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ABSTRACT

We introduce Information Dropout, a generalization of dropout that is motivated
by the Information Bottleneck principle and highlights the way in which injecting
noise in the activations can help in learning optimal representations of the data.
Information Dropout is rooted in information theoretic principles, it includes as spe-
cial cases several existing dropout methods, like Gaussian Dropout and Variational
Dropout, and, unlike classical dropout, it can learn and build representations that
are invariant to nuisances of the data, like occlusions and clutter. When the task is
the reconstruction of the input, we show that the information dropout method yields
a variational autoencoder as a special case, thus providing a link between repre-
sentation learning, information theory and variational inference. Our experiments
validate the theoretical intuitions behind our method, and we find that information
dropout achieves a comparable or better generalization performance than binary
dropout, especially on smaller models, since it can automatically adapt the noise to
the structure of the network, as well as to the test sample.

1 INTRODUCTION

In the general supervised setting, we want to learn the conditional distribution p(y|x) of some random
variable y, which we refer to as the task, given (samples of the) input data x. In typical applications,
x is often high dimensional (for example an image or a video), while y is low dimensional, such as a
label or a coarsely-quantized location. In such cases, a large part of the variability in x is actually due
to nuisance factors that affect the data, but are otherwise irrelevant for the task. Since by definition
these nuisance factors are not predictive of the task, they should be disregarded during the inference
process. However, it often happens that modern machine learning algorithms, in part due to their
high flexibility, will fit spurious correlations, present in the training data, between the nuisances and
the task, thus leading to poor generalization performance.

In view of this, Tishby & Zaslavsky (2015) argue that the success of deep learning is in part due to
the capability of neural networks to build incrementally better representations that expose the relevant
information, while at the same time discarding nuisance variability. This interpretation is intriguing,
as it establishes a connection between machine learning, probabilistic inference, and information
theory. However, the commonly used training methods do not seem to stem from this insight, and
indeed deep networks may maintain even in the topmost layers dependencies on easily ignorable
nuisances (see for example Figure 2).

To bring the practice in line with the theory, and to better understand these connections, we introduce
a new layer, that we call Information Dropout, which allows the network to selectively introduce
multiplicative noise in the layer activations, and thus to control the flow of information. We then
introduce a modified cost function, that can be seen as an approximation of the Information Bottleneck
Lagrangian of Tishby et al. (1999), which encourages the creation of representations of the data
which are increasingly insensitive to the action of nuisances. In practice, this prevents the network
from overfitting to the nuisances. As we show in various experiments, our method improves the

∗Dedicated to Naftali Tishby in the occasion of the conference Information, Control and Learning held in his
honor in Jerusalem, September 26-28, 2016.
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generalization performance, and is comparable or better than the dropout baseline. In particular, it
considerably improves over binary dropout on smaller models, since, unlike dropout, Information
Dropout also adapts the noise to the structure of the network and to the individual sample at test time.

Apart from the practical interest of Information Dropout, one of our main results is that Information
Dropout can be seen as a generalization to several existing dropout methods, providing a unified
framework to analyze them, together with some additional insights on empirical results. As we discuss
in Section 2, the introduction of noise to prevent overfitting has already been studied from several
points of view. For example the original formulation of dropout of Srivastava et al. (2014), which
introduces binary multiplicative noise, was motivated as a way of efficiently training an ensemble of
exponentially many networks, that would be averaged at testing time. Kingma et al. (2015) introduce
Variational Dropout, a dropout method which closely resemble ours, and is instead derived from a
Bayesian analysis of neural networks. Information Dropout gives an alternative information-theoretic
interpretation of those methods.

As we show in Section 5, other than being very closely related to Variational Dropout, Information
Dropout directly yields a variational autoencoder as a special case when the task is the reconstruction
of the input. This result is in part expected, since by construction Information Dropout seeks an
optimal representation of the input for the task of reconstruction, and the representation given by
the latent variables of a variational autoencoder fits the criteria. However, it still rises the question
of exactly what and how deep are the links between information theory, representation learning,
variational inference and nuisance invariance. This work can be seen as a small step in answering this
question.

