
Multigrid Distributed Deep CNNs for Structural Topology Optimization

Jaydeep Rade1 Aditya Balu1 Ethan Herron1 Anushrut Jignasu1 Sergio Botelho2 Santi Adavani2

Soumik Sarkar1 Baskar Ganapathysubramanian1 Adarsh Krishnamurthy1

Iowa State University 1

RocketML Inc. 2

adarsh@iastate.edu1, santi@rocketml.net2

Abstract

Structural topology optimization with traditional approaches
is compute-intensive, mainly due to multiple finite element
analysis iterations required to evaluate the component’s per-
formance during the optimization process. This computation
cost scales up when performed on 3D high-resolution geome-
tries. Researchers have developed deep learning (DL) based
approaches, but these methods were demonstrated mainly us-
ing low-resolution 3D geometries (with a typical resolution
of 32 × 32 × 32). We propose a DL-based method trained
with a convolutional neural network (CNN) on high-resolution
3D geometries 128 × 128 × 128. With the initial strain en-
ergy (objective function of structural topology optimization)
and target volume fraction (% material to be preserved af-
ter optimization) as the only inputs to the CNN, we predict
the final optimized topology while maintaining the volume
fraction constraint. To train the CNN at a high resolution
is again a computational challenge. Therefore, we propose
multi-resolution CNN, where we train the network at a lower
resolution and then transfer the learned network to continue
training at a higher resolution. Further, we significantly speed
up the training time by 4.77× using distributed deep learning
framework on GPU clusters (PSC Bridges-2).

Introduction
Topology optimization has been used for designing compo-
nents with optimal performance (Orme et al. 2017; Liu and
Ma 2016). Structural topology optimization, initially devel-
oped by Bendsøe and Kikuchi (1988), is a set of numerical
design optimization methods to find the optimal distribution
of the material in the initial design domain to generate de-
signs with optimal performance while removing the material
to satisfy a volume fraction constraint. The main challenge
in performing structural topology optimization at high reso-
lution is that it is computationally intensive, mainly because
of evaluating the objective function at each iteration. The
objective function is computed using numerical solution ap-
proaches such as finite element analysis, which are computa-
tionally expensive. Performing topology optimization with
this computational challenge, especially for high-resolution
geometries, could take a few hours to days. The natural so-
lution for this problem is to use deep learning methods to

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

perform topology optimization (Rade et al. 2021; Chi et al.
2021; Lagaros, Kallioras, and Kazakis 2020) and reduce nu-
merical simulations.

However, training deep learning models for high-
resolution 3D geometries is also compute-intensive. Hence,
we implement a training algorithm similar to the multigrid
approach (Balu et al. 2021). Here we first train the deep
convolutional neural networks (CNNs) on low-resolution
3D geometries since the training on low-resolution geome-
tries is faster than high-resolution geometries. Then using
the learned weights of CNN, we continue training further
on high-resolution 3D geometries. In addition to using the
multigrid approach, we incorporate a data-parallel distributed
training scheme for deep CNN on the GPU cluster. In a data-
parallel distributed deep learning scheme, multiple copies
of the model are trained simultaneously to optimize a single
objective function, which is used to overcome the memory
limitation on a single device.

To summarize our contributions, we propose a deep
learning-based topology optimization framework in 3D and
explore methods to address the computational challenges at
large resolutions in a 3D voxel grid. To this end, our specific
contributions are:
1. We use a “multigrid” inspired approach to develop a trans-

fer learning framework to progressively train networks for
training at very large resolution voxel grids for predicting
the optimal shape from topology optimization.

2. We use a data-parallel distributed deep learning frame-
work to accelerate the training process in each resolution.

3. Using the multigrid approach and the data-parallel dis-
tributed learning approach, we have been able to accel-
erate training time by 4.77× while training at the voxel
resolution of 128× 128× 128.

We now begin by covering some preliminaries for our
framework. Next, we cover the details of the methods pro-
posed and then show some preliminary results of our frame-
work and provide some concluding remarks.

Formulation and Preliminaries
In this section, we will explain the mathematical formula-
tion for structural topology optimization and the idea of the
multigrid training scheme and data-parallel distributed deep
learning.

