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ABSTRACT

We model representations as data-structures which are distribution sensitive, i.e.,
which exploit regularities in their usage patterns to reduce time or space com-
plexity. We introduce probabilistic axiomatic specifications to extend abstract
data structures - which specify a class of representations with equivalent logi-
cal behavior - to a distribution-sensitive data structures. We reformulate synthesis
of distribution-sensitive data structures as a continuous function approximation
problem, such that the functions of a data-structure deep neural networks, such as
a stack, queue, natural number, set, and binary tree.

1 INTRODUCTION

Recent progress in artificial intelligence is driven by the ability to learn representations from data.
Yet not all kinds of representations are equal, and many of the fundamental properties of representa-
tions (both as theoretical constructs and as observed experimentally in humans) are missing. Perhaps
the most critical property of a system of representations is compositionality, which as described suc-
cinctly in (Fodor & Lepore, 2002), is when (i) it contains both primitive symbols and symbols that
are complex; and (ii) the latter inherit their syntactic/semantic properties from the former. Compo-
sitionality is powerful because it enables a system of representation to support an infinite number of
semantically distinct representations by means of combination. This argument has been supported
experimentally; a growing body of evidence (Spelke & Kinzler, 2007) has shown that humans pos-
sess a small number of primitive systems of mental representation - of objects, agents, number and
geometry - and new representations are built upon these core foundations.

Representations learned with modern machine learning methods possess few or none of these prop-
erties, which is a severe impediment. For illustration consider that navigation depends upon some
representation of geometry, and yet recent advances such as end-to-end autonomous driving (Bo-
jarski et al., 2016) side-step building explicit geometric representations of the world by learning to
map directly from image inputs to motor commands. Any representation of geometry is implicit,
and has the advantage that it is economical in only possessing information necessary for the task.
However, this form of representation lacks (i) the ability to reuse these representations for other
related tasks such as predicting object stability or performing mental rotation, (ii) the ability to com-
pose these representations with others, for instance to represent a set or count of geometric objects,
and (iii) the ability to perform explicit inference using representations, for instance to infer why a
particular route would be faster or slower.

This contribution provides a computational model of mental representation which inherits the com-
positional and productivity advantages of symbolic representations, and the data-driven and eco-
nomical advantages of representations learned using deep learning methods. To this end, we model
mental representations as a form of data-structure, which by design possess various forms of com-
positionality. In addition, in step with deep learning methods we refrain from imposing a particular
representations on a system and allow it instead be learned. That is, rather than specify a concrete
data type (for example polygons or voxels for geometry), we instead define a class of representations
as abstract data types, and impose invariants, or axioms, that any representation must adhere to.

Mathematicians have sought an axiomatic account of our mental representations since the end of
the nineteenth century, but both as an account of human mental representations, and as a means of
specifying representations for intelligent systems, the axiomatic specifications suffer from a number
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of problems. Axioms are universally quantified - for all numbers, sets, points, etc - while humans,
in contrast, are not uniformly good at manipulating numbers of different magnitude (Hyde, 2011;
Nuerk & Willmes, 2005; Dehaene, 1997), rotating geometry of different shapes (Izard et al., 2011),
or sets of different cardinality. Second, axioms have no algorithmic content; they are declarative
rules which do not suggest how to construct concrete representations that satisfy them. Third, only
simple systems have reasonable axioms, whereas many representations are complex and cannot
in practice be fully axiomitized; conventional axiomatic specifications do not readily accommo-
date partial specification. A fourth, potentially fatal threat is offered by Dehaene (1997), where he
shows that there are infinitely many systems, most easily dismissed by even a child as clearly not
number-like, which satisfy Peano’s axioms of arithmetic. Moreover these ”nonstandard models of
arithmetic” can never be eliminated by adding more axioms, leading Dehaene to conclude ”Hence,
our brain does not rely on axioms.”.