2 RELATED WORK

The main contribution of our work is to establish how two seemingly different areas of research,
namely the study of noise and dropout methods to prevent overfitting, and the study of optimal
representations, can be linked through the Information Bottleneck principle.

Dropout was introduced by Srivastava et al. (2014). The original motivation was that by randomly
dropping the activations during training, we can effectively train an ensemble of exponentially many
networks, that are then averaged during testing, therefore reducing overfitting. Wang & Manning
(2013) suggested that dropout could be seen as performing a Monte-Carlo approximation of an
implicit loss function, and suggest that instead of multiplying the activations by binary noise, like
in the original dropout, multiplicative Gaussian noise with mean 1 can be used as a way of better
approximating the implicit loss function. This leads to a comparable performance but faster training
than binary dropout.

Kingma et al. (2015) take a similar view of dropout as introducing multiplicative (Gaussian)
noise, but instead study the problem from a Bayesian point of view. Given a training dataset
D = {(xi,yi)}i=1,...,N and a prior distribution p(w), we want to compute the posterior distribution
p(w|D) of the weights w of the network. As is customary in variational inference, the true posterior
can be approximated by minimizing the negative variational lower bound L(θ) of the marginal
log-likelihood of the data,

L(θ) = 1

N

N∑
i=1

Ew∼pθ(w|D)[− log p(yi|xi,w)] +
1

N
KL(pθ(w|D) ‖ p(w)).

This minimization is difficult to perform, since it requires to repeatedly sample new weights for each
sample of the dataset. As an alternative, Kingma et al. (2015) suggest that the uncertainty about the
weights that is expressed by the posterior distribution pθ(w|D) can equivalently be encoded as a
multiplicative noise in the activations of the layers (the so called local reparametrization trick). As we
will see in the following sections, this loss function closely resemble the one of Information Dropout,
which however is derived from a purely information theoretic argument based on the Information
Bottleneck principle. One difference is that we allow the parameters of the noise to change on a
per-sample basis (which, as we show in the experiments, can be useful to deal with nuisances),
and that we allow a scaling constant β in front of the KL-divergence term, which can be changed
freely. Interestingly, even if the Bayesian derivation does not allow a rescaling of the KL-divergence,
Kingma et al. (2015) notice that choosing a different scale for the KL-divergence term can indeed
lead to improvements in practice.
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The interpretation of deep neural network as a way of creating successively better representations
of the data has already been suggested and explored by many, as described in Tishby & Zaslavsky
(2015). Some have focused on creating representations that are maximally invariant to nuisances,
especially when they have the structure of a (possibly infinite-dimensional) group acting on the data,
like Sundaramoorthi et al. (2009), or, when the nuisance is a locally compact group acting on each
layer, by successive approximations implemented by hierarchical convolutional architectures, like
Anselmi et al. (2016) and Bruna & Mallat (2011). In these cases, which cover common nuisances
such as translations and rotations of an image (affine group), or small diffeomorphic deformations
due to a slight change of point of view (group of diffeomorphisms), the representation is equivalent
to the data modulo the action of the group. However, when the nuisances are not a group, as is the
case for occlusions, it is not possible to achieve such equivalence, that is, there is a loss. To address
this problem, Soatto & Chiuso (2016) defined optimal representations not in terms of maximality, but
in terms of sufficiency, and characterized representations that are both sufficient and invariant. They
argue that the management of nuisance factors common in visual data, such as change of viewpoint,
local deformations, and changes of illumination, is directly tied to the specific structure of deep
convolutional networks, where local marginalization of simple nuisances at each layer results in
marginalization of complex nuisances in the network as a whole.

Our work fits in this last line of thinking, where the goal is not equivalence to the data up to the action
of (group) nuisances, but instead sufficiency for the task. Our main contribution in this sense is to
show that injecting noise into the layers, and therefore using a non-deterministic function of the data,
can actually simplify the theoretical analysis and lead to improved invariance to nuisances. This is an
alternate explanation to that put forth by the references above.

