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Abstract
The main problem investigated in this paper is
to learn ”interpretable” linear classifiers from
data. Interpretable models are captured using
”discrete” linear functions. The learning prob-
lem is formulated as minimizing the cumulative
zero-one loss of a discrete hyperplane, penalized
by the standard L2 regularizer. This learning task
is cast as a MILP problem, and solved using con-
vex relaxation and rounding. Experiments on
both synthetic and real-world datasets corrobo-
rate the interest of this approach. We bench-
marked the proposed method against two clas-
sifiers: i- DILSVM a discrete version of SVM
based a hinge-loss and ii- the traditional lin-
ear L1-norm SVM. Our algorithm outperforms
DILSVM on several datasets in terms of accu-
racy and computational efficiency. It has close
performance to the continuous SVM. These re-
sults suggest that the proposed classifier provides
a good trade-off between performance and inter-
pretability.

1. Introduction
Supervised machine learning has made major advances in
the last decades. Significant improvements in term of per-
formance have been achieved in a wide spectrum of appli-
cations. However the level of complexity has also grown to
a level that only machine learning experts could interpret
the output of the models. Thus there is a difficulty in adopt-
ing many of the classification models due to their complex-
ity and lack of trust in classifier behavior once deployed
in real applications. On the other hand, simple scoring
systems are still much desired in many applications. For
example, in the medical diagnosis area, scoring systems
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are widely used for diagnosis or outcome prediction such
as Thrombolysis In Myocardial Infarction (TIMI) score,
Apache II score for infant mortality in the ICU or CHADS2
score for Atrial Fibrillation Stroke Risk, etc. Credit scoring
is also a related application where banks want to identify
which customer attributes can predict good or bad credit
risks. Providing tools to interpret the classifier output could
help understanding which attributes are important for the
prediction. Likert scale system is also being widely for sur-
vey evaluation. A typical Likert scale includes five levels
(Strongly disagree, Disagree, Neither agree nor disagree,
Agree, Strongly agree). A classifier that provides the level
of agreement of each feature to an accurate classification
can enhance its interpretability (Carrizosa et al., 2013; Us-
tun & Rudin, 2015; Letham et al., 2012).

The goal in supervised machine learning is to discover a
function f(x) called classifier that predicts a label y where
x is a d-dimensional vector of values, often called feature
vector and y is the label of the corresponding class of x.
The estimation of the function f is based on a training set
{(x1, y1), . . . , (xn, yn)}. For binary classification, the la-
bel y takes two values, e.g., -1 or 1. A hyperplane contains
all the points in a d-dimensional space satisfying the fol-
lowing equation: w1x1 + w2x2 + . . . wdxd + b = 0. Each
coefficient wi can be thought of as a weight or a rating on
the corresponding feature. The vector containing all the
weights w = (w1, . . . , wd) is the weight vector. In the
traditional learning problem, we seek to find real-valued
weights that separate the two classes. Here, we restricts
coefficients to integer coefficients, i.e. each coefficient can
take value among a set A of arbitrary values.

Our objective is to build classifiers that are accurate, yet
easy to interpret by human experts. Our model is based
on linear Support Vector Machines with discrete coeffi-
cients. The proposed SVM model can be easily inter-
preted compared to classical SVM. We overcome the re-
striction in the work of (Carrizosa et al., 2013) where
the space of discrete values is in the form of A =
{−aK , . . . ,−a1, 0, a1, . . . , aK}, i.e., symmetric and in-
cludes zero. This paper extends also to previous work by
Chevaleyre et al. where the classifier weights are limited to
binary values (Chevaleyre et al., 2013).

The paper is organized as follows. In the next section, we
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present a review of related work. In section 3, we propose
a new Mixed Integer Linear Programming (MILP) formu-
lation to improve the interpretability of SVM. In section 4,
we propose an approximation scheme to solve the MILP
problem. In section 5 and 6, we present and discuss the
experimental results.

