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ABSTRACT

Meta-learning allows an intelligent agent to leverage prior learning episodes as a
basis for quickly improving performance on a novel task. Bayesian hierarchical
modeling provides a theoretical framework for formalizing meta-learning as infer-
ence for a set of parameters that are shared across tasks. Here, we reformulate the
model-agnostic meta-learning algorithm (MAML) of Finn et al. (2017) as a method
for probabilistic inference in a hierarchical Bayesian model. In contrast to prior
methods for meta-learning via hierarchical Bayes, MAML is naturally applicable
to complex function approximators through its use of a scalable gradient descent
procedure for posterior inference. Furthermore, the identification of MAML as
hierarchical Bayes provides a way to understand the algorithm’s operation as a
meta-learning procedure, as well as an opportunity to make use of computational
strategies for efficient inference. We use this opportunity to propose an improve-
ment to the MAML algorithm that makes use of techniques from approximate
inference and curvature estimation.

1 INTRODUCTION

A remarkable aspect of human intelligence is the ability to quickly solve a novel problem and to
be able to do so even in the face of limited experience in a novel domain. Such fast adaptation is
made possible by leveraging prior learning experience in order to improve the efficiency of later
learning. This capacity for meta-learning also has the potential to enable an artificially intelligent
agent to learn more efficiently in situations with little available data or limited computational
resources (Schmidhuber, 1987; Bengio et al., 1991; Naik & Mammone, 1992).

In machine learning, meta-learning is formulated as the extraction of domain-general information that
can act as an inductive bias to improve learning efficiency in novel tasks (Caruana, 1998; Thrun &
Pratt, 1998). This inductive bias has been implemented in various ways: as learned hyperparameters
in a hierarchical Bayesian model that regularize task-specific parameters (Heskes, 1998), as a learned
metric space in which to group neighbors (Bottou & Vapnik, 1992), as a trained recurrent neural
network that allows encoding and retrieval of episodic information (Santoro et al., 2016), or as an
optimization algorithm with learned parameters (Schmidhuber, 1987; Bengio et al., 1992).

The model-agnostic meta-learning (MAML) of Finn et al. (2017) is an instance of a learned optimiza-
tion procedure that directly optimizes the standard gradient descent rule. The algorithm estimates an
initial parameter set to be shared among the task-specific models; the intuition is that gradient descent
from the learned initialization provides a favorable inductive bias for fast adaptation. However, this
inductive bias has been evaluated only empirically in prior work (Finn et al., 2017).

In this work, we present a novel derivation of and a novel extension to MAML, illustrating that this
algorithm can be understood as inference for the parameters of a prior distribution in a hierarchical
Bayesian model. The learned prior allows for quick adaptation to unseen tasks on the basis of an
implicit predictive density over task-specific parameters. The reinterpretation as hierarchical Bayes
gives a principled statistical motivation for MAML as a meta-learning algorithm, and sheds light on
the reasons for its favorable performance even among methods with significantly more parameters.
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More importantly, by casting gradient-based meta-learning within a Bayesian framework, we are able
to improve MAML by taking insights from Bayesian posterior estimation as novel augmentations to
the gradient-based meta-learning procedure. We experimentally demonstrate that this enables better
performance on a few-shot learning benchmark.

2 META-LEARNING FORMULATION

The goal of a meta-learner is to extract task-general knowledge through the experience of solving
a number of related tasks. By using this learned prior knowledge, the learner has the potential to
quickly adapt to novel tasks even in the face of limited data or limited computation time.

Formally, we consider a dataset D that defines a distribution over a family of tasks T . These tasks
share some common structure such that learning to solve a single task has the potential to aid in
solving another. Each task T defines a distribution over data points x, which we assume in this work
to consist of inputs and either regression targets or classification labels y in a supervised learning
problem (although this assumption can be relaxed to include reinforcement learning problems; e.g.,
see Finn et al., 2017). The objective of the meta-learner is to be able to minimize a task-specific
performance metric associated with any given unseen task from the dataset given even only a small
amount of data from the task; i.e., to be capable of fast adaptation to a novel task.