3 OPTIMAL REPRESENTATIONS AND THE INFORMATION BOTTLENECK LOSS

Given some input data x, we want to compute some (possibly nondeterministic) function of x, called
a representation, that has some desirable properties in view of the task y, for instance by being more
convenient to work with, exposing relevant statistics, or being easier to store. Ideally, we want this
representation to be as good as the original data for the task, and not squander resources modeling
parts of the data that are irrelevant to the task. Formally, this means that we want to find a random
variable z satisfying the following conditions:

(i) z is a representation of x; that is, its distribution depends only on x, as expressed by the
following Markov chain:

y x z

(ii) z is sufficient for the task y, that is I(x;y) = I(z;y), expressed by the Markov chain:

y z x

(iii) among all random variables satisfying these requirements, the mutual information I(x; z) is
minimal. This means that z discards all the variability that is not relevant to the task.

Using the identity I(x;y)− I(z;y) = H(y|z)−H(y|x), where H denotes the entropy and I the
mutual information, it is easy to see that the above conditions are equivalent to finding a distribution
p(z|x) which solves the optimization problem

minimize I(x; z)

s.t. H(y|z) = H(y|x).

Since the above minimization is difficult to perform in general due to the non-linear constraint,
Tishby et al. (1999) propose to minimize instead the following relaxation, known as the Information
Bottleneck Lagrangian,

L = H(y|z) + βI(x; z). (1)
where β is some positive constant. It is easy to see that, in the limit β → 0+, this is equivalent to the
original problem. When all random variables are discrete and z = T (x) is a deterministic function
of x, the algorithm proposed by Tishby et al. (1999) can be used to minimize the IB Lagrangian
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efficiently. However, no algorithm is known to minimize the IB Lagrangian for non-Gaussian,
high-dimensional continuous random variables.

Our main result is that, when we restrict to the family of distributions obtained by injecting noise
to one layer of a neural network, we can efficiently approximate and minimize the IB Lagrangian.
Since we restrict the family of distributions, this does not in general guarantee that the resulting
representation will be optimal. We can however iterate the process to obtain incrementally improved
representations. As we will show, this process can be effectively implemented through a generalization
of the dropout layer that we call Information Dropout.

In preparation for this, we rewrite the IB Lagrangian as a per-sample loss function. Let p(x,y) denote
the true distribution of the data, from which the training set {(xi,yi)}i=1,...,N is sampled, and let
pθ(z|x) and pθ(y|z) denote the unknown distributions that we need to estimate, parametrized by θ.
Then, we can write the two terms in the IB Lagrangian as

H(y|z) ' Ex,y∼p(x,y)

[
Ez∼pθ(z|x)[− log pθ(y|z)]

]
I(x; z) = Ex∼p(x)[KL(pθ(z|x) ‖ pθ(z))],

where KL denotes the Kullback-Leibler divergence. We can therefore approximate the IB Lagrangian
empirically as

L =
1

N

N∑
i=1

Ez∼p(z|xi)[− log p(yi|z)] + βKL(pθ(z|xi) ‖ pθ(z)). (2)

Notice that the first term simply is the average cross-entropy loss, which is the most commonly
used loss function in deep learning. The second term can then be seen as a regularization term that
penalizes the transfer of information from x to z. In the next section, we discuss ways to control such
information transfer through the injection of noise.

Remark. Aside from being easier to work with, stochastic representations of the data can realize a
lower value of the IB Lagrangian than any deterministic representation. For an example, consider
the task of reconstructing single random bit y given a noisy observation x. The only deterministic
representations are equivalent to the either the noisy observation itself or to the trivial constant map.
It is not difficult to check that for opportune values of β and of the noise, neither realize the optimal
tradeoff reached by an opportune stochastic representation.

