme, we found 31% of the words have a subcode “0” for the first component,
while the subcode “1” is only used by 5% of the words. The assignment of codes is more balanced
for larger coding schemes. In any coding scheme, even the most unpopular codeword is used by
about 1000 words. This result indicates that the code learning model is capable of assigning codes
efficiently without wasting a codeword.
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Figure 3: Visualization of code balance for different coding scheme. Each cell in the heat map shows
the count of words containing a specific subcode. The results show that any codeword is assigned to
more than 1000 words without wasting.

7 CONCLUSION

In this work, we propose a novel method for reducing the number of parameters required in word
embeddings. Instead of assigning each unique word an embedding vector, we compose the embed-
ding vectors using a small set of basis vectors. The selection of basis vectors is governed by the
hash code of each word. We apply the compositional coding approach to maximize the storage effi-
ciency. The proposed method works by eliminating the redundancy inherent in representing similar
words with independent embeddings. In our work, we propose a simple way to directly learn the
discrete codes in a neural network with Gumbel-softmax trick. The results show that the size of the
embedding layer was reduced by 98% in IMDB sentiment analysis task and 94% ∼ 99% in machine
translation tasks without affecting the performance.

Our approach achieves a high loss-free compression rate by considering the semantic inter-similarity
among different words. In qualitative analysis, we found the learned codes of similar words are very
close in Hamming space. As our approach maintains a dense basis matrix, it has the potential
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to be further compressed by applying pruning techniques to the dense matrix. The advantage of
compositional coding approach will be more significant if the size of embedding layer is dominated
by the hash codes.
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A APPENDIX: SHARED CODES

In both tasks, when we use a small code decomposition, we found some hash codes are assigned to
multiple words. Table 6 lists some samples of shared codes with their corresponding words from
the sentiment analysis task. This phenomenon does not cause a problem in either task, as the words
only have shared codes when they have almost the same sentiments or target translations.

shared code words
4 7 7 0 4 7 1 1 homes cruises motel hotel resorts mall vacations hotels
6 6 7 1 4 0 2 0 basketball softball nfl nascar baseball defensive ncaa tackle nba
3 7 3 2 4 3 3 0 unfortunately hardly obviously enough supposed seem totally ...
4 6 7 0 4 7 5 0 toronto oakland phoenix miami sacramento denver minneapolis ...
7 7 6 6 7 3 0 0 yo ya dig lol dat lil bye

Table 6: Examples of words sharing same codes when using a 8× 8 code decomposition

B APPENDIX: SEMANTICS OF CODES

In order to see whether each component captures semantic meaning. we learned a set of codes using
a 3 x 256 coding scheme, this will force the model to decompose each embedding into 3 vectors.
In order to maximize the compression rate, the model must make these 3 vectors as independent as
possible.

word code
man 210 153 153

woman 232 153 153
king 210 180 039

queen 232 180 039
British 118 132 142

London 185 126 142
Japan 118 056 021
Tokyo 185 036 021

Table 7: Some code examples using a 3× 256 coding scheme.

As we can see from Table 7, we can transform “man/king” to “woman/queen” by change the subcode
“210” in the first component to “232”. So we can think “210” must be a “male” code, and “232”
must be a “female” code. Such phenomenon can also be observed in other words such as city names.
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