In the following subsections, we discuss two ways of formulating a solution to the meta-learning
problem: gradient-based hyperparameter optimization and probabilistic inference in a hierarchical
Bayesian model. These approaches were developed orthogonally, but, in Section 3.1, we draw a novel
connection between the two.

2.1 META-LEARNING AS GRADIENT-BASED HYPERPARAMETER OPTIMIZATION

A parametric meta-learner aims to find some shared parameters θ that make it easier to find the right
task-specific parameters φ when faced with a novel task. A variety of meta-learners that employ
gradient methods for task-specific fast adaptation have been proposed (e.g., Andrychowicz et al.,
2016; Li & Malik, 2017a;b; Wichrowska et al., 2017). MAML (Finn et al., 2017) is distinct in that
it provides a gradient-based meta-learning procedure that employs a single additional parameter
(the meta-learning rate) and operates on the same parameter space for both meta-learning and fast
adaptation. These are necessary features for the equivalence we show in Section 3.1.

To address the meta-learning problem, MAML estimates the parameters θ of a set of models so
that when one or a few batch gradient descent steps are taken from the initialization at θ given a
small sample of task data xj1

, . . . ,xjN
∼ pTj (x) each model has good generalization performance

on another sample xjN+1
, . . . ,xjN+M

∼ pTj (x) from the same task. The MAML objective in a
maximum likelihood setting is

L(θ) = 1

J

∑
j

[
1

M

∑
m

− log p
(
xjN+m

| θ − α∇θ

1

N

∑
n

− log p
(
xjn
| θ
)

︸ ︷︷ ︸
φj

)]
(1)

where we use φj to denote the updated parameters after taking a single batch gradient descent step
from the initialization at θ with step size α on the negative log-likelihood associated with the task Tj .
Note that since φj is an iterate of a gradient descent procedure that starts from θ, each φj is of the
same dimensionality as θ. We refer to the inner gradient descent procedure that computes φj as fast
adaptation. The computational graph of MAML is given in Figure 1 (left).

2.2 META-LEARNING AS HIERARCHICAL BAYESIAN INFERENCE

An alternative way to formulate meta-learning is as a problem of probabilistic inference in the
hierarchical model depicted in Figure 1 (right). In particular, in the case of meta-learning, each
task-specific parameter φj is distinct from but should influence the estimation of the parameters
{φj

′ | j′ 6= j} from other tasks. We can capture this intuition by introducing a meta-level parameter
θ on which each task-specific parameter is statistically dependent. With this formulation, the mutual
dependence of the task-specific parameters φj is realized only through their individual dependence

2



Published as a conference paper at ICLR 2018
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Figure 1: (Left) The computational graph of the MAML (Finn et al., 2017) algorithm covered in Section 2.1.
Straight arrows denote deterministic computations and crooked arrows denote sampling operations. (Right) The
probabilistic graphical model for which MAML provides an inference procedure as described in Section 3.1. In
each figure, plates denote repeated computations (left) or factorization (right) across independent and identically
distributed samples.

on the meta-level parameters θ. As such, estimating θ provides a way to constrain the estimation of
each of the φj .

Given some data in a multi-task setting, we may estimate θ by integrating out the task-specific
parameters to form the marginal likelihood of the data. Formally, grouping all of the data from each
of the tasks as X and again denoting by xj1

, . . . ,xjN
a sample from task Tj , the marginal likelihood

of the observed data is given by

p (X | θ ) =
∏
j

(∫
p
(
xj1

, . . . ,xjN
| φj

)
p
(
φj | θ

)
dφj

)
. (2)

Maximizing (2) as a function of θ gives a point estimate for θ, an instance of a method known as
empirical Bayes (Bernardo & Smith, 2006; Gelman et al., 2014) due to its use of the data to estimate
the parameters of the prior distribution.

Hierarchical Bayesian models have a long history of use in both transfer learning and domain
adaptation (e.g., Lawrence & Platt, 2004; Yu et al., 2005; Gao et al., 2008; Daumé III, 2009; Wan
et al., 2012). However, the formulation of meta-learning as hierarchical Bayes does not automatically
provide an inference procedure, and furthermore, there is no guarantee that inference is tractable for
expressive models with many parameters such as deep neural networks.