4 INFORMATION DROPOUT

Inspired by the effectiveness of dropout, we propose the following way of constructing a representation
z: first, we compute a function f(x) of the input through a sequence of convolutional or fully-
connected layers, followed by a nonlinear activation function. Ideally, this should help “disentangle”
the nuisances from the (random) function of the data that is relevant to the task, as we illustrate in
Appendix C. Subsequently, we selectively let the relevant information flow by applying multiplicative
noise from a noise distribution pα(x)(ε) with mean 1 and whose parameters α(x) = αθ(x), such as
the variance, are selected by the network itself:

ε ∼ pα(x)(ε),

z = ε� f(x),

where “�” denotes the element-wise product. Notice that, if pα(x)(ε) is a Bernoulli distribution
rescaled to have mean 1, this reduces exactly to the classic binary dropout layer. As we discussed in
Section 2, there are also variants of dropout that use different distributions.

x f(x) z = ε� f(x)

ε

y
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Figure 1: Comparison of the empirical distribution p(z) of the post-noise activations with our
proposed prior when using: (a) ReLU activations, for which we propose a log-uniform prior, and (b)
Softplus activations, for which we propose a log-normal prior. In both cases, the empirical distribution
approximately follows the proposed prior. Both histograms where obtained from the last dropout
layer of the All-CNN-32 network described in Table 2, trained on CIFAR-10.

A natural choice for the multiplicative noise distribution pα(x)(ε), which also simplifies the theo-
retical analysis, is the log-normal distribution pα(x)(ε) = logN (0, α2

θ(x)). Once we fix this noise
distribution, given the above expression for z, we can easily compute the distribution pθ(z|x) that
appears in eq. (2). However, to be able to compute the KL-divergence term, we still need to fix a
prior distribution pθ(z). The choice of this prior largely depends on the expected distribution of the
activations f(x). In the following, we assume for simplicity that all the activations are approximately
independent and identically distributed. In Appendix B we show that, even if the activations are
not independent, optimizing the loss in Equation (2) under the assumption of a factorized prior still
makes sense, and it actually encourages the components to become independent. We concentrate
on two of the most common activation functions, the rectified linear unit (ReLU), which is easy to
compute and works well in practice, and the Softplus function, which can be seen as a strictly positive
and differentiable approximation of ReLU.

A network implemented using only ReLU and a final Softmax layer has the remarkable property
of being scale-invariant, meaning that multiplying all weights, biases, and activations by a constant
does not change the final result. Therefore, from a theoretical point of view, it would be desirable
to use a scale-invariant prior. The only such prior is the improper log-uniform, p(log(z)) = c, or
equivalently p(z) = c/z, which was also suggested by Kingma et al. (2015), but as a prior for the
weights of the network, rather than the activations. Since the ReLU activations are frequently zero,
we also assume p(z = 0) = q for some constant 0 ≤ q ≤ 1. Therefore, the final prior has the
form p(z) = qδ0(z) + c/z, where δ0 is the Dirac delta in zero. In Figure 1a, we compare this prior
distribution with the actual empirical distribution p(z) of a network with ReLU activations.

In a network implemented using Softplus activations, a log-normal is a good fit of the distribution
of the activations. This is to be expected, especially when using batch-normalization, since the
pre-activations will approximately follow a normal distribution with zero mean, and the Softplus
approximately resembles a scaled exponential near zero. Therefore, in this case we suggest using
a log-normal distribution as our prior p(z). In Figure 1b, we compare this prior with the empirical
distribution p(z) of a network with Softplus activations.

Using these priors, we can finally compute the KL divergence term in eq. (2) for both ReLU activations
and Softplus activations. We prove the following two propositions in Appendix A.
Proposition 1 (Information dropout cost for ReLU activations). Let z = ε · f(x), where ε ∼ pα(ε),
and assume p(z) = qδ0(z) + c/z. Then, assuming f(x) 6= 0, we have

KL(pθ(z|x) ‖ p(z)) = −H(pα(x)(log ε)) + log c

In particular, if pα(ε) is chosen to be the log-normal distribution pα(ε) = logN (0, α2
θ(x)), we have

KL(pθ(z|x) ‖ p(z)) = − logαθ(x) + const. (3)

If instead f(x) = 0, we have
KL(pθ(z|x) ‖ p(z)) = − log q.
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Proposition 2 (Information dropout cost for Softplus activations). Let z = ε · f(x), where ε ∼
pα(ε) = logN (0, α2

