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Abstract

The discriminative power of modern deep learning mod-
els for 3D human action recognition is growing ever so
potent. In conjunction with the recent resurgence of 3D
human action representation with 3D skeletons, the qual-
ity and the pace of recent progress have been significant.
However, the inner workings of state-of-the-art learning
based methods in 3D human action recognition still re-
main mostly black-box. In this work, we propose to use
a new class of models known as Temporal Convolutional
Neural Networks (TCN) for 3D human action recognition.
Compared to popular LSTM-based Recurrent Neural Net-
work models, given interpretable input such as 3D skele-
tons, TCN provides us a way to explicitly learn readily in-
terpretable spatio-temporal representations for 3D human
action recognition. We provide our strategy in re-designing
the TCN with interpretability in mind and how such char-
acteristics of the model is leveraged to construct a powerful
3D activity recognition method. Through this work, we wish
to take a step towards a spatio-temporal model that is easier
to understand, explain and interpret. The resulting model,
Res-TCN, achieves state-of-the-art results on the largest 3D
human action recognition dataset, NTU-RGBD.

1. Introduction

Human activity analysis is a crucial yet challenging re-
search area of computer vision. Applications of human ac-
tivity recognition ranges from video surveillance, human-
computer interaction, robotics and skill evaluation [2, 33].
At the core of successful systems for human activity recog-
nition lies an effective representation that can model both
the spatial and temporal dynamics of human motion.

Traditionally, the community has focused on activity
recognition in the domain of RGB videos [32, 12]. For a
RGB video, complex human motion in 3D euclidean space
is projected on to a series of 2D images and in the pro-

cess, loss of valuable 3D spatio-temporal information is in-
evitable. In recent years, we have witnessed a drastic im-
provement of cost-effective depth sensors in the form of
Microsoft Kinect [9]. Naturally, computer vision methods
leveraging on the 3D structure provided by such 3D sensors,
namely RGB+D methods, have been an active area of re-
search [8]. Applied to human activity recognition, 3D infor-
mation of how a human body articulates comes in the form
of time series sequence of 3D skeletons. Such representa-
tions describe human motion as a collection of trajectories
in 3D euclidean space of key human joints. Even without
the context information and visual cues, early work [16] in
biological perception and more recent methods [8, 9, 29]
provide strong evidence that encoding humans as a 3D
skeleton yields both a discriminative and a robust represen-
tation for activity analysis. Given the recent progress of
powerful human pose estimators from RGB or RGBD data
[25], human activity recognition model that builds on top of
3D skeletons is a promising direction.

Despite this significant progress, the inner workings of
such complex temporal models still remain mostly black-
boxes. Without the capability to interpret learning based
models, we inevitably lack the power to fully support a
model’s decision regardless of its correctness [21, 24]. Such
short-comings may hinder practical deployment of even the
strongest models. The ability to understand and explain pre-
cisely how a model came to a wrong prediction is a fun-
damental first step towards improving the potential of our
current methods.

In this light, we propose Temporal Convolutional Neural
Networks (TCN) [19] applied to 3D Human Action Recog-
nition. Through the lens of TCN, we wish to uncover what
exactly learning-based temporal models leverage on espe-
cially when trained on interpretable data such as a sequence
of 3D skeletons. We re-design the original TCN by factor-
ing out the deeper layers into additive residual terms which
yields both interpretable hidden representations and model
parameters. Using the resulting architecture, Res-TCN, we
validate our approach on currently the largest 3D human
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activity recognition dataset, NTU-RGBD and obtain state-
of-the-art results.

2. Related Work
In this section, we first provide a literature review on

recent developments in learning based 3D human action
recognition models. We focus our narrative on models that
employ LSTM-based Recurrent Neural Networks. We also
extend our review to works focusing on model interpret-
ability and visualization of deep learning models.

