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ABSTRACT

In this paper, we propose a new feature extraction technique for program execution
logs. First, we automatically extract complex patterns from a program’s behavior
graph. Then, we embed these patterns into a continuous space by training an
autoencoder. We evaluate the proposed features on a real-world malicious soft-
ware detection task. We also find that the embedding space captures interpretable
structures in the space of pattern parts.

1 INTRODUCTION

Malware, or malicious software, is a key element of cyberattacks that damages companies and in-
dividuals worldwide and benefits criminals. Nowadays, malware is concealed using obfuscation,
encryption, anti-emulation and other techniques, making detection of malware significantly harder.
Classifying whether a previously unseen file is a malware or a benign program is an important
challenge for cybersecurity companies. Employing machine learning methods for this problem is a
promising area of research.

The two broad classes of malware analysis techniques are static and dynamic. The former’s methods
operate on raw binary files, leading to significant issues with analysis of encrypted and obfuscated
files. The latter’s approach consists of executing the binary file in a controlled environment and mon-
itoring its behavior. The dynamic approach is more time- and resource-consuming, but it provides
higher accuracy. Behavior monitoring results can typically be presented as a log of the observed sys-
tem events or API calls (function name, arguments, and, optionally, a return value). Currently, the
most popular approach for feature extraction from such logs is to construct a set of different indicator
features such as n-grams of events or links between APIs and their arguments (Bayer et al. (2009);
Berlin et al. (2015); Huang & Stokes (2016); Salehi et al. (2017)). Some other classification methods
apply recurrent neural networks to a sequence of notes in a log (Pascanu et al. (2015); Kolosnjaji
et al. (2016)). However, the latter approach is sensitive to the mixing of lines in a log caused by
multiprocessing, intentional obfuscation by malware, and difference in the execution environments.

In this paper we propose a new feature extraction technique for logs that is based on specific behavior
graphs. We consider a graph as a union of behavior patterns (specific subgraphs) and construct a
feature representation of a log by combining feature vectors of these patterns. To extract a compact
and meaningful continuous feature representation for behavior patterns, we train an autoencoder. In
the experiments, we show that the log representation constructed by our technique provides high
classification accuracy on a large real-world dataset. In addition, we illustrate the ability of our
model to automatically capture interpretable structure in the space of pattern parts similarly to the
word2vec model (Mikolov et al. (2013)).

2 FEATURE REPRESENTATION FOR LOGS

In this paper, a log means a sequence of all system events that occurred during program execution
alongside with their arguments. A toy example of such a log is presented in Figure 1a. Each line of
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…
Modify(‘notepad.exe’)
Create(‘config.xml’)
Modify(‘config.xml’)
Create(‘doc1.rtf’)
Modify(‘doc1.rtf’)
Create(‘list.rtf’)
Modify(‘list.rtf’)
Delete(‘doc1.rtf’)
Delete(‘list.rtf’)
…

(a) Example of a log.
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(b) Behavior graph.
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(c) Extracted patterns.

Figure 1: Graph representation of a log and pattern extraction process.

a log corresponds to one system event and contains the type of the event and one or more arguments
(file names, URLs, memory addresses, etc.).

Graph representation of a log Because the sequence representation of logs is unstable, we rep-
resent them with behavior graphs. Such representation does not rely on the event order but still
captures all event-argument interactions. We define a behavior graph as a bipartite graph whose
nodes correspond to event types and arguments occurred in the log. Two nodes are connected with
an edge if and only if the corresponding event type and argument occur together in the same system
event in the log. The graph constructed for the toy example log is presented in Figure 1b.

Lots of papers on representation learning for graphs have appeared in the last few years (Yanardag
& Vishwanathan (2015); Grover & Leskovec (2016); Narayanan et al. (2016)); however, they are all
limited by a finite node label space. In our problem, we deal with a very diverse space of node labels
because of the natural variety of the arguments such as file paths, URLs, and so forth.

To construct a feature representation of a log we extract patterns of program behavior from the graph,
build an embedding of these patterns into the space RD and then combine separate feature vectors
into a graph description.

Behavior pattern extraction The set of the event types that share the same argument in the graph
represents some pattern of the program behavior. Furthermore, it is typically important to capture
the fact that a sequence of system events is repeated with different arguments in a log. For example,
malware could continuously modify items in the same subtree of a file system or try to connect to
many different hosts in a row. Arguments themselves also matter: It is one thing when the program
downloads and runs a Windows update and completely another when it starts an unknown *.exe
file from a suspicious server. Therefore we define a behavior pattern as the set of system events and
arguments such that all of the events share all of the arguments, and each argument corresponds only
to these events and nothing else. To extract patterns from the graph, we first find all adjacent event
types for each argument and then combine arguments with the same event sets into a single pattern.