2. Related Work
The traditional SVM methods are continuous SVM as op-
posed to discrete SVM where each coefficient belongs to
a discrete set. The earliest research in this area consisted
in learning perceptrons with binary weights while the lin-
ear perceptron has arbitrary real-valued weights (Golea &
Marchand, 1993; Fang & Venkatesh, 1996). The authors
showed that the binary perceptron algorithms learn major-
ity functions in linear time from small samples.

Chevaleyre et al. (Chevaleyre et al., 2013) proposed a
general framework to build binary linear classifiers with
{0, 1}-valued weights. Their approach is quite general and
can be applied with many learning algorithms. Firstly,
it determines a fractional solution by replacing the dis-
crete constraint by a weaker constraint, that each coeffi-
cient belongs to the interval [0, 1] instead of being in the
set of {0, 1}. Secondly, it applies randomized rounding and
greedy rounding procedures to the fractional solution to get
a discrete solution of the learning problem.

Carrizosa et al. (Carrizosa et al., 2013) proposed a Discrete
Level Support Vector Machine (DILSVM) for rating fea-
tures such that each coefficient wj belongs to a discrete set
A = {a1, . . . , aK}. Carrizosa et al. (Carrizosa et al., 2013)
suppose that the set A is symmetric and contains 0 such as
A = {−2,−1, 0, 1, 2}. Firstly they formulate the learning
problem as a Mixed Integer Linear problem (MILP) where
each coefficient is restricted to take a discrete value. Sec-
ondly, the integral constraints are relaxed to turn the MILP
to a linear program. Thirdly, the linear program is solved to
obtain a partial continuous optimal solution. Finally round-
ing techniques are applied to construct a feasible solution
to MILP. DILSVM evaluated with three or five discrete val-
ues has a comparable accuracy to the classical SVM with a
gain in interpretability.

3. SVM-DISC Approach
We suppose that each coefficient wj belongs to an arbi-
trary domain of values A = {a1, . . . , aK}. Carrizosa et al.
(Carrizosa et al., 2013) suppose that the set A is symmet-
ric such as A = {−2,−1, 0, 1, 2} and propose to minimize
the hinge loss. The latter is a convex upper bound on 0-1
loss. Hence it guarantees nice convergence property for the
algorithms. However the discrete version of SVM is intrin-
sically modeled by a non-convex program regardless of the

loss function choice. Thus solving this problem with 0-1
loss is easier and more efficient than using the hinge loss
(Ustun & Cynthia, 2016; Nguyen & Scott, 2013).

3.1. SVM-MILP

In Mixed Integer Programming, forcing constraints are
generally required to force binary variables to 1 when other
positive continuous variables are non-zero. For example,
suppose x is a continuous variable and z is a binary vari-
able. The forcing constraint x ≤ Mz will set z to 1 when-
ever x is positive where M is a large number, often called
Big M . The value M should be at least as large as the
largest possible value of the variable x, otherwise it will
introduce an infeasibility. However, from an algorithmic
point of view, M should not be too large, otherwise, it will
be difficult for the integer solver to converge and it will also
introduces potential round-off error.

Our new discrete SVM model can be written as follow:

SVM−discrete


min 1

2‖w‖
2 + C

∑n
i=1 zi

s.t.
yi(w·xi + b) ≥ 1− ξi i = 1, . . . , n
ξi ≤Mzi i = 1, . . . , n
b ∈ R;wj ∈ A; ξi ≥ 0; zi ∈ {0, 1} ∀j ∀i

(1)

where ξi is a positive slack variable such that if 0 < ξi < 1
then instance i is between the margin and the correct side
of hyperplane and if ξi > 1 then instance i is misclassified.
C is a regularization parameter such that small C allows
constraints to be easily ignored (large margin) and large
C makes constraints hard to ignore (narrow margin). The
variable zi is an indicator variable associated with every
example i, which takes value 1 if the example i is mis-
classified, 0 otherwise. The second constraint ensures that
zi = 1 if and only if ξi > 0 since we deal with a minimiza-
tion problem.