2.1. 3D Human Activity Recognition

Traditional recurrent neural network models suffer from
vanishing/exploding gradient problem during optimization
and are difficult to train correctly [23, 7]. By formulation,
LSTM neurons begin to address such optimization prob-
lems and are capable of modeling long-term dependencies
[14, 13, 7]. Given the temporal recurrent nature of human
action analysis, most leading methods in 3D human action
recognition adopt LSTM-based RNNs.

Hierarchical recurrent neural network of [5] combines
the features of different body parts hierarchically. At the
initial layer, each sub-network extracts features over a sin-
gle joint and these representations are fused hierarchically
in the deeper layers. A final prediction is made when all
joint information is combined. In part-aware LSTM model
introduced in [26], individual body joints are grouped to-
gether in five groups based on their spatial context. The
memory units of the LSTM are learned independently per
group and the information from different parts is aggregated
to produce a final prediction. The work of [36] leverages on
similar intuition that co-occurrence of joints is a strong dis-
criminative feature for human action recognition. A group
sparsity constraint on the connection matrix pushes the net-
work to learn the mappings between co-occurring joints
and the human activity. Deep spatio-temporal LSTM with
Trust Gates is introduced in [22] to learn features both in
the temporal and spatial domains. Similarly, the authors of
[29] propose a spatio-temporal attention model for LSTM-
based RNNs. The method comprises of three LSTM net-
works: a spatial attention sub-LSTM, a temporal attention
sub-LSTM and a main LSTM. Both temporal and spatial at-
tention modules are pre-trained separately initially and the
entire network is trained end-to-end.

In the above methods, the key intuition is that a certain
subset of joints are more important for recognizing human
activities. However, it is difficult to interpret what the model
parameters of each LSTM layer represent. In our proposed
version of TCN, we show that our model also learns both
spatial and temporal attention without the need for initial
pre-training stage as in [29]. Moreover, by model design
based on temporal convolutions [19] and residual connec-
tions [11], we can begin to directly interpret what our model

parameters and features represent.

2.2. Model Interpretability and Visualization

Here, we focus our discussion on interpretability of su-
pervised machine learning models. Post-hoc approaches are
often considered to provide interpretation of models. This
means that once a model is learned, post-operative experi-
ments are conducted to gain insight into what the model has
learned. [6] proposes a method to find the optimal stimulus
for each unit in a deep neural network by performing back
propagation with respect to image space to maximally stim-
ulate a neuron. Obtained images give us an insight into the
appearance of the input that a neuron is most likely to acti-
vate. The work of [27] sheds light on what spatial context of
the image the convolutional neural network (CNN) is lever-
aging on for image classification through saliency maps.
Similarly, the authors of [34] use a deconvnet [35] to map
the activities of intermediate layers back to the input pixel
space so that inputs that maximally activates an intermedi-
ate layer can be directly visualized as an image. The meth-
ods mentioned above uncover that CNNs learn to decom-
pose the image space into hierarchical modular patterns.
However, not all visualized patterns are necessarily inter-
pretable or understandable. In such post-hoc approaches,
there is no control over how the model is optimized in the
first place. Though it is valuable and interesting to expose
what the model has learned after-the-fact, we wish to take a
more active approach to the problem. We focus our investi-
gation on how to improve model interpretability by design.

Another popular direction in post-hoc approaches is the
use of examples and prototypes. Example-based explana-
tions and classifiers have shown to offer a condensed view
of a dataset, potentially offering a reason why a classifier
came to a certain conclusion through other data points in the
dataset [31]. The work of [17] pushes this idea further by
forcing a model to produce both exemplars and criticisms.
Even with such examples, the causality between model pa-
rameters and the final prediction of the model is still un-
clear. In our work, we strive to take a more direct approach
on model interpretability. We focus on two key questions:
1. How do we interpret the representations learned using
TCN and 2. How can we design a deep learning architec-
ture that provides readily interpretable hidden representa-
tions and model parameters in the context of 3D human ac-
tion analysis?