3 LINKING GRADIENT-BASED META-LEARNING & HIERARCHICAL BAYES

In this section, we connect the two independent approaches of Section 2.1 and Section 2.2 by
showing that MAML can be understood as empirical Bayes in a hierarchical probabilistic model.
Furthermore, we build on this understanding by showing that a choice of update rule for the task-
specific parameters φj (i.e., a choice of inner-loop optimizer) corresponds to a choice of prior over
task-specific parameters, p(φj | θ ).

3.1 MODEL-AGNOSTIC META-LEARNING AS EMPIRICAL BAYES

In general, when performing empirical Bayes, the marginalization over task-specific parameters φj

in (2) is not tractable to compute exactly. To avoid this issue, we can consider an approximation that
makes use of a point estimate φ̂j instead of performing the integration over φ in (2). Using φ̂j as an
estimator for each φj , we may write the negative logarithm of the marginal likelihood as

− log p (X | θ ) ≈
∑
j

[
− log p

(
xjN+1

, . . .xjN+M
| φ̂j

)]
. (3)

Setting φ̂j = θ + α∇θ log p(xj1
, . . . ,xjN

| θ ) for each j in (3) recovers the unscaled form of
the one-step MAML objective in (1). This tells us that the MAML objective is equivalent to a
maximization with respect to the meta-level parameters θ of the marginal likelihood p(X | θ ), where
a point estimate for each task-specific parameter φj is computed via one or a few steps of gradient
descent. By taking only a few steps from the initialization at θ, the point estimate φ̂j trades off
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Algorithm MAML-HB(D)

Initialize θ randomly
while not converged do

Draw J samples T1, . . . , TJ ∼ pD(T )
Estimate Ex∼pT1 (x)

[− log p(x | θ )], . . . ,Ex∼pTJ (x)[− log p(x | θ )] using ML-· · ·
Update θ ← θ − β ∇θ

∑
j Ex∼pTj (x)

[− log p(x | θ )]

end

Algorithm 2: Model-agnostic meta-learning as hierarchical Bayesian inference. The choices of the subroutine
ML-· · · that we consider are defined in Subroutine 3 and Subroutine 4.

Subroutine ML-POINT(θ, T )
Draw N samples x1, . . . ,xN ∼ pT (x)
Initialize φ← θ

for k in 1, . . . ,K do
Update φ← φ+ α∇φ log p(x1, . . . ,xN | φ )

end
Draw M samples xN+1, . . . ,xN+M ∼ pT (x)
return − log p(xN+1, . . . ,xN+M | φ )

Subroutine 3: Subroutine for computing a point estimate φ̂ using truncated gradient descent to approximate
the marginal negative log likelihood (NLL).

minimizing the fast adaptation objective − log p(xj1
, . . . ,xjN

| θ ) with staying close in value to the
parameter initialization θ.

We can formalize this trade-off by considering the linear regression case. Recall that the
maximum a posteriori (MAP) estimate of φj corresponds to the global mode of the posterior
p(φj | xj1

, . . .xjN
,θ ) ∝ p(xj1

, . . .xjN
| φj )p(φj | θ ). In the case of a linear model, early stop-

ping of an iterative gradient descent procedure to estimate φj is exactly equivalent to MAP estimation
of φj under the assumption of a prior that depends on the number of descent steps as well as the
direction in which each step is taken. In particular, write the input examples as X and the vector of
regression targets as y, omit the task index from φ, and consider the gradient descent update

φ(k) = φ(k−1) − α∇φ

[
‖y −Xφ‖22

]
φ=φ(k−1)

= φ(k−1) − αXT (Xφ(k−1) − y
)

(4)

for iteration index k and learning rate α ∈ R+. Santos (1996) shows that, starting from φ(0) = θ,
φ(k) in (4) solves the regularized linear least squares problem

min
(
‖y −Xφ‖22 + ‖θ − φ‖2Q

)
(5)

with Q-norm defined by ‖z‖Q = zTQ−1z for a symmetric positive definite matrix Q that depends
on the step size α and iteration index k as well as on the covariance structure of X. We describe the
exact form of the dependence in Section 3.2. The minimization in (5) can be expressed as a posterior
maximization problem given a conditional Gaussian likelihood over y and a Gaussian prior over φ.
The posterior takes the form

p (φ | X,y,θ ) ∝ N (y ; Xφ, I) N (φ ; θ,Q) . (6)