The linearization technique consists in replacing a product
by a new variable and adding a set of linear constraints that
force the equality between the new variable and the prod-
uct(Billionnet et al., 2013). To linearize the SVM-discrete
model, we introduce the following binary variable αjk such
that αjk = 1 if wj = ak. So wj =

∑K
k=1 αjkak and

‖w‖2 =
∑d

j=1

∑K
k=1 a

2
kαjk because αjk are binary and

bitwise different. It is worth noting that the objective func-
tion is linear because a2k are constant and not variables. We
have also w·xi =

∑d
j=1

∑K
k=1 akαjkxij . Thus the model

SVM-discrete is equivalent to the following Mixed Integer
Linear Program (MILP).
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SVM−MILP



min 1
2

∑d
j=1

∑K
k=1 a

2
kαjk + C

∑n
i=1 zi

s.t.

yi(
∑d

j=1

∑K
k=1 akαjkxij + b) ≥ 1− ξi ∀i∑K

k=1 αjk = 1 ∀j
ξi ≤Mzi ∀i
zi, αjk ∈ {0, 1} ∀i, j
b ∈ R; ξi ≥ 0∀i

(2)

The second constraint makes sure that each coefficient wj

is assigned to exactly one discrete value ak.

3.2. Bounds for SVM

We derive an upper bound on M for the slack variable ξ
such that ξi ≤M i = 1, . . . , n

Theorem 1. Let B = dmaxj |wj |maxij |xij |. The pro-
gram SVM-discrete has an optimal solution with |b| ≤
B + 1

Proof. We note that |w·xi| ≤
∑d

j=1 |wj ||xij | ≤
dmaxj |wj |maxij |xij | = B. Hence w · xi + B ≥ 0 and
w · xi −B ≤ 0.

The separation constraint can be rewritten as:

For the positive instances: ξi ≥ 1 − w · xi − b , for the
negative instances: ξi ≥ 1 +w · xi + b

Let (w, b, ξ, z) be an optimal solution for SVM-discrete.
We will show that for a fixed vector w, we can modify
the variable b to reach the bound while obtaining another
optimal solution.

Suppose that b ≥ B+1. For the positive class, we have w ·
xi+b ≥ w ·xi+B+1 ≥ 1. So the positive class instances
are correctly classified. For the negative instances, since
ξi ≥ 1+w·xi+b, we deduce that if we decrease b up toB+
1 the slack variable ξ decreases while the positive instances
remain correctly classified. So any value of b greater than
B + 1 can reduced to B + 1.

Similarly, suppose that b ≤ −B−1. For the negative class,
we have w · xi + b ≤ w · xi −B − 1 ≤ −1. So the nega-
tive class instances are correctly classified. For the positive
instances, since ξi ≥ 1 − w · xi − b, we deduce that if
we increase b up to −B − 1 the slack variable ξ decreases
while the negative instances remain correctly classified. So
any value of b less than −B − 1 can increased to −B − 1.
Finally, we have usually |b| ≤ B + 1.

Theorem 2. Let M = 2B+2. The program SVM-discrete
has an optimal solution with ξi ≤M

Proof. The separation constraint is ξi ≥ 1−yi(w ·xi+ b).
Thus ξi = max(1− yi(w · xi + b), 0). By considering the

previous theorem, we have 1− yi(w · xi + b) ≤ 1 + B +
B + 1 = 2B + 2. Hence ξi ≤M .

For the discrete SVM, we have

B = dmax
j
|wj |max

ij
|xij | = dmax

k
|wk|max

ij
|xij | = daK max

ij
|xij |

(3)
In particular if the training data x is normalized, i.e |xij | ≤
1 then

B = daK ,M = 2B + 2 (4)

4. Solving SVM-MILP
The program SVM-MILP is NP-hard even for a set of two
values A = {a1, a2}. Due to the size of the model and
its complexity, we propose a two-stage approach. First, we
solve the associated relaxed linear program by using a lin-
ear programming solver such as CPLEX, COIN or GLPK.
We replace the integrality constraint zi, αjk ∈ {0, 1} by
zi, αjk ∈ [0, 1]. Second, in order to obtain an integral solu-
tion to SVM-MILP, a rounding technique is used to derive
the discrete solution for SVM-MILP.