3. Overview of Temporal Convolutional Neural
Networks

In this section, we provide a brief overview of the struc-
ture of a TCN as provided in the original paper [19]. Note
that the original TCN is designed for temporal action seg-
mentation in video and it follows a convolutional encoder-
decoder design. We adapt the encoder portion of the net for



Figure 1. Res-TCN model architecture. Except the first convolution layer (in gray), the model consists of stacked residual units.

action recognition. The properties of a TCN follow those
of a modern spatial Convolutional Neural Network (CNN)
for recognition [20, 18, 28] and segmentation tasks [3]. The
network is built from stacked units of 1-dimensional con-
volution followed by a non-linear activation function. The
1-dimensional convolution is across the temporal domain.

The input to an original TCN is a sequence of video
features. A D-dimensional feature vector, whether it is a
deep feature from a spatial CNN such as fc7 activation of
AlexNet [18] or a set of kinematic features [19], is extracted
per each video frame. For a video of T frames, the input X
is simply a concatenation of all frame-wise features such
that X ∈ RT×D.

As with well-known CNN models, repeated blocks of
convolutions followed by non-linear activations extract fea-
tures from the input. More precisely, in a TCN, the l-th
convolution layer with a temporal window of dl consists of
Nl filters {W (i)}Nl

i=1 where each filter is W (i) ∈ Rfl×Nl−1 .
Given an output Xl−1 of the previous layer, the l-th layer
output, Xl is simply

Xl = f(W ∗Xl−1) (1)

where f is a non-linear activation function such as ReLU.
The whole network is trained with back-propagation. In an
attempt to further improve the interpretability of a TCN, we
adopt residual connections of [11]. In the following sec-
tions, we discuss how such skip connections and the result-
ing TCN architecture, namely Res-TCN, leads to improved
interpretability of 3D human action recognition models.

4. Interpretability of TCNs with Residual Con-
nections

In our work, for the purpose of 3D human activity recog-
nition, the input to the model X0 is a frame-wise skeleton
features concatenated temporally across the entire video se-
quence. An important pre-requisite of the interpretability
of TCNs is that each dimension of the frame-wise feature
must be interpretable as well. Let xt be a skeleton feature
extracted from a video frame t where xt ∈ RD. By con-
struction of the skeleton feature, the d-th dimension of the
feature, xt(d), has an interpretable meaning associated with
it (for example, Z position of the right elbow joint). The
details of feature construction will be covered in the exper-
iments section.

4.1. TCN with Residual Units and Identity Map-
pings

The biggest road-block in interpreting current spatio-
temporal models such as LSTM-based RNNs for 3D human
action analysis stems from the lack of clear connection be-
tween the learned model parameters and their hidden rep-
resentations. However, for TCNs, the formulation of hid-
den representations from its model parameters is straight-
forward to comprehend: activation maps are computed by
convolving a learnable temporal filter across time and pass-
ing the output through a ReLU unit. In a ReLU network,
after an iteration of a forward-backward pass, the network
parameters are optimized such that convolution of a filter
across the characteristic regions of the input more likely
produces a positive value in the next iteration. We can ex-
ploit such behavior of the model to improve the model in-
terpretability by re-formulating the TCN with residual con-



Figure 2. Examples of direct mapping from layer 1 filter parameters to skeleton joints.

nections [11].
As introduced in [11], skip connection with identity

mapping introduces beneficial properties for network con-
vergence even for very deep networks. We observe that such
design for CNNs improves model interpretability as well
given input with semantic meaning. Our Res-TCN model
architecture is shown in Figure 1.