We extend, rather than abandon, the axiomatic approach to specifying mental representations, and
employ it purely as mechanism to embed domain specific knowledge. We model a mental represen-
tation as an implementation of an abstract data type which adheres approximately to a probabilistic
axiomatic specification. We refer to this implementation as a distribution-sensitive data-structure.

In summary, in this paper:

• We introduce probabilistic axiomatic specifications as a quantifier-free relaxation of a con-
ventional specification, which replaces universally quantified variables with random vari-
ables.
• Synthesis of a representation is formulated as synthesis of functions which collectively

satisfy the axioms. When the axioms are probabilistic, this is amounts of maximizing the
probability that the axiom is true.
• We present a number of methods to approximate a probabilistic specification, reducing it

to a continuous loss function.
• We employ neural networks as function approximators, and through gradient based opti-

mization learn representations for a number of fundamental data structures.

2 BACKGROUND: ABSTRACT DATA TYPES

Abstract data types model representations as a set of types and functions which act on values of
those types. They can also be regarded as a generalized approach to algebraic structures, such as
lattices, groups, and rings. The prototypical example of an abstract data type is the Stack, which
models an ordered, first-in, last-out container of items. We can abstractly define a Stack of Items,
in part, by defining the interface:

empty : Stack

push : Stack × Item→ Stack

pop : Stack → Stack × Item
isempty : Stack → {0, 1}

The interface lists the function names and types (domains and range). Note that this is a functional
(rather than imperative) abstract data type, and each function in the interface has no internal state.
For example, push is a function that takes an instance of a Stack and an Item and returns a Stack.
empty : Stack denotes a constant of type Stack, the empty stack of no items.

The meaning of the constants and functions is not specified in the interface. To give meaning to
these names, we supplement the abstract data type with a specification as a set of axioms. The
specification as a whole is the logical conjunction of this set of axioms. Continuing our example,
for all s ∈ Stack, i ∈ Item:

pop(push(s, i)) = (s, i) (1)
isempty(empty) = 1 (2)

isempty(push(s, i)) = 0 (3)
pop(empty) = ⊥ (4)
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A concrete representation of a stack is a data structure which assigns constants and functions to the
names empty, push, pop and isempty. The data structure is a stack if and only if it satisfies the
specification.

2.1 COMPOSITION OF DATA STRUCTURES

There are a number of distinct forms of compositionality with respect to data structures. One ex-
ample is algorithmic compositionality, by which we can compose algorithms which use as primitive
operations the interfaces to these representations. These algorithms can in turn form the interfaces
to other representations, and so on.

An important property of an abstract data types which supports algorithmic compositionality is
encapsulation. Encapsulation means that the particular details of how the functions are implemented
should not matter to the user of the data type, only that it behaves as specified. Many languages
enforce that the internals are unobservable, and that the data type can only be interacted with through
its interface. Encapsulation means that data-structures can be composed without reasoning about
their internal behavior.

In this paper however, we focus on parametric compositionality. Some data structures, in particular
containers such as a stack, or set, or tree are parametric with respect to some other type, e.g. the
type of item. Parametric compositionality means for example that if we have a representation of a
set, and a representation of a number, we get a set of numbers for free. Or, given a representations
for a tree and representations for Boolean logic, we acquire the ability to form logical expressions
for free.

2.2 DISTRIBUTION SENSITIVE DATA STRUCTURES

Axiomatic specifications almost always contain universal quantifiers. The stack axioms are quan-
tified over all possible stacks and all possible items. Real world use of a data structure is however
never exhaustive, and rarely uniform. Continuing our stack example, we will never store an infinite
number of items, and the distribution over how many items are stored, and in which order relative to
each other, will highly non-uniform in typical use cases. Conventional data structures are agnostic
to these distributional properties.

