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ABSTRACT

The vast majority of metric learning approaches are dedicated to be applied on
data described by feature vectors, with some notable exceptions such as times
series and trees or graphs. The objective of this paper is to propose metric learn-
ing algorithms that consider (multi)-relational data. The proposed approach takes
benefit from both the topological structure of the data and supervised labels.

1 INTRODUCTION AND RELATED WORKS

Sample similarity measurement lies at the heart of many classification and clustering methods in
pattern recognition and machine learning. For instance, in classification, the k-Nearest Neighbor
classifier uses a metric to identify the nearest neighbors; in clustering algorithms, k-means rely on
distance measurements between data points; in information retrieval, documents are often ranked
according to their relevance to a given query based on similarity scores. The performance of these
algorithms rely on the quality of the metric. The conventionally used Euclidean distance cannot
give a convenient dissimilarity in many cases, due to the distribution of the data (see Tenenbaum
et al. (2000)). Thus, it calls a great need for appropriate ways to measure the distance or similarity
between observations in learning algorithms. Metric learning has now been used for more than a
decade to deal with this problem, and can be seen a feature/representation learning allowing the use
of Euclidean distances later on. The vast majority of metric learning approaches are dedicated to be
applied on data described by feature vectors, where the objective is generally to learn a matrix A
that is used for the Mahalanobis distance d2(x,y) = (x− y)TA(x− y), see reviews in Kulis et al.
(2013) and Bellet et al. (2015).

There are some notable exceptions such as times series in Garreau et al. (2014) (through dynamic
time warping methods) and trees or graphs in Bellet et al. (2016) (by using an edit distance) or net-
works, proposed in Shaw et al. (2011). Naturally, a good metric should respect the intrinsic structure
of the data. Relational databases are increasingly used in almost all applications. These databases
are organized based on a relational model of data which contains entity tables and association tables
between entity tables. Using this data in machine learning is now under consideration for years
Getoor (2007), but to the best of our knowledge, no attention on metric learning has been paid for
such data. Naturally, one can use traditional metric learning algorithm for individual entities, but at
the price of losing rich information coming from the relational structure of the data. Taking good
use of associations between entities can help to improve metric performance. The goal of this paper
is to propose the use of relational information for metric learning. Such a definition allows to build
rich models, which can eventually be used for domain adaptation, transfer learning, feature learning
and data visualization with both flat and multi-relational data. In particular, we propose a solution
that is able to incorporate relational information within metric learning, and then illustrate its benefit
compared to traditional approaches. Note that the proposed approach starts from (hyper)graph data,
whereas approaches as in Dhillon et al. (2012) start from usual tabular data to generate graphs for
domain adaptation.

2 RELATIONAL CONSTRAINT SELECTION

In many cases, the structure of the data does not allow to directly measure distances as if the observa-
tions were belonging to an Euclidean space. The basic principle of the approach is to use relational
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Figure 1: Left : A relational schema for a movie domain. Right : Bipartite relational graph for
a many-to-many relationship table. The common parents of {x2
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links between entities when setting the constraints of the metric learning algorithm. Mapping the
relationship table into the similarity/dissimilarity constraints is a convenient way to use the side-
information of the relationships between entities. A relational (or database) schema R = Re ∪ Ra

defines a set of relation schema where Re denotes the set of entity types, and Ra denotes the set
of associations between them. Every relation schema Rk ∈ Re is described by a set of attributes
A(Rk). In addition, every association type Rk

a ∈ Ra defines a set of references R(Rk
a). Each ref-

erence r ∈ R(Rk
a) has a domain dom(r) = Rk

a and a referenced entity type in Re. Additionally,
the references can be quantified by M numerical variables rk and M ′ categorical variables sk. The
Figure 1 presents an example of a movie domain, with 3 entity types (movies, actors, and users)
related to each other through 2 association types: Rating, between users and the rated movies, with
the corresponding grade; Plays between actors and movies, with the corresponding role an actor has
played in the movie. Each entity type in this example has 4 attributes, while each association has 1
attribute and 2 references. There are different type of constraints in metric learning. Roughly speak-
ing, two objects should be considered as similar by the metric if they belong to the same class, and
naturally dissimilar if they do not belong to the same class. In practice, we define a set S of index
pairs (i, j) corresponding to similar objects (xi,xj), and a set D of index pairs (i, k) corresponding
to dissimilar objects (xi,xk). S and D are built using the class labels, as mentioned above. Now,
we consider a many-to-many relationship. Let Cij be the set of common parents of xi and xj , and
`ij = |Cij |. We define the link strength LS between two entities xi and xj , belonging to the same
relation Rk, as follows