4.1. Rounding Strategy

In the rounding procedure, for each coefficient wj indepen-
dently exactly one of the αjk is set to 1 and the rest is set
to 0. The fractional assignment αjk will be rounded to an
approximate integer assignment for SVM-MILP. We eval-
uated two approaches for the rounding strategy: a random-
ized and deterministic a approach. The latter gave better
results. Therefore, we will use it in the remainder of this
work. The probability for the coefficient wj to be assigned
by the rounding procedure to discrete value ak is equal to
the fractional value αjk.

Algorithm 1 Algorithm for Training SVM-DISC.
Input: A tuplet of parameters (C, a1, . . . , ak)
Output: An approximate classifier

1 Solve the linear relaxation of SVM-MILP and get the frac-
tional optimal solution (αjk, zi, ξi, b) for j = 1, . . . , d
do

2 Assign each coefficientwj to exactly one discrete value
ak (set wj = ak) corresponding to the maximum
probability from the distribution αjk,

∑K
k=1 αjk = 1

.
3 Return the classifier sign(

∑d
j=1

∑K
k=1 akαjkxj + b)

5. Experimental Results
We compare the performance of our classifier with two
others: 1- continuous L1-norm SVM and 2- DILSVM
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(Carrizosa et al., 2013). We evaluate the accuracy, in-
terpretability and efficiency of the classifiers on 10 pub-
licly available real-world datasets and one synthetic dataset
(linearly separable points). The analysis is carried for
M = 2daK maxij |xij | + 2 as stated by equation (5)
and two choices of the discrete set A = {−1, 0, 1} and
A = {−2,−1, 0, 1, 2}. The interpretability is measured
by assessing the distribution of the discrete values and the
sparsity of the classifiers. We used python linear pro-
gramming toolkit PuLP for implementing Algorithm 1 and
DILSVM (Mitchell et al., 2011). L1-SVM is based Lib-
SVM implementation (Chang & Lin, 2011). The python
code for this work can be found at https://github.
com/bsabri/svm-disc.

5.1. Synthetic Data

We generated three toy datasets of 100 samples each. The
datasets are shown in the left column of Figure 1. The
dataset on top (toy-data 1) is composed of two interleaving
half circles. The middle one (toy-data 2) is formed with a
circle inside another one. The third one in the bottom (toy-
data 3) represents an overall separable two classes. The
data points are generated using a model similar to the one
used for Madelon dataset (Guyon, 2003). Dataset toy-data
2 is challenging for linear classification.

The comparison should reveal how our algorithm behaves
compared with the continuous linear L1-SVM. The clas-
sifier SVM-DISC is trained for the discrete set A =
{−2,−1, 0, 1, 2}. The middle and right columns of Fig-
ure 1 show the decision boundary for both linear SVM and
SVM-DISC. As expected, both linear L1-SVM and SVM-
DISC fail to classify toydata-2 dataset as it is highly non
linear dataset. For toy-data 1, the fitted classifier weight
vector is w = [1, 1]. This means that both features x and
y are equally important for the classification of the data
points. The obtained accuracy (80%) is the same for L1-
SVM. For toy-data 2, both classifiers fail to classify the
data. In general, high dimensional feature space helps im-
proving the separability of the two classes and such sce-
nario is not the most frequent. For toy-data 3, SVM-DISC
reveals that dimension x is the most important for the clas-
sification and disregards the dimension y. It achieves also
comparable accuracy to L1-SVM. The analysis on syn-
thetic data shows that despite the restricted capacity of the
discrete classifier it is able to achieve comparable perfor-
mance to the continuous SVM. Moreover the interpretation
of the feature role in the classifier becomes very simple and
easy to understand.