Topology Optimization

Structural topology optimization is a minimization problem
represented as:

Minimize: C(ρ,U) = UTKU =

N∑
e=1

ρpeu
T
e k0ue

subject to: K(ρ)U = F

gi(ρ) =
V (ρ)

V0
− Vf ≤ 0

0 < ρ ≤ 1

(1)

where U and F are the global displacement and force vec-
tors, respectively, K is the global stiffness matrix, and ue

and ke are the element displacement vector and stiffness
matrix, respectively. C(ρ,U) represents the objective func-
tion of structural topology optimization, which is the total
strain energy of the system and ρ is the density of an ele-
ment. The volume fraction constraint is given by gi, where
V (ρ) is the volume of the design at any iteration of the prob-
lem and V0 is the initial volume of the design, and Vf is the
target volume fraction. This ensures that the target volume
fraction is maintained throughout the optimization process.
Structural topology optimization using the solid isotropic
material with penalization (called SIMP (Bendsøe 1989))
algorithm, where the stiffness for each element is described
as, E = Emin+ρp(Emax−Emin). Here, p is the parameter
used to penalize the element density close to 1.0. A typi-
cal SIMP-based topology optimization pipeline is shown in
Algorithm 1. More methods for structural topology optimiza-
tion such as level-set methods (Wang, Wang, and Guo 2003)
and evolutionary optimization methods (Das, Jones, and Xie
2011; Xie and Steven 1993) are also popularly employed.
All these methods have the common challenge of perform-
ing several iterations of finite element analysis, making it
computationally challenging.

Algorithm 1: SIMP topology optimization (Bendsøe 1989)
Input :S, L, BC, V0

Output :Dfin(set of all densities for each element, ρ)
Load design; apply loads and boundary conditions
Initialize: D0 → V0/

∫
Ω
dΩ

Initialize : ch = inf
while ch < threshold do

Assemble global stiffness matrix K for element stiffness
matrix ke(ρe)
Solve for U, using K, loads (L) and boundary condi-
tions (BC)
Compute objective function,
C = UTKU =

∑N
e=1 ρ

puT keu

Perform sensitivity analysis, ∂c
∂e = −pρ(p−1)uT keu

Update the densities (Di) using a optimality criterion
ch = ||Di −Di−1||

Multigrid Approach
The multigrid methods (MG) in numerical analysis are used
for solving the partial differential equation (PDEs) on a hi-
erarchy of meshes and sequentially projecting and solving
the problem on these meshes. The main idea of MG is to
project a fine grid problem onto a coarser grid to convert
low-frequency errors to high-frequency errors, which can
be smoothened through multiple iterations. This technique
can be extended to CNNs as the weights of CNNs are in-
dependent of the spatial resolution of its input (Ke, Maire,
and Yu 2017; Balu et al. 2021). The idea exploited here for
the multigrid training is that the weights of one resolution
can be used for another resolution without any change in the
structure due to the CNN weights being independent of each
other when extending from one resolution to another. This
approach, in effect, helps us learn the features better as we
go from one resolution to another.

While several strategies to perform multigrid have been
explored in the context of 3D deep learning (Balu et al. 2021),
half-V seems to be the most trivial and effective strategy for
a learning problem. In the half-V multigrid strategy, we start
from the coarsest grid from the hierarchy of meshes and
train for a large number of epochs till convergence. Using
the trained weights, we can now fine-tune the weights with
fewer epochs in the finer level grid of the hierarchy of meshes.
Finally, you perform very few (¡ 5 epochs) in the final fine
resolution to train the network completely. While the idea
of multigrid was originally meant for solving PDEs, this
strategy for progressively training deep CNNs from the lower
resolutions to higher resolutions seems to be extendable to
other applications such as this work on multigrid training for
Topology Optimization. Therefore, we use this strategy with
three hierarchy levels for training, beginning with 32×32×32
to 128× 128× 128.

Distributed Deep Learning
In the era of big data, it is hard to fit the data and sometimes
larger deep learning models in the memory of a single ma-
chine (either CPU or GPU). So it becomes necessary to use
multiple machines to train the deep learning models on the
big dataset. There are mainly two types of parallelism: (i)
Data parallelism and (ii) Model parallelism. In data paral-
lelism, the whole data is divided over multiple machines;
on the other hand, in model parallelism, the model layers
are distributed across multiple machines. In this paper, we
take advantage of data-parallel distributed deep learning to
accelerate the training process.

To train the distributed deep learning model using the data-
parallel technique, identical model copies are copied to the
independent devices and trained simultaneously. Each de-
vice then works on different sets of data, and the devices
collectively update the model (Chen, Yang, and Cheng 2019).
The training data is divided equally among the devices and
is further divided into local mini-batches, which are asyn-
chronously processed through the forward and backward
pass (Balu et al. 2021). Each device calculates the gradients
locally, and then the global gradients are computed by aver-
aging the local gradients using an all-reduce operation.

Transpose Conv 3x3, ReLU, BN

Transpose Conv 3x3, Sigmoid

Conv 3x3, ReLU, BN

Concatenation

Multigrid Pyramid U-Net

Multigrid input Multigrid output

Level 1

Level 2

Level 3

Figure 1: Pyramid U-Net is the hybrid version of U-Net (Ronneberger, Fischer, and Brox 2015; Çiçek et al. 2016) and
PSPNet (Zhao et al. 2017). We leverage the idea of PSPNet to U-Net architecture as a module and implement it at multiple steps
which has different strides of convolution at each step. Inputs to the network are strain energy of initial geometry and target
volume fraction and the output is final optimized geometry shape.