Data structures that exploit non-uniform query distributions are typically termed distribution-
sensitive (Bose et al., 2013), and are often motivated by practical concerns since queries observed in
real-world applications are not uniformly random. An example is the optimum binary search tree on
n keys, introduced by Knuth (Bose et al., 2013), which given a probability for each key has an av-
erage search cost no larger than any other key. More generally, distribution-sensitive data structures
exploit underlying patterns in a sequence of operations in order to reduce time and space complexity.

3 PROBABILISTIC AXIOMATIC SPECIFICATION

To make the concept of a distribution-sensitive data-structure precise, we first develop the concept of
an probabilistically axiomatized abstract data type (T,O, F ), which replaces universally quantified
variables in its specification with random variables. T and O are respectively sets of type and
interface names. F is a set of type specifications, each taking the form m : τ for a constant of type
τ , or o : τ1 → τ2 denoting a function from τ1 to τ2. Here τ ∈ T or a Cartesian product T1×· · ·×Tn.

A concrete data type σ implements an abstract data type by assigning a value (function or constant)
to each name in O. A concrete data type is deemed a valid implementation only with respect to an
algebraic specification A. A is a set of equational axioms of the form p = q, p and q are constants,
random variables, or transformations of random variables by functions in O.

Since a transformation of a random variable yields a random variable, and an axiom is simply a
predicate of its left and right hand side arguments, random variables present in an axiom implies
that the axiom itself is a Boolean valued random variable. For example if we have a distribution
over items i of the stack, axiom (1) itself is a random variable which is true or false depending on i,
push, pop, and can only be satisfied with some probability. We let P [A(σ)] denote the probability
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that a concrete data type σ satisfies the axioms:

P [A(σ)] := P [∧ipi = qi] (5)

Probabilistic axioms do not imply that the concrete data-structure itself is probabilistic. On the
contrary, we are concerned with specifying and synthesizing deterministic concrete data structures
which exploit uncertainty stemming only from the patterns in which the data-structure is used.

When P [A(σ)] = 1, σ can be said to fully satisfy the axioms. More generally, with respect to a
space Σ of concrete data types, we denote the maximum likelihood σ∗ as one which maximizes the
probability that the axioms hold:

σ∗ = arg max
σ∈Σ

P [A(σ)] (6)

4 APPROXIMATE ABSTRACT DATA TYPES

A probabilistic specification is not easier to satisfy than a universally quantified one, but it can
lend itself more naturally to a number of approximations. In this section we outline a number of
relaxations we apply to a probabilistic abstract data type to make synthesis tractable.

RESTRICT TYPES TO REAL VALUED ARRAYS

Each type τ ∈ T will correspond to a finite dimensional real valued multidimensional array Rn.
Interface functions are continuous mappings between these arrays.

UNROLL AXIOMS

Axiom (1) of the stack is intensional in the sense that it refers to the underlying stack s. This provides
an inductive property allowing us to fully describe the behavior of an unbounded number of push
and pop operations with a single equational axiom. However, from an extensional perspective, we
do not care about the internal properties of the stack; only that it behaves in the desired way. Put
plainly, we only care that if we push an item i to the stack, then pop, that we get back i. We do
not care that the stack is returned to its initial state, only that it is returned to some state that will
continue to obey this desired behavior.

An extensional view leads more readily to approximation; since we cannot expect to implement a
stack which satisfies the inductive property of axiom 1 if it is internally a finite dimensional vector.
Instead we can unroll the axiom to be able to stack some finite number of n items:

APPROXIMATE DISTRIBUTIONS WITH DATA

We approximate random variables by a finite data distribution assumed to be a representative set
of samples from that distribution. Given an axiom p = q, we denote p̂ and q̂ as values (arrays)
computed by evaluating p and q respectively with concrete data from the data distributions of random
variables and the interface functions.