LS(xk
i ,x

k
j |Cij) =

`ij∑
k=1

(γw(k, i, j) + (1− γ)z(k, i, j)) (1)

where

w(k, i, j) =

M∑
m=1

|rm(ck,xi)− rm(ck,xj)| , and z(k, i, j) =
M ′∑
m=1

(sm(ck,xi) ◦ sm(sk,xj)) ,

in which x ◦ y = 1 iff x = y, and 0 otherwise. Note that numerical association attributes rm are
normalized in the unit interval prior to link strength computation. Then, we select the strongest
links as similarity constraints, and the weakest links as dissimilarity constraints. The corresponding
algorithm is given in Algorithm 1. Remark that if two entities xi and xj do not have common
parents, their link strength is zero, and therefore considered as dissimilar.

3 EXPERIMENTS

Basically, any relational data for which classification is needed can be tackled by our proposition.
For brevity reasons, we consider only one, the small MovieLens dataset, see Harper & Konstan
(2016). It consists of a relational table which has 100,000 ratings (1-5) with timestamps from 700
users on 9000 movies, a movie entity table with some feature information about the movies and a
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Algorithm 1 Relational constraints learning
Require: Nmax : number of desired constraints

1: p← 1 ; S ← ∅ ; D ← ∅
2: while p ≤ Nmax do
3: Xp ← (xi,xj) random pair generation
4: compute link strength LSp of Xp using (1)
5: p← p+ 1
6: end while
7: while |LS| > 0 do
8: S ← S ∪Xargmax{LS}
9: D ← D ∪Xargmin{LS}

10: LS ← LS \ {S ∪ D}
11: end while
12: return {S,D}

user entity table with some feature information on users. In this paper, we consider the type of the
movie as the supervised label. The balance between association attributes is set to γ = 0.5. The
evaluation of the proposition is done by using k-nn classification via five-fold cross validation, with
k set to 5. Note that we tried different values for k (in particular 3, 5, 7 and 9), and the results
were consistent with the results reported here for k = 5. We give the results obtained in Table 1.
The first two columns indicate the number of constraints that have been generated. The first two
lines correspond to the results obtained with a metric learning algorithm (here ITML, Davis et al.
(2007)) without using relational information (i.e. only labels, baseline algorithm). The next two
lines correspond to the sole use of relational information (i.e. labels are absolutely not used). The
three last lines correspond to the use of both labels and relational information. As can be seen, us-
ing the same, rather low, number of constraints, leads to a great improvement in terms of accuracy
(48.93 compared to 54.10). On the other hand, this improvement is less visible for a larger number
of constraints (56.18 compared to 56.22). Finally, considering both labels and relational information
gives the overall best results. Running times are also indicated in this table, showing that the com-
putational cost of the proposed method remains approximately the same as usual methods. It is clear
from these results that our proposition, consisting in making use of relations between observations
(last 5 lines of Table 1) leads to better results than traditional metric learning algorithms.

Labels Relations Accuracy Time (s.)

13680 0 48.93(± 0.12) 12.05
36594 0 56.18(± 0.17) 19.71

0 13680 54.10(± 0.09) 12.56
0 36594 56.22(± 0.14) 22.41

13680 13680 56.21(± 0.13) 12.23
13680 36594 57.91(± 0.18) 30.89
36594 36594 58.96(± 0.24) 62.67

Table 1: Accuracy as a function of different constraint settings on MovieLens dataset.

4 CONCLUSION

This preliminary work on relational metric learning clearly shows the benefit, in terms of accuracy,
of considering relational information between entities instead of the sole consideration of labels. As
a first perspective, we plan to consider other way of computing link strength, that may be inspired
from graph analysis techniques, e.g. connection strength metric, length of the shortest path, value
of the maximum network flow between nodes. In particular, we want to consider slot chains (i.e.
sequences of foreign key references) which are longer than 1. We also plan to define a dedicated
relational metric that could be learned directly, instead of setting relational constraints on standard
metric learning algorithms. Naturally, a deeper study, with more metric learning algorithms, and
more data sets, has to be conducted.
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