Once the global gradient is computed, it is broadcasted to
all the devices to update the local model parameters. As all
devices update the local model parameters using the same
global gradients, the model parameters are consistent through
all the devices.

CNN Architecture: Pyramid U-Net
To learn the non-trivial transformation from the initial shape
to the optimal geometry shape in the structural topology op-
timization process, we propose Pyramid U-Net, a fully 3D
convolutional neural network. Pyramid U-Net is a hybrid of
U-Net (Ronneberger, Fischer, and Brox 2015; Çiçek et al.
2016) and pyramid scene parsing network (PSPNet) (Zhao
et al. 2017) architectures. The Pyramid U-Net architecture
comprises multiple U-Net modules (each working on the grid
with different strides, e.g., first module has a stride of 2, the
second has a stride of 4, and thirst with a stride of 8). This
helps in capturing the features at different scales. Each U-Net
module in the network is an encoder-decoder style architec-
ture with skip connections from an encoder to the decoder.
These skip-connections enable strong localization during up-
sampling (or decoding) using the contextual information from
downsampling (or encoding) layers. We implement the U-Net
architecture at three levels: Stride-2, Stride-4, and Stride-8.
Each level has different strides (2, 4, and 8, respectively) for
pooling operation along the downsampling and upsampling
path. This idea comes from PSPNet, where the global prior is
computed at different scales to enrich the context information
extraction from the input.

The input to the network is concatenated tensor of initial
strain energy and target volume fraction. We feed this input
tensor to the network and obtain the final optimal density.
The dimensionality of the strain energy, the volume fraction,
and the optimal density are all the same as the mesh size (the
voxel grid size in this case).

3D Dataset

The 3D data used is generated using ANSYS Mechanical
APDL v19.2, which uses the SIMP method for structural
topology optimization. As an initial geometry, we use a cube
of a length of 1 meter. The mesh of this cube contains 31093
nodes and 154,677 elements, and each element consists of
8 nodes. We use a diverse set of boundary and loading con-
ditions available in ANSYS software such as Nodal Force,
Surface Force, Remote Force, Pressure, Moment, Displace-
ment. This ensures that the dataset has a variety of samples
from the set of complete distributions of topologies origi-
nating from the cube. The obtained geometries are in mesh
format; we convert them into voxel format to train CNNs. For
the multi-resolution purpose, voxelization is performed at
three resolutions: 323, 643, and 1283. We generated a total of
60,000 (60K) samples. We split the dataset into training and
testing sets with 50K and 10K samples, respectively. Further,
we build five sets of the training data, each having sizes of
10K, 20K, 30K, 40K, and 50K.

Table 1: Comparison between multigrid and single resolution CNN. We compare the number of samples for training, the number
of epochs trained, the BCE loss value on the test data set, and the training time.

Method # Training samples # Epochs BCE loss Time

Single resolution (1283) 50K 25 0.1658 23hrs 36min

Multigrid (323/643/1283) 50K/30K/30K 15 (5 each) 0.1735 4hrs 57min

Ground truth

Multigrid prediction

Ground truth

Multigrid prediction

Figure 2: Comparison of geometry shapes obtained with SIMP and the multigrid approach. The ground truth here is the output of
the SIMP method.

Results and Discussion

The total number of parameters for CNN we used
is 76,153,604 (76 Million). We use the SGD-based
Adam (Kingma and Ba 2014) optimizer for training, with
a learning rate of 0.0003 and batch size of 64, so the mini-
mum local batch size is 2 per GPU. We use the binary cross-
entropy (BCE) function to guide the optimizer to calculate
the loss between the predicted and the target geometry. We
performed the neural network training on the Bridges-2 GPU
cluster, which contains 8 NVIDIA Tesla V100 GPUs, each
with 32GB memory per device per node. The training was
performed on as many as 4 nodes (32 GPUs) using 8 devices
per node.

We train the CNN with the coarser geometry resolution of
323 several epochs. Next, we transfer the learning to the next
finer resolution of 643 by initializing the training with the
weights saved after training on the previous coarser resolution.
Similarly, we trained further for several epochs and then used
these weights as initialization for the next finer resolution of
1283 and trained for more epochs.

In addition, to motivate multigrid training, we also per-
formed training using the only single resolution of 1283 in-
stead of using multi-resolution geometries and compared the

timing and performance with the multigrid training approach.
We trained the CNN using single resolution with the same
hyper-parameters as used for multigrid training.