Since φ(k) in (4) maximizes (6), we may conclude that k iterations of gradient descent in a linear re-
gression model with squared error exactly computes the MAP estimate of φ, given a Gaussian-noised
observation model and a Gaussian prior over φ with parameters µ0 = θ and Σ0 = Q. Therefore, in
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the case of linear regression with squared error, MAML is exactly empirical Bayes using the MAP
estimate as the point estimate of φ.

In the nonlinear case, MAML is again equivalent to an empirical Bayes procedure to maximize the
marginal likelihood that uses a point estimate for φ computed by one or a few steps of gradient
descent. However, this point estimate is not necessarily the global mode of a posterior. We can
instead understand the point estimate given by truncated gradient descent as the value of the mode of
an implicit posterior over φ resulting from an empirical loss interpreted as a negative log-likelihood,
and regularization penalties and the early stopping procedure jointly acting as priors (for similar
interpretations, see Sjöberg & Ljung, 1995; Bishop, 1995; Duvenaud et al., 2016).

The exact equivalence between early stopping and a Gaussian prior on the weights in the linear case,
as well as the implicit regularization to the parameter initialization the nonlinear case, tells us that
every iterate of truncated gradient descent is a mode of an implicit posterior. In particular, we are not
required to take the gradient descent procedure of fast adaptation that computes φ̂ to convergence in
order to establish a connection between MAML and hierarchical Bayes. MAML can therefore be
understood to approximate an expectation of the marginal negative log likelihood (NLL) for each
task Tj as

Ex∼pTj (x)
[− log p (x | θ )] ≈ 1

M

∑
m

− log p
(

xjN+m
| φ̂j

)
using the point estimate φ̂j = θ + α∇θ log p(xjn

| θ ) for single-step fast adaptation.

The algorithm for MAML as probabilistic inference is given in Algorithm 2; Subroutine 3 computes
each marginal NLL using the point estimate of φ̂ as just described. Formulating MAML in this way,
as probabilistic inference in a hierarchical Bayesian model, motivates the interpretation in Section 3.2
of using various meta-optimization algorithms to induce a prior over task-specific parameters.

3.2 THE PRIOR OVER TASK-SPECIFIC PARAMETERS

From Section 3.1, we may conclude that early stopping during fast adaptation is equivalent to a
specific choice of a prior over task-specific parameters, p(φj | θ ). We can better understand the role
of early stopping in defining the task-specific parameter prior in the case of a quadratic objective.
Omit the task index from φ and x, and consider a second-order approximation of the fast adaptation
objective `(φ) = − log p(x1 . . . ,xN | φ ) about a minimum φ∗:

`(φ) ≈ ˜̀(φ) := 1
2‖φ− φ∗‖2

H
−1 + `(φ∗) (7)

where the Hessian H = ∇2
φ `(φ

∗) is assumed to be positive definite so that ˜̀ is bounded below.
Furthermore, consider using a curvature matrix B to precondition the gradient in gradient descent,
giving the update

φ(k) = φ(k−1) − B∇φ
˜̀(φ(k−1)) . (8)

If B is diagonal, we can identify (8) as a Newton method with a diagonal approximation to the inverse
Hessian; using the inverse Hessian evaluated at the point φ(k−1) recovers Newton’s method itself.
On the other hand, meta-learning the matrix B matrix via gradient descent provides a method to
incorporate task-general information into the covariance of the fast adaptation prior, p(φ | θ ). For
instance, the meta-learned matrix B may encode correlations between parameters that dictates how
such parameters are updated relative to each other.