5.2. Real-Life Data

We compared the accuracy of SVM-DISC with respect
to L1-norm linear SVM and DILSVM on 10 real-world

datasets and one synthetic dataset. The datasets are ob-
tained from public resources such as UCI Machine Learn-
ing repository, openML and MLData repository (Asuncion
& Newman, 2007; Sonnenburg et al.; Vanschoren et al.,
2014; Guyon, 2003). We also evaluated the computational
efficiency of SVM-DISC and DILSVM. We did not include
L1-norm SVM in the efficiency evaluation because its im-
plementation has additional software optimization (opti-
mized complied C code) that makes the comparison unfair.
Moreover, continuous SVM optimization is expected to be
faster than Mixed Linear Integer optimization as it is a con-
vex problem.

For the evaluation, each dataset is split into a valida-
tion and test sets with a proportion of 60% and 40%.
The hyper-parameter C is tuned using a 2-fold cross-
validation on the validation set. The model is then fit-
ted for the best parameter C using the whole validation
dataset. For tuning the parameter C, the following set
C = {2−4, 2−2, 20, 22, 24, 26, 28} is used. The fitted clas-
sifier is evaluated on the test set. This procedure is repeated
5 times to obtain a mean and a standard deviation of the ac-
curacy. Table 1 and Table 2 summarize the obtained results.
Columns n and d in Table 1 correspond respectively to the
number of examples and the number of features in each
dataset. The description of each dataset can be found on the
data source referenced above. As expected, L1-norm linear
SVM has better accuracy than the two discrete linear SVM.
This is due to the higher complexity of the decision bound-
ary. SVM-DISC outperforms DILSVM overall on the in-
cluded dataset with 2% to 4% in terms of accuracy. The lat-
ter failed in particular properly to classify dataset car. The
use of the sets A = {−1, 0, 1} and A = {−2,−1, 0, 1, 2}
slightly changed the results for SVM-DISC.

Figure 2 presents histograms of w values for SVM-DISC
and DILSVM. For each dataset, the histograms of the val-
ues in w are plotted. The higher the pick in zero the more
sparse is the classifier. In addition to interpretability, dis-
crete classifiers have the intrinsic property of applying fea-
ture selection. Features with weights wi = 0 are irrele-
vant for the classification. In two datasets (splice and ger-
man), the whole vector w is zero. This could be explained
by the high non-linearity in the data since also continuous
SVM has failed to accurately classify these datasets. Fea-
tures corresponding to positive ak contributes positively
and strongly to the classification.

In addition to evaluating the accuracy, we were also in-
terested whether our formulation based on 0-1 loss has an
advantage in terms of computational efficiency. We com-
pared the CPU time for training the classifier on the val-
idation data for the optimal hyper-parameter C. Figure 3
summarizes the comparison of SVM-DISC and DILSVM
on CPU time required for training the classifiers on the dif-

https://github.com/bsabri/svm-disc
https://github.com/bsabri/svm-disc
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Figure 1. Comparison of SVM-DISC and Linear SVM on synthetic data. The values displayed on the right bottom are classification
accuracy.

Table 1. Comparison of the classification accuracy for Linear SVM, SVM-DISC and DILSVM for A = {−2,−1, 0, 1, 2}. n and d
denote respectively the number of examples and features of the different datasets.

dataset n d L1-norm SVM SVM-DISC DILSVM
abalone 4177 10 78.60 ± 0.42 77.85 ± 0.85 77.99 ± 0.61
breast-cancer 683 10 96.64 ± 0.75 95.11 ± 1.08 92.77 ± 2.10
calhous 20640 8 84.15 ± 0.45 82.66 ± 0.30 81.04 ± 01.01
car 1594 16 94.36 ±1.04 85.71 ± 1.01 66.61 ± 37.26
cod-rna 300 8 94.67 ± 2.54 88.50 ± 1.71 70.17 ± 39.29
german 1000 24 77.45 ±1.35 66.75 ± 1.71 69.00 ± 2.04
linear-separable 1000 20 84.15 ±1.55 85.25 ±1.17 85.15 ±1.02
nursery 12960 20 98.83 ± 0.10 97.64 ± 1.20 97.48 ± 0.83
spam 4601 57 92.91 ± 0.42 87.53 ± 1.45 83.78 ± 7.23
splice 2422 59 67.74 ± 0.99 67.74 ± 0.99 67.74 ± 0.99
thyroid 3163 25 98.07 ± 0.47 94.03 ± 3.52 93.19 ± 4.08
Average 87.96 ±9.87 84.43±9.94 80.44±18.37

ferent benchmarking datasets. There is about 30% gain in
computational efficiency in favor of SVM-DISC. The ex-
periments were performed using a computer with 3 cores
(i7-4600M CPU@2.90 GHz) with 8 GB of RAM.