RELAX EQUALITY TO DISTANCE

We relax equality constraints in axioms to a distance function, in particular the L2 norm. This
transforms the equational axioms into a loss function. Given i axioms, the approximate maximum
likelihood concrete data type σ̂∗ is then:

σ̂∗ = arg min
i

∑
‖p̂i − q̂i‖ (7)

Constants and parameterized functions (e.g. neural networks) which minimizes this loss function
then compose a distribution-sensitive concrete data type.
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5 EXPERIMENTS

We successfully synthesized approximate distribution-sensitive data-structures from a number of
abstract data types:

• Natural number (from Peano’s axioms)
• Stack
• Queue
• Set
• Binary tree

With the exception of natural number (for which we used Peano’s axioms), we use axiomitizations
from (Dale & Walker, 1996). As described in section 4, since we use finite dimensional representa-
tions we unroll the axioms some finite number of times (e.g., to learn a stack of three items rather
than it be unbounded) and ”extensionalize” them.

In each example we used we used single layer convolutional neural networks with 24, 3 by 3 filters
and rectifier non-linearities. In container examples such as Stack and Queue, the Item type was
sampled from MNIST dataset, and the internal stack representation was chosen (for visualization) to
also be a 28 by 28 matrix. We minimized the equational distance loss function described in section 3
using the adam optimization algorithm, with a learning rate of 0.0001 In figures 1 and 2 we visualize
the properties of the learned stack.

To explore compositionality, we also learned a Stack,Queue and Set ofNumber, whereNumber
was itself a data type learned from Peano’s axioms.

Figure 1: Validation of stack trained on MNIST digits, and introspection of internal representation.
Row push shows images pushed onto stack from data in sequence. Row pop shows images taken
from stack using pop function. Their equivalence demonstrates that the stack is operating correctly.
Row stack shows internal representation after push and pop operations. The stack is represented as
an image of the same dimension as MNIST (28 by 28) arbitrarily. The stack learns to compress three
images into the the space of one, while maintaining the order. It deploys an interesting interlacing
strategy, which appears to exploit some derivative information.

6 ANALYSIS

The learned internal representations depend on three things (i) the axioms themselves, (ii) the archi-
tecture of the networks for each function in the interface, and (iii) the optimization procedure. In the
stack example, we observed that if we decreased the size of the internal representation of a stack, we
would need to increase the size and complexity of the neural network to compensate. This implies
that statistical information about images must be stored somewhere, but there is some flexibility over
where.
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Figure 2: Generalization of the stack. Top left to top right, 10 images stacked in sequence using
push. Bottom right to bottom left: result from calling pop on stack 10 times. This stack was trained
to stack three digits. It appears to generalize partially to four digits but quickly degrades after that.
Since the stack is finite dimensional, it is not possible for it to generalize to arbitrarily long sequences
of push operations.
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Figure 3: Left: Stack versus queue encoding. Three MNIST images (top row) were enqueued onto
the empty queue (middle row left), and pushed onto the empty stack (bottom row left). Middle row
shows the internal queue representation after each enqueue operation, while bottom is the internal
stack representation after each push. In this case, the learned stack representation compresses pixel
intensities into different striated sections of real line, putting data about the first stacked items at
lower values and then shifting these to higher values as more items are stacked. This strategy appears
different from that in figure 1, which notably was trained to a lower error value. The internal queue
representation is less clear; the hexagonal dot pattern may be an artifact of optimization or critical
to its encoding. Both enqueue and push had the same convolutional architecture. Right: Internal
representations of natural numbers from 0 (top) to 19 (bottom). Natural numbers are internally
represented as a vector of 10 elements. Number representations on the left are found by repeateding
the succesor function, e.g. (succ(zero), succ(succ(zero)), ...). Numbers on the right are found by
encoding machine integers into this internal representation.

Given the same architecture, the system learned different representations depending on the axioms
and optimization. The stack representation learned in figure 1 differs from that in figure 3, indicating
that there is not a unique solution to the problem, and different initialization strategies will yield
different results. The queue internal representation is also different to them both, and the encoding
is less clear. The queue and stack representations could have been the same (with only the interface
functions push, pop, queue and dequeue taking different form).