Formally, taking k steps of gradient descent from φ(0) = θ using the update rule in (8) gives a φ(k)

that solves

min
(
‖φ− φ∗‖2

H
−1 + ‖φ(0) − φ‖2Q

)
. (9)

The minimization in (9) corresponds to taking a Gaussian prior p(φ | θ ) with mean θ and co-
variance Q for Q = OΛ−1((I−BΛ)−k − I)OT (Santos, 1996) where B is a diagonal matrix that
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results from a simultaneous diagonalization of H and B as OTHO = diag(λ1, . . . , λn) = Λ and
OTB−1O = diag(b1, . . . , bn) = B with bi, λi ≥ 0 for i = 1, . . . , n (Theorem 8.7.1 in Golub &
Van Loan, 1983). If the true objective is indeed quadratic, then, assuming the data is centered, H is
the unscaled covariance matrix of features, XTX.

4 IMPROVING MODEL-AGNOSTIC META-LEARNING

Identifying MAML as a method for probabilistic inference in a hierarchical model allows us to
develop novel improvements to the algorithm. In Section 4.1, we consider an approach from Bayesian
parameter estimation to improve the MAML algorithm, and in Section 4.2, we discuss how to make
this procedure computationally tractable for high-dimensional models.

4.1 LAPLACE’S METHOD OF INTEGRATION

We have shown that the MAML algorithm is an empirical Bayes procedure that employs a point
estimate for the mid-level, task-specific parameters in a hierarchical Bayesian model. However, the
use of this point estimate may lead to an inaccurate point approximation of the integral in (2) if the
posterior over the task-specific parameters, p(φj | xjN+1

, . . . ,xjN+M
,θ ), is not sharply peaked at

the value of the point estimate. The Laplace approximation (Laplace, 1986; MacKay, 1992b;a) is
applicable in this case as it replaces a point estimate of an integral with the volume of a Gaussian
centered at a mode of the integrand, thereby forming a local quadratic approximation.

We can make use of this approximation to incorporate uncertainty about the task-specific parameters
into the MAML algorithm at fast adaptation time. In particular, suppose that each integrand in (2) has a
mode φ∗j at which it is locally well-approximated by a quadratic function. The Laplace approximation
uses a second-order Taylor expansion of the negative log posterior in order to approximate each
integral in the product in (2) as∫

p
(
Xj | φj

)
p
(
φj | θ

)
dφj ≈ p

(
Xj | φ

∗
j

)
p
(
φ∗j | θ

)
det(Hj/2π)

− 1
2 (10)

where Hj is the Hessian matrix of second derivatives of the negative log posterior.

Classically, the Laplace approximation uses the MAP estimate for φ∗j , although any mode can be
used as an expansion site provided the integrand is well enough approximated there by a quadratic.
We use the point estimate φ̂j uncovered by fast adaptation, in which case the MAML objective in (1)
becomes an appropriately scaled version of the approximate marginal likelihood

− log p (X | θ ) ≈
∑
j

[
− log p

(
Xj | φ̂j

)
− log p

(
φ̂j | θ

)
+ 1

2 log det(Hj)
]
. (11)

The term log p( φ̂j | θ ) results from the implicit regularization imposed by early stopping during fast
adaptation, as discussed in Section 3.1. The term 1/2 log det(Hj), on the other hand, results from
the Laplace approximation and can be interpreted as a form of regularization that penalizes model
complexity.

4.2 USING CURVATURE INFORMATION TO IMPROVE MAML

Using (11) as a training criterion for a neural network model is difficult due to the required computa-
tion of the determinant of the Hessian of the log posterior Hj , which itself decomposes into a sum of
the Hessian of the log likelihood and the Hessian of the log prior as

Hj = ∇
2
φj

[
− log p

(
Xj | φj

)]
+∇2

φj

[
− log p

(
φj | θ

)]
.

In our case of early stopping as regularization, the prior over task-specific parameters p(φj | θ )
is implicit and thus no closed form is available for a general model. Although we may use the
quadratic approximation derived in Section 3.2 to obtain an approximate Gaussian prior, this prior
is not diagonal and does not, to our knowledge, have a convenient factorization. Therefore, in our
experiments, we instead use a simple approximation in which the prior is approximated as a diagonal
Gaussian with precision τ . We keep τ fixed, although this parameter may be cross-validated for
improved performance.
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Subroutine ML-LAPLACE(θ, T )
Draw N samples x1, . . . ,xN ∼ pT (x)
Initialize φ← θ

for k in 1, . . . ,K do
Update φ← φ+ α∇φ log p(x1, . . . ,xN | φ )

end
Draw M samples xN+1, . . . ,xN+M ∼ pT (x)
Estimate quadratic curvature Ĥ

return − log p(xN+1, . . . ,xN+M | φ ) + η log det(Ĥ)

Subroutine 4: Subroutine for computing a Laplace approximation of the marginal likelihood.