6. Discussion
The advantage of SVM-DISC on DILSVM in terms of ac-
curacy can be explained by the fact that SVM-DISC is bet-
ter designed to maximize the accuracy. The use of the 0-1
loss function is a key factor for this improvement. The ac-
curacy can be writtenAccuracy = (n−

∑
i zi)/n. Since n

is constant, maximize accuracy equivalent to minimize sum
zi. However in DILSVM, an approximation of accuracy is
used by the hinge loss function. Concerning the computa-
tional complexity. SVM-DISC is faster than DILSVM pos-
sibly because the relaxed linear program for SVM-DISC is
sparser than for DILSVM. In fact the objective function
of SVM-DISC contains dK + n variables whereas that of
DILSVM contains 2dK+n. Moreover the separation con-
straint plays a role in the computation efficiency. For SVM-

DISC, it contains dk + n + 1 and for the DILSVM, it has
2dk+n+1 variables. Overall SVM-DISC comes with ad-
vantages in terms of accuracy and computational efficiency.

7. Conclusion
In this paper, we have proposed a new linear discrete SVM.
The classifier coefficients take value in an arbitrary discrete
values. The integer problem formulation is based on 0-1
loss function. Since this discrete problem is NP-hard, it is
relaxed to a Mixed Integer Linear Programming problem.
A rounding technique is used to transform the optimal frac-
tional solution for MILP program to a discrete value. The
obtained accuracy improves the state-of-the art results and
is rather close to the continuous linear SVM. The proposed
algorithm is also more efficient than DILSVM thanks to the
formulation in terms of 0-1 loss function. As future work,
we plan to investigate the extension of this paper to han-
dle non linearity in data. For a larger choice of discrete set
A, the computational cost becomes very high. We would
like to explore new approaches to reduce the computational
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Table 2. Comparison of the classification accuracy for Linear SVM, SVM-DISC and DILSVM for A = {−1, 0, 1}.
dataset L1-norm SVM SVM-DISC DILSVM
abalone 79.40 ± 1.09 74.36 ± 7.08 67.06 ± 16.68
breast-cancer 97.30 ± 0.80 93.50 ± 1.92 91.68 ± 7.30
calhous 84.24 ± 0.50 82.42 ± 2.02 81.34 ± 1.83
car 94.61 ± 0.76 86.83 ± 1.88 84.04 ± 0.28
cod-rna 95.00 ± 1.56 87.00 ± 1.39 86.17 ± 3.56
german 76.20 ± 1.16 70.30 ± 2.04 70.10 ± 1.59
linear-separable 84.40 ± 1.33 85.80 ± 1.71 85.50 ± 1.69
nursery 98.71 ± 0.20 98.00 ± 1.06 95.78 ± 1.10
spam 92.55 ± 0.51 85.59 ± 1.93 85.48 ± 1.87
splice 67.39 ± 1.72 67.39 ± 1.72 67.39 ± 1.72
thyroid 98.18 ± 0.36 93.46 ± 3.23 96.18 ± 3.09
Average 87.99 ±10.00 84.05±9.75 82.79±11.37
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Figure 2. Histograms of the values in w for SVM-DISC and DILSVM for the different datasets. The classifiers are trained for A =
{−2,−1, 0, 1, 2}.

time for training the discrete classifier. We envisage also to
study the theoretical properties of SVM-DISC such as con-
sistency as well as deriving learning bounds.
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Figure 3. Comparison of CPU time in seconds for training SVM-DISC and DILSVM.
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