At this stage, the selected patterns may be unique, but their arguments may have a lot in com-
mon with some other previously observed arguments. For example, the particular file name
C:\Windows\374683.ini may occur only once in the whole dataset, but the disk name C,
folder name Windows and file extension ini are very common. Therefore we propose splitting each
argument into a set of tokens by separators (such as ’://’,’.’,’:’, etc.). Here, separators are also consid-
ered to be tokens because the type of the argument can be determined from them. Pattern extraction
process for the toy example log is illustrated in Figure 1c.

As a result, each pattern can be represented as a sparse binary vector of length M +K, where the
first M features correspond to event types and the next K features correspond to tokens. Here M
is the number of all different event types that exist in the logs, and it is fixed by the logging system.
K denotes the number of the most frequent tokens observed in the training dataset, and it can be set
manually.

Pattern embeddings To extract a compact and meaningful feature representation for behavior
patterns we train an autoencoder model. The encoded representation a(x) and the reconstruction
v̂(x) of a pattern x are obtained from its sparse binary representation v(x) as follows:

a(x) =Wv(x) + b, φ(x) = ReLU(a(x)), v̂(x) = σ(V φ(x) + c), (1)
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whereW and V are trainable weight matrices of size (M +K)×D andD× (M +K) respectively,
b and c are trainable bias vectors of length D and (M + K) respectively, ReLU(y) = max(0, y)
and σ(y) = 1/(1+exp(−y)). Then, the reconstruction is compared with the original binary feature
vector as follows:

l(x) = − 1

|P |
∑
i∈P

log(v̂(x)i)−
1

|N |
∑
i∈N

log(1− v̂(x)i), (2)

where P is the set of non-zero elements in v(x), N is a random subset of zero elements in v(x) and
| · | is the cardinality of the set. We take only a small subset of zero elements for efficiency, similar to
the negative sampling technique (Mikolov et al. (2013)). Training proceeds by optimizing the sum
of reconstruction cross-entropies across the training set using Adam (Kingma & Ba (2015)).

To construct a fixed-size feature representation for a log, we combine the encoded feature vectors
a(x) of all patterns from this log by applying the element-wise min, max, and mean functions. As a
result, for each log, we have a final feature vector of length 3D.

3 RESULTS/EXPERIMENTS
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Figure 2: Comparison of feature representations
of logs (f2 is ours).

Comparison of different dynamic malware de-
tection methods is difficult because researchers
use different sandboxes to collect their data,
and none of the datasets are publicly available.
To evaluate our log representation, we collected
4 964 506 malicious and 3 145 853 benign logs
from our in-lab sandbox and a set of user-
managed machines, and randomly split our data
into train (70%) and test (30%) sets.

The majority of existing articles on dynamic
malware detection are based on constructing a
set of indicator behavior features, so we se-
lected the set of the most frequent groups of
events that share the same argument from our
training data, and use indicator features con-
structed from them as a baseline feature representation. We also try to use counters instead of
binary indicators. We train the XGBoost model (Chen & Guestrin (2016)) with 300 trees of depth
30 as a classifier to compare our features to baselines. Figure 2 shows that the usage of our semantic
features reduces the number of missed malicious samples several times while keeping an extremely
low false alarm rate. A combination of our semantic features and baseline counter features provides
even better performance.

Table 1: Synonyms locality embedding

TOKEN TOP-5 NEAREST NEIGHBOURS

word excel, dotm, outlook, machine, open
com www, ://, http, net, ru
jpg png, gif, css, xml, html

js txt, htm, ie5, css, cookies
34 36, 42, 56, 38, 35

3960 3964, 3972, 3952, 3968, 3956

Table 2: Arithmetic operations on tokens

TOKEN’S EXPRESSION RESULT

‘word’ - ‘doc’ + ‘xls’ ‘excel’
‘video’ - ‘mp4’ + ‘bmp’ ‘image’

‘programfiles’ - ‘exe’ + ‘dll’ ‘system32’
‘https’ - ‘http’ + ‘80’ ‘443’

‘google’ - ‘chrome’ + ‘firefox’ ‘mozilla’
‘(’ - ‘)’ + ‘]’ ‘[’

In order to get some intuition about how our behavior pattern embeddings work, we study the struc-
ture of the token embedding space, obtained from rows of the matrix W . Table 1 shows that tokens
that are similar in the vector space are also semantically similar: they form groups of program names,
file extensions, and decimal constants. Another interesting point of the obtained embedding is that
it keeps semantic relations between pairs of tokens in the manner of the canonical word2vec model
(Mikolov et al. (2013)). Table 2 presents some of these relations such as the binding of a file format
to its typical folder or editor program name, TCP/IP port number to the corresponding web-protocol
name, and programming product name to its vendor.
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