Similarly, the Hessian of the log likelihood is intractable to form exactly for all but the smallest
models, and furthermore, is not guaranteed to be positive definite at all points, possibly rendering
the Laplace approximation undefined. To combat this, we instead seek a curvature matrix Ĥ that
approximates the quadratic curvature of a neural network objective function. Since it is well-known
that the curvature associated with neural network objective functions is highly non-diagonal (e.g.,
Martens, 2016), a further requirement is that the matrix have off-diagonal terms.

Due to the difficulties listed above, we turn to second order gradient descent methods, which
precondition the gradient with an inverse curvature matrix at each iteration of descent. The Fisher
information matrix (Fisher, 1925) has been extensively used as an approximation of curvature,
giving rise to a method known as natural gradient descent (Amari, 1998). A neural network with an
appropriate choice of loss function is a probabilistic model and therefore defines a Fisher information
matrix. Furthermore, the Fisher information matrix can be seen to define a convex quadratic
approximation to the objective function of a probabilistic neural model (Pascanu & Bengio, 2014;
Martens, 2014). Importantly for our use case, the Fisher information matrix is positive definite by
definition as well as non-diagonal.

However, the Fisher information matrix is still expensive to work with. Martens & Grosse (2015)
developed Kronecker-factored approximate curvature (K-FAC), a scheme for approximating the
curvature of the objective function of a neural network with a block-diagonal approximation to
the Fisher information matrix. Each block corresponds to a unique layer in the network, and each
block is further approximated as a Kronecker product (see Van Loan, 2000) of two much smaller
matrices by assuming that the second-order statistics of the input activation and the back-propagated
derivatives within a layer are independent. These two approximations ensure that the inverse of the
Fisher information matrix can be computed efficiently for the natural gradient.

For the Laplace approximation, we are interested in the determinant of a curvature matrix instead of
its inverse. However, we may also make use of the approximations to the Fisher information matrix
from K-FAC as well as properties of the Kronecker product. In particular, we use the fact that the
determinant of a Kronecker product is the product of the exponentiated determinants of each of the
factors, and that the determinant of a block diagonal matrix is the product of the determinants of the
blocks (Van Loan, 2000). The determinants for each factor can be computed as efficiently as the
inverses required by K-FAC, in O(d3) time for a d-dimensional Kronecker factor.

We make use of the Laplace approximation and K-FAC to replace Subroutine 3, which computes
the task-specific marginal NLLs using a point estimate for φ̂. We call this method the Lightweight
Laplace Approximation for Meta-Adaptation (LLAMA), and give a replacement subroutine in
Subroutine 4.

5 EXPERIMENTAL EVALUATION

The goal of our experiments is to evaluate if we can use our probabilistic interpretation of MAML to
generate samples from the distribution over adapted parameters, and futhermore, if our method can
be applied to large-scale meta-learning problems such as miniImageNet.
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Figure 5: Our method is able to meta-learn a model that can quickly adapt to sinusoids with varying phases
and amplitudes, and the interpretation of the method as hierarchical Bayes makes it practical to directly sample
models from the posterior. In this figure, we illustrate various samples from the posterior of a model that is
meta-trained on different sinusoids, when presented with a few datapoints (in red) from a new, previously unseen
sinusoid. Note that the random samples from the posterior predictive describe a distribution of functions that
are all sinusoidal and that there is increased uncertainty when the datapoints are less informative (i.e., when the
datapoints are sampled only from the lower part of the range input, shown in the bottom-right example).