From Table 1, we observe that, with the less number of
epochs (15 epochs) trained using multigrid approach yields
comparable loss value compared when trained using single
resolution training with more number of epochs (25 epochs).
In multigrid training, we trained CNN for 5 epochs using
each resolution level, resulting in 15 epochs of training. Addi-
tionally, we reduced the number of samples from 50K to 30K
in multigrid training where we transferred the learning from
323 resolution to finer resolution; on the other hand, we used
50K samples for single training resolution CNN. So we see
the advantage of the multigrid approach where we can train
for fewer epochs and even train on fewer training samples at
a finer resolution level, we get a comparable loss value with
a speedup of 4.77×.

Further, we evaluate the multigrid approach with the SIMP
method by visualizing the final geometry obtained by both
methods using the marching cubes algorithm. In Figure 2, we
compare the ground truth obtained through the SIMP method
and the multigrid prediction. From Figure 2, we observe
that the multigrid approach can predict the shape of the final
geometry much accurately.

Conclusions
In this paper, we leveraged the idea of the multigrid approach
to accelerate the learning by performing the topology opti-
mization at a hierarchy of mesh resolutions. Further to speed
up the training, we implemented distributed deep learning
approach where we trained the CNN on multiple GPUs on a
GPU cluster. With the combined advantage of the multigrid
approach and distributed deep learning, we trained the CNN
significantly faster with a high-resolution 128×128×128 ge-
ometries. For future work, we want to extend this idea to the
megavoxel domain with a resolution as fine as 512×512×512
and also perform deep learning-based topology optimization
for more complicated and real-world structures.

References
Balu, A.; Botelho, S.; Khara, B.; Rao, V.; Sarkar, S.; Hegde,
C.; Krishnamurthy, A.; Adavani, S.; and Ganapathysubra-
manian, B. 2021. Distributed multigrid neural solvers on
megavoxel domains. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’21.
Bendsøe, M. P. 1989. Optimal shape design as a material
distribution problem. Structural optimization, 1(4): 193–202.
Bendsøe, M. P.; and Kikuchi, N. 1988. Generating opti-
mal topologies in structural design using a homogenization
method. Computer Methods in Applied Mechanics and Engi-
neering.
Chen, C.-C.; Yang, C.-L.; and Cheng, H.-Y. 2019. Efficient
and Robust Parallel DNN Training through Model Paral-
lelism on Multi-GPU Platform. arXiv:1809.02839.
Chi, H.; Zhang, Y.; Tang, T. L. E.; Mirabella, L.; Dalloro,
L.; Song, L.; and Paulino, G. H. 2021. Universal machine
learning for topology optimization. Computer Methods in
Applied Mechanics and Engineering, 375: 112739.
Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S. S.; Brox, T.; and
Ronneberger, O. 2016. 3D U-Net: learning dense volumetric
segmentation from sparse annotation. In International con-
ference on medical image computing and computer-assisted
intervention, 424–432. Springer.
Das, R.; Jones, R.; and Xie, Y.-M. 2011. Optimal topology de-
sign of industrial structures using an evolutionary algorithm.
Optimization and Engineering, 12(4): 681–717.
Ke, T.-W.; Maire, M.; and Yu, S. X. 2017. Multigrid neural
architectures. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 6665–6673.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
Lagaros, N.; Kallioras, N.; and Kazakis, G. 2020. Accelerated
topology optimization by means of deep learning. Structural
and Multidisciplinary Optimization, 62.
Liu, J.; and Ma, Y. 2016. A survey of manufacturing oriented
topology optimization methods. Advances in Engineering
Software, 100: 161–175.
Orme, M. E.; Gschweitl, M.; Ferrari, M.; Madera, I.; and
Mouriaux, F. 2017. Designing for additive manufacturing:
lightweighting through topology optimization enables lunar
spacecraft. Journal of Mechanical Design, 139(10).

Rade, J.; Balu, A.; Herron, E.; Pathak, J.; Ranade, R.; Sarkar,
S.; and Krishnamurthy, A. 2021. Algorithmically-consistent
deep learning frameworks for structural topology optimiza-
tion. Engineering Applications of Artificial Intelligence, 106:
104483.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional networks for biomedical image segmentation. In
International Conference on Medical image computing and
computer-assisted intervention, 234–241. Springer.
Wang, M. Y.; Wang, X.; and Guo, D. 2003. A level set method
for structural topology optimization. Computer methods in
applied mechanics and engineering, 192(1-2): 227–246.
Xie, Y. M.; and Steven, G. P. 1993. A simple evolutionary pro-
cedure for structural optimization. Computers & structures,
49(5): 885–896.
Zhao, H.; Shi, J.; Qi, X.; Wang, X.; and Jia, J. 2017. Pyramid
Scene Parsing Network. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 6230–6239.

	Introduction
	Formulation and Preliminaries
	Topology Optimization
	Multigrid Approach
	Distributed Deep Learning
	CNN Architecture: Pyramid U-Net

	3D Dataset
	Results and Discussion
	Conclusions