Res-TCN stacks building blocks called Residual Units as
introduced in [10] and adapts the pre-activation scheme of
[11]. Each unit in layer l performs the following computa-
tion:

Xl = Xl−1 + F (Wl, Xl−1) (2)

F (Wl, Xl−1) =Wl ∗ σ(Xl−1) (3)

F denotes the residual unit. For the l-th layer, Xl−1 de-
notes the input, Wl is the set of learnable parameters and
σ is a ReLU activation function. We can re-write the ex-
pression Wl ∗ σ(Xl−1) as Wl ∗ max(0, Xl−1) when σ is
ReLU. The only exception in our architecture is the very
first convolution layer. The first convolution layer in Res-
TCN operates on raw skeleton input and the resulting acti-
vation map, X1, is passed on the subsequent layers. Given
a Res-TCN withN residual units, the hidden representation
after N residual units is:

XN = X1 +

N∑
i=2

Wi ∗max(0, Xi−1) (4)

X1 =W1X0 (5)

Note that X1 is a result of convolving a set of filters in
layer l = 1 without undergoing any non-linear activation.
The set of filters inW1 and the resulting activation map,X1,
are directly interpretable given that each dimension of X0

is directly interpretable as well, such is the case when X0 is
a set of skeleton features. An important observation in our
design is that in the l-th residual unit where l ≥ 2, ReLU is
performed on Xl−1 prior to applying convolution with fil-
ters in Wl. In other words, the gradient only flows through
the positive regions of Xl−1 and Wl learns to pick up dis-
criminative patterns where Xl−1 > 0. The computation
Wl ∗ max(0, Xl−1) is then added to the input, Xl−1, and
passed on to the next layer. The input to the first residual
unit is X1 and all subsequent residual units in a Res-TCN
either adds to or subtracts from X1 as shown in Equation
4. In this formulation, we are forcing the network to learn
discriminative spatio-temporal features in the common lan-
guage of X1. In the experiments section, we visualize hid-
den representation of an activity from one of the deeper lay-
ers and show its connection to X1 to validate our analysis.

For prediction, we apply global average pooling after the
last merge layer across the entire temporal sequence and at-
tach a softmax layer with number of neurons equal to num-
ber of classes.

4.2. A Closer Look at Model Parameters

In a Res-TCN architecture, Equation 4 suggests that the
representational power of the entire model depends heavily
on producing discriminative X1 through filters in W1. In
this section, we analyze what each filter in W1 represents.

Consider a single 1D convolution filter W
(k)
1 from



Figure 3. An example how we can map convolution filters in
deeper layers, such as W k′

3 , all the way back to filters in the first
layer W1.

{W (i)
1 }

N1
i=1. W

(k)
1 computes 1D convolution over X0 ∈

RT×D with a defined stride of s and a filter length of f1.
Examples of converged filters are shown in Figure 2.

Each filter looks at f1 time steps concurrently across all
feature dimensions such thatW (k)

1 ∈ Rf1×D. An important
property of W1 filters is that each dimension d ∈ 1, ... , D
has an explainable meaning associated with it. For example,
the d-th dimension of a skeleton feature xt(d) depicts a spa-
tial configuration (euclidean X, Y or Z coordinate wrt. the
depth sensor) of a particular joint at time t. For instance, the
filter depicted on the left in Figure 2 has parameters close
to zero for all joint location except at indices corresponding
to joint numbers 11 and 25 as defined in [26]. We can take
a step further in interpreting this filter: the filter directly en-
codes how the joints move through time. In a time window
defined by fl, for filter weights associated with joint indices
11 and 25, the weights increase sharply towards a peak and
then returns back to their starting magnitudes. We know that
in order for this particular filter to produce a high positive
convolution score, the input X0 at corresponding dimen-
sions must exhibit a highly correlated sequence structure to
that of the filter. We can then provide a clear explanation
of what this filter is looking for: ”A quick jitter movement
of the joints in the right hand”. Similarly, consider the filter
on the right in Figure 2. By design, the bottom half of the
parameters correspond to the second actor. Following the
same logic described above, we can clearly understand that
this filter produces a high positive convolution score with
an input where two actors are translating apart from each
other. In the following section, we extend our discussion to
parameter interpretability in the deeper layers.