5.1 WARMUP: TOY NONLINEAR MODEL

The connection between MAML and hierarchical Bayes suggests that we should expect MAML to
behave like an algorithm that learns the mean of a Gaussian prior on model parameters, and uses the
mean of this prior as an initialization during fast adaptation. Using the Laplace approximation to
the integration over task-specific parameters as in (10) assumes a task-specific parameter posterior
with mean at the adapted parameters φ̂ and covariance equal to the inverse Hessian of the log
posterior evaluated at the adapted parameter value. Instead of simply using this density in the Laplace
approximation as an additional regularization term as in (11), we may sample parameters φj from
this density and use each set of sampled parameters to form a set of predictions for a given task.

To illustrate this relationship between MAML and hierarchical Bayes, we present a meta-dataset of
sinusoid tasks in which each task involves regressing to the output of a sinusoid wave in Figure 5.
Variation between tasks is obtained by sampling the amplitude uniformly from [0.1, 5.0] and the
phase from [0, π]. During training and for each task, 10 input datapoints are sampled uniformly from
[−10.0, 10.0] and the loss is the mean squared error between the prediction and the true value.

We observe in Figure 5 that our method allows us to directly sample models from the task-specific
parameter distribution after being presented with 10 datapoints from a new, previously unseen
sinusoid curve. In particular, the column on the right of Figure 5 demonstrates that the sampled
models display an appropriate level of uncertainty when the datapoints are ambiguous (as in the
bottom right).

5.2 LARGE-SCALE EXPERIMENT: miniIMAGENET

We evaluate LLAMA on the miniImageNet Ravi & Larochelle (2017) 1-shot, 5-way classification
task, a standard benchmark in few-shot classification. miniImageNet comprises 64 training classes,
12 validation classes, and 24 test classes. Following the setup of Vinyals et al. (2016), we structure the
N -shot, J-way classification task as follows: The model observes N instances of J unseen classes,
and is evaluated on its ability to classify M new instances within the J classes.

We use a neural network architecture standard to few-shot classification (e.g., Vinyals et al., 2016;
Ravi & Larochelle, 2017), consisting of 4 layers with 3× 3 convolutions and 64 filters, followed by
batch normalization (BN) (Ioffe & Szegedy, 2015), a ReLU nonlinearity, and 2× 2 max-pooling. For
the scaling variable β and centering variable γ of BN (see Ioffe & Szegedy, 2015), we ignore the fast
adaptation update as well as the Fisher factors for K-FAC. We use Adam (Kingma & Ba, 2014) as the
meta-optimizer, and standard batch gradient descent with a fixed learning rate to update the model
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5-way acc. (%)
Model 1-shot

Fine-tuning∗ 28.86 ± 0.54
Nearest Neighbor∗ 41.08 ± 0.70
Matching Networks FCE (Vinyals et al., 2016)∗ 43.56 ± 0.84
Meta-Learner LSTM (Ravi & Larochelle, 2017)∗ 43.44 ± 0.77
SNAIL (Mishra et al., 2018)∗∗ 45.1 ± ——
Prototypical Networks (Snell et al., 2017)∗∗∗ 46.61 ± 0.78
mAP-DLM (Triantafillou et al., 2017) 49.82 ± 0.78

MAML (Finn et al., 2017) 48.70 ± 1.84
LLAMA (Ours) 49.40 ± 1.83

Table 1: One-shot classification performance on the miniImageNet test set, with comparison methods ordered
by one-shot performance. All results are averaged over 600 test episodes, and we report 95% confidence intervals.
∗Results reported by Ravi & Larochelle (2017). ∗∗We report test accuracy for a comparable architecture.1∗∗∗We
report test accuracy for models matching train and test “shot” and “way”.

during fast adaptation. LLAMA requires the prior precision term τ as well as an additional parameter
η ∈ R+ that weights the regularization term log det Ĥ contributed by the Laplace approximation.
We fix τ = 0.001 and selected η = 10−6 via cross-validation; all other parameters are set to the
values reported in Finn et al. (2017).