θ(x)), and assume pθ(z) = logN (µ, σ2). Then, we have

KL(pθ(z|x) ‖ p(z)) =
1

2σ2

(
α2(x) + µ2

)
− log

α(x)

σ
− 1

2
. (4)

Substituting the expression for the KL divergence in eq. (3) inside eq. (2), and ignoring for simplicity
the special case f(x) = 0, we obtain the following loss function for ReLU activations

L =
1

N

N∑
i=1

Ez∼pθ(z|xi)[log p(yi|z)] + β logαθ(xi), (5)

and a similar expression for the Softplus. Notice that the first expectation can be approximated
by sampling (in the experiments we use one single sample, as customary for dropout), and is just
the average cross-entropy term that is typical in deep learning. The second term, which is new,
penalizes the network for choosing a low variance for the noise, i.e. for letting more information pass
through to the next layer. This loss can be optimized easily using stochastic gradient descent and
the reparametrization trick of Kingma & Welling (2013) to back-propagate the gradient through the
sampling operation.

5 VARIATIONAL AUTOENCODERS AND INFORMATION DROPOUT

In this section, we briefly outline a link between variational autoencoders (Kingma & Welling,
2013) and Information Dropout. A variational autoencoder (VAE) aims to reconstruct, given a
training dataset D = {xi}, a latent random variable z such that the observed data x can be thought
as being generated by the, usually simpler, variable z through some unknown generative process
pθ(x|z). In practice, this is done by minimizing the negative variational lower-bound to the marginal
log-likelihood of the data

L(θ) = 1

N

N∑
i=1

Ez∼pθ(z|xi)[− log pθ(xi|z)] + KL(pθ(z|xi) ‖ p(z)),

which can be optimized easily using the SGVB method of Kingma & Welling (2013). Interestingly,
when the task is reconstruction, that is when y = x, the IB loss function in eq. (2) reduces to

L(θ) = 1

N

N∑
i=1

Ez∼pθ(z|xi)[− log pθ(xi|z)] + βKL(pθ(z|xi) ‖ p(z)).

Therefore, by letting β = 1 in the previous expression, we obtain exactly the loss function of a
variational autoencoder, that is, the representation z computed by the Information Dropout layer
coincides with the latent variable z computed by the VAE. This is in part to be expected, since the
objective of Information Dropout is to create a representation of the data that is minimal sufficient for
the task of reconstruction, and the latent variables of a VAE can be thought as such a representation.
The term β in this case can be seen as managing the trade off between the fidelity of the reconstruction
of the input from the representation (measured by the cross-entropy), against the compression factor
(complexity) of the representation (measured by the KL-divergence).