4.3. A Deeper Look at Model Parameters

Let us now extend our analysis to deeper layers in the
model. In a Res-TCN formulation, deeper layers are fac-
tored out into residual units and an output from a residual

unit is simply merged by adding to the input of the residual
unit. For example, consider the hidden representation after
two convolution layers:

X2 = X1 +W2 ∗max(0, X1) (6)

where X1 =W1 ∗X0. Filters in W2 convolve over the pos-
itive regions of the output produced by W1 ∗ X0 such that
W

(k)
2 ∈ Rf2×N1 for some k ∈ [0, N2) where f2 defines the

filter length in layer l = 2, N1 is the number of filters in
layer l = 1 and likewise for N2. Following the formula-
tion of Equation 6, we observe that W2 acts as a gate that
modulates how much information will be transformed and
added on to X1. Given a filter W (k)

2 , a large weight value
in the d-th dimension of W (k)

2 indicates that this particular
filter adds to or subtracts from X1 a weighted version of the
incoming signal at the same dimension dwhere d ∈ [0, N1].
Dimensions with low weight magnitudes contributes less to
the final output of the residual unit. Consider example filters
from deeper convolution layers shown in Figure 3. Most
parameters are close to zero except in certain dimensions.
Given the additive nature of residual units, we can directly
map such dimensions to filters in the lower layer. If dimen-
sion k ofW (k′)

3 has high weight magnitudes, thenW (k′)
3 al-

lows more information computed from W
(k)
2 to be added to

the output. We can recursively trace down such influential
filters all the way down to the very first convolution layer
where we can directly map filter parameters to interpretable
skeleton motion as shown in the previous section.

5. Experiments
We validate that our approach not only leads to an in-

terpretable representation but also to a discriminative one.
We evaluate Res-TCN on 3D skeleton based human activity
recognition dataset of NTU [26]. We also provide inter-
pretations on our model predictions based on the concepts
discussed in the previous sections.

5.1. Dataset and Settings

NTU RGB+D dataset [26] is currently the largest hu-
man activity recognition dataset with full 3D skeleton an-
notations. It contains 56880 training videos ranging over
60 action classes. The dataset provides two train/test split
paradigms: Cross-Subject (CS) and Cross-View (CV) set-
tings. The dataset covers 40 distinct subjects with varying
physical traits. In terms of camera viewpoints, three cam-
eras are placed in three different angles:−45◦, 0◦ and +45◦.

Implementation Details: We follow the skeleton feature
construction procedure as adapted in [26, 29]. However, in
contrast to their feature extraction stage, we do not perform
view normalization prior to feeding the features into our
Res-TCN. We take the raw (X,Y,Z) values of each skeleton
joint and concatenate all values to form a skeleton feature



Figure 4. An example skeleton sequence, its hidden representation (X4) in Res-TCN and associated filters from W1.

per frame. Given that there are at most two actors in the
scene and there are 25 joints per skeleton, a skeleton feature
per frame is a 2 ∗ 25 ∗ 3 = 150 dimensional vector. We use
the Keras deep learning framework [4] with a TensorFlow
backend [1]. We use an initial learning rate of 0.01 and de-
crease the learning rate by a factor of 10 when the testing
loss plateaus for more than 10 epochs. We use stochastic
gradient descent with nesterov acceleration with a momen-
tum of 0.9. L-1 regularizer with a weight of 1e−4 is ap-
plied to all convolution layers. We use a batch size of 128.
Dropout [30] with rate 0.5 is applied after all activation lay-
ers to prevent overfitting. We perform all our experiments
on a Nvidia K80 GPU. The implementation and converged
model weights will be made publicly available 1.

5.2. Why Did My Model Predict This?

Leveraging on the explainable structure of Res-TCN, we
wish to provide an answer to the question: ”How/why did
my model come to this conclusion?”, using only the model
parameters and hidden representations as the basis for pro-
viding such an explanation.