We find that LLAMA is practical enough to be applied to this larger-scale problem. In particular, our
TensorFlow implementation of LLAMA trains for 60,000 iterations on one TITAN Xp GPU in 9
hours, compared to 5 hours to train MAML. As shown in Table 1, LLAMA achieves comparable
performance to the state-of-the-art meta-learning method by Triantafillou et al. (2017). While the gap
between MAML and LLAMA is small, the improvement from the Laplace approximation suggests
that a more accurate approximation to the marginalization over task-specific parameters will lead to
further improvements.

6 RELATED WORK

Meta-learning and few-shot learning have a long history in hierarchical Bayesian modeling (e.g.,
Tenenbaum, 1999; Fei-Fei et al., 2003; Lawrence & Platt, 2004; Yu et al., 2005; Gao et al., 2008;
Daumé III, 2009; Wan et al., 2012). A related subfield is that of transfer learning, which has used
hierarchical Bayes extensively (e.g., Raina et al., 2006). A variety of inference methods have been
used in Bayesian models, including exact inference (Lake et al., 2011), sampling methods (Salakhut-
dinov et al., 2012), and variational methods (Edwards & Storkey, 2017). While some prior works on
hierarchical Bayesian models have proposed to handle basic image recognition tasks, the complexity
of these tasks does not yet approach the kinds of complex image recognition problems that can
be solved by discriminatively trained deep networks, such as the miniImageNet experiment in our
evaluation (Mansinghka et al., 2013).

Recently, the Omniglot benchmark Lake et al. (2016) has rekindled interest in the problem of learning
from few examples. Modern methods accomplish few-shot learning either through the design of
network architectures that ingest the few-shot training samples directly (e.g., Koch, 2015; Vinyals
et al., 2016; Snell et al., 2017; Hariharan & Girshick, 2017; Triantafillou et al., 2017), or formulating
the problem as one of learning to learn, or meta-learning (e.g., Schmidhuber, 1987; Bengio et al.,
1991; Schmidhuber, 1992; Bengio et al., 1992). A variety of inference methods have been used in
Bayesian models, including exact inference (Lake et al., 2011), sampling methods (Salakhutdinov
et al., 2013), and variational methods (Edwards & Storkey, 2017).

Our work bridges the gap between gradient-based meta-learning methods and hierarchical Bayesian
modeling. Our contribution is not to formulate the meta-learning problem as a hierarchical Bayesian

1Improved performance on miniImageNet has been reported by several works (Mishra et al., 2017;
Munkhdalai & Yu, 2017; Sung et al., 2017) by making use of a model architecture with significantly more
parameters than the methods in Table 1. Since we do not explore variations in neural network architecture in this
work, we omit such results from the table.
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model, but instead to formulate a gradient-based meta-learner as hierarchical Bayesian inference,
thus providing a way to efficiently perform posterior inference in a model-agnostic manner.

7 CONCLUSION

We have shown that model-agnostic meta-learning (MAML) estimates the parameters of a prior in a
hierarchical Bayesian model. By casting gradient-based meta-learning within a Bayesian framework,
our analysis opens the door to novel improvements inspired by probabilistic machinery.

As a step in this direction, we propose an extension to MAML that employs a Laplace approximation
to the posterior distribution over task-specific parameters. This technique provides a more accurate
estimate of the integral that, in the original MAML algorithm, is approximated via a point estimate.
We show how to estimate the quantity required by the Laplace approximation using Kronecker-
factored approximate curvature (K-FAC), a method recently proposed to approximate the quadratic
curvature of a neural network objective for the purpose of a second-order gradient descent technique.

Our contribution illuminates the road to exploring further connections between gradient-based meta-
learning methods and hierarchical Bayesian modeling. For instance, in this work we assume that the
predictive distribution over new data-points is narrow and well-approximated by a point estimate.
We may instead employ methods that make use of the variance of the distribution over task-specific
parameters in order to model the predictive density over examples from a novel task.

Furthermore, it is known that the Laplace approximation is inaccurate in cases where the integral is
highly skewed, or is not unimodal and thus is not amenable to approximation by a single Gaussian
mode. This could be solved by using a finite mixture of Gaussians, which can approximate many
density functions arbitrarily well (Sorenson & Alspach, 1971; Alspach & Sorenson, 1972). The
exploration of additional improvements such as this is an exciting line of future work.
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