As shown in figure 2, data-structures exhibit some generalization beyond the data distributions on
which they are trained. In this case, a stack trained to store three items, is able to store four with
some error, but degrades rapidly beyond that. Of course we cannot expect a finite capacity represen-
tation to store an unbounded number of items; lack of generalization is the cost of having optimized
performance on the distribution of interest.

7 RELATED WORK

Our contribution builds upon the foundations of distribution-sensitive data structures (Bose et al.,
2013), but departs from conventional work on distribution-sensitive data structures in that: (i) we
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synthesize data structures automatically from specification, and (ii) the distributions of interest are
complex data distributions, which prevents closed form solutions as in the optimum binary tree.

Various forms of machine learning and inference learn representations of data. Our approach bears
resemblance to the auto-encoder (Bengio, 2009), which exploits statistics of a data distribution to
learn a compressed representation as a hidden layer of a neural network. As in our approach, an
auto-encoder is distribution sensitive by the constraints of the architecture and the training proce-
dure (the hidden layer is of smaller capacity than the data and which forces the exploitation of
regularities). However, an auto-encoder permits just two operations: encode and decode, and has no
notion explicit notion of compositionality.

A step closer to our approach than the auto-encoder are distributed representations of words as
developed in (Mikolov et al., 2000). These representations have a form of compositionality such
that vector arithmetic on the representation results in plausible combinations (Air + Canada = Air-
Canada).

Our approach to learning representation can be viewed as a form of data-type synthesis from speci-
fication. From the very introduction of abstract data types, verification that a given implementation
satisfies its specification was a motivating concern (Guttag et al., 1978; Guttag, 1978; Spitzen &
Wegbreit, 1975). Modern forms of function synthesis (Solar-Lezama, 2009; Polikarpova & Solar-
Lezama, 2016) use verification as an oracle to assist with synthesis. Our approach in a broad sense is
similar, in that derivatives from loss function which is derived from relaxing the specification, guide
the optimization through the paramterized function spaces.

Probabilistic assertions appear in first-order lifting (Poole, 2003), and Sampson (Sampson et al.,
2014) introduce probabilistic assertions. Implementation of data type is a program. Main difference
is that we synthesize data type from probabilistic assertion. Sumit’s work (Sankaranarayanan, 2014)
seeks upper and lower bounds for the probability of the assertion for the programs which operate on
uncertain data.

Recent work in deep learning has sought to embed discrete data structures into continuous form.
Examples are the push down automata (Sun et al., 1993), networks containing stacks (Grefenstette
et al., 2015), and memory networks (Sukhbaatar et al., 2015). Our approach can be used to synthe-
size arbitrary data-structure, purely from its specification, but is parameterized by the neural network
structure. This permits it more generality, with a loss of efficiency.

8 DISCUSSION

In this contribution we presented a model of mental representations as distribution sensitive data
structures, and a method which employs neural networks (or any parameterized function) to syn-
thesize concrete data types from a relaxed specification. We demonstrated this on a number of
examples, and visualized the results from the stack and queue.

One of the important properties of conventional data structures is that they compose; they can be
combined to form more complex data structures. In this paper we explored a simple form of para-
metric composition by synthesizing containers of numbers. This extends naturally to containers of
containers, .e.g sets of sets, or sets of sets of numbers. Future work is to extend this to richer forms
of composition. In conventional programming languages, trees and sets are often made by compos-
ing arrays, which are indexed with numbers. This kind of composition ls fundamental to building
complex software from simple parts.

In this work we learned representations from axioms. Humans, in contrast, learn representations
mostly from experience in the world. One rich area of future work is to extend data-structure learning
to the unsupervised setting, such that for example an agent operating in the real world would learn a
geometric data-structures purely from observation.
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