Let us choose an arbitrary video clip from NTURGB+D.
The particular sequence of skeletons that we visualize in
Figure 4 is of class kicking something and is approximately
70 frames long. The output of the first block (Block-A in
Figure 1) is displayed above. As discussed in section 4.3,
we can trace which of the W1 filters had the largest influ-
ence on any given deeper hidden representation Xn where
n > 1. For clarity in visualization, for each time step, we
only plot the activation values that are within the top 20

1https://github.com/TaeSoo-Kim/TCNActionRecognition/

percentile. Each column denotes the activation values from
all filters in W4 and each row denotes the corresponding
filter’s response over time. Consider the dimension in the
activation map that is color coded with green in Figure 4.
By following the logic described in section 4.2, we found
that this particular filter produces a high positive response
for translational movement of the left ankle and left hip.
The yellow filter has high magnitude parameters associated
with the right knee joint. And finally, the blue filter picks
up signals from the right ankle and the left wrist joint. The
activation map of X4 and the corresponding W1 filters tell
a rather detailed and precisely timed story about the input
skeleton sequence: the left ankle and hip joints first trans-
late followed by a sudden movement of the right knee, all the
while the left wrist and the right ankle undergo a swinging
motion.

The bit about the swinging motion can be inferred from
the relative change in the magnitude of the activation in the
dimension corresponding to the blue filter. Figure 5 zooms
into this particular set of filters and shows their activation
magnitudes over the entire video sequence. What is very
interesting here is that the activation of the filter correspond-
ing to left ankle and hip joints is close to zero at the peak of
the kicking motion. At approximately the same time step,
the activation magnitude of the dimension corresponding to
the right knee joint peaks. The story that the filters are ex-
plaining makes sense. The sequence description that we
can interpret from the filters and their activations provides
insight into why the model arrived to a certain prediction.
During a kicking activity, we first step towards the target
with our pivot foot, firmly plant the pivot foot (in this case,
the left foot), swing the kicking foot around and step back to



Figure 5. The plot depicts the changes in activation magnitudes of
three semantically meaningful filters over time.

return to original position. Note that we focused our anal-
ysis on selected interesting dimensions of the hidden rep-
resentation with significant weight magnitudes. It is impor-
tant to note that all other positive dimensions also factor into
the final decision of the classifier but our discussion was fo-
cused on the significant and interesting ones.

5.3. Comparison to Other State-of-the-Art

We focused most of our narrative on how a Res-TCN
formulation yields explainable spatio-temporal representa-
tion compared to state-of-the-art LSTM-based RNN coun-
terparts. We also validate the effectiveness of our model
on producing discriminative spatio-temporal features for 3D
human action analysis. We compare the performances of
published methods on NTURGB+D dataset and show that
we improve on the current state-of-the-art on both Cross-
Subject and Cross-View settings.

Table 1. Comparison to other learning based methods on
NTURGB+D skeleton dataset with Cross-Subject (CS) and Cross-
View (CV) settings in accuracy (%).

Methods CS CV
Dynamic Skeletons [15] 60.2 65.2

HBRNN [5] 59.1 64.0
Deep LSTM [26] 60.7 67.3

P-LSTM [26] 62.9 70.3
Trust Gate [22] 69.2 77.7

STA-LSTM [29] 73.4 81.2
Res-TCN 74.3 83.1

6. Conclusion
We present a new approach to performing 3D human

action analysis with a Res-TCN. We discuss how such an
architecture enhances the interpretability of model param-
eters and features compared to other popular RNN based
approaches. Given an interpretable input such as sequence

of human skeletons positions, we can begin to explain what
each of the learned filters in a Res-TCN are leveraging on
to make a prediction. We show that the model learns to pay
different levels of attention both spatially and temporally.
Experimentally, we validate that our model is explainable
and produces a discriminative representation for human ac-
tivity analysis, improving upon the state-of-the-art.
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