6 EXPERIMENTS

We compare our method with the Dropout baseline on several standard benchmark datasets using
different networks architecture, and highlight a few key properties of Information Dropout. All the
models were implemented using TensorFlow (Abadi et al., 2015). As Kingma et al. (2015) also notice,
letting the variance of the noise increase too much leads to poor local minima in the optimization
process. To avoid this problem, we put the constraint α(x) < 0.7, so that the maximum variance of
the log-normal error distribution will be approximatively 1, the same as binary dropout when using
a drop probability of 0.5. In all experiments we divide the KL-divergence term by the number of
training samples, so that for β = 1 the scaling of the KL-divergence term in similar to the one used
by Variational Dropout (see Section 2).
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Figure 2: For four different input samples, we show the plot of the total KL-divergence at each spatial
location in the first three Information Dropout layers of All-CNN-96 (see Table 2) trained on Cluttered
MNIST with different values of β. This measures how much information from each part of the image
the Information Dropout layer is letting flow to the next layer. While for low value β information
about the nuisances is still transmitted to the next layers, for higher value of β the Information
Dropout layers drop the information as soon as the receptive field is big enough to recognize it as
a nuisance. The resulting representation is therefore more robust to nuisances, and provides better
generalization performances. Unlike in classical dropout or Variational Dropout, the noise added
by Information Dropout is tailored to the specific sample, to the point that the KL-divergence alone
provides enough information to localize the digit.
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Figure 3: (a) Average classification error on MNIST over 3 runs of several dropout methods applied
to a fully connected network with three hidden layers and ReLU activations. Information dropout
outperforms binary dropout, especially on smaller networks, possibly because dropout severely
reduces the already limited capacity of the network, while Information Dropout can adapt the amount
of noise to the data and the size of the network. Information dropout also outperforms a dropout layer
that uses constant log-normal noise with the same variance, confirming the benefits of adaptive noise.
Variational dropout yields a similar performance to Information Dropout for a suitably chosen scaling
factor, and is not shown in the plot. (b) Classification error on CIFAR-10 for several dropout methods
applied to the All-CNN-32 network (see Table 2) using Softplus activations.
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Figure 4: (a) A few samples from our Occluded CIFAR dataset. (b) Plot of the testing error on the
main task (classifying the CIFAR image) and on the nuisance task (classifying the occluding MNIST
digit) as β varies. For both tasks, we use the same representation of the data trained for the main task
using Information Dropout. For larger values of β the representation is increasingly more invariant to
nuisances, making the nuisance classification task harder, but improving the performance on the main
task by preventing overfitting. For the nuisance task, we test using the learned noisy representation of
the data, since we are interested specifically in the effects of the noise. For the main task, we show
the result both using the noisy representation (N), and the deterministic representation (D) obtained
by disabling the noise at testing time.

Cluttered MNIST. To visually asses the ability of Information Dropout to create a representation
of the input that is increasingly insensitive to nuisance factors, we train the All-CNN-96 network
(Table 2) for classification on a Cluttered MNIST dataset (cf. Mnih et al., 2014), consisting of 96x96
images containing a single MNIST digit together with 21 distraction objects. The dataset is divided
in 50.000 training images and 10.000 testing images. As shown in Figure 2, for small values of
β, the network lets through both the objects of interest (digits) and distractors, to upper layers. By
increasing the value of β, we force the network to disregard something, and the network decides to
disregard the least discriminative components of the data, thereby building a better representation for
the task. This behavior depends on the ability of Information Dropout to learn the structure of the
nuisances in the dataset which, unlike other methods, is facilitated by the ability to select noise level
on a per-sample basis.

Occluded CIFAR. Occlusions are a fundamental type of nuisance in vision for which it is difficult
to hand-design invariant representations. To assess that the approximate minimal sufficient represen-
tation produced by Information Dropout has this invariance property, we created a new dataset by
occluding images from CIFAR-10 with digits from MNIST (Figure 4a). We train the All-CNN-32
network (Table 2) to classify the CIFAR image. The information relative to the occluding MNIST
digit is then a nuisance for the task, and therefore should be excluded from the final representation.
To test this, we train a secondary network to classify the nuisance MNIST digit using only the the
representation learned for the main task. When training with small values of β, the network has very
little pressure to limit the presence of nuisance information in the representation, so we expect the
nuisance classifier to perform better. On the other hand, increasing the value of β we expect the
performance to degrade, since the representation will become increasingly minimal, and therefore
invariant to nuisances. The results in Figure 4b confirm this intuition.

MNIST and CIFAR-10. Similar to Kingma et al. (2015), to see the effect of Information Dropout
on different network sizes and architectures, we train on MNIST a network with 3 fully connected
hidden layers with a variable number of hidden units, and we train on CIFAR-10 (Krizhevsky
& Hinton, 2009) the All-CNN-32 convolutional network described in Table 2, using a variable
percentage of all the filters. The fully connected network was trained for 80 epochs, using stochastic
gradient descent with momentum with initial learning rate 0.07 and dropping the learning rate by 0.1
at 30 and 70 epochs. The CNN was trained for 160 epochs with initial learning rate 0.1 and dropping
the learning rate by 0.1 at 80 and 120 epochs. We show the results in Figure 3. Information Dropout is
comparable or outperforms binary dropout, especially on smaller networks. A possible explanation is
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Table 2: Structure of the networks used in the experiments. The design of network is based on
Springenberg et al. (2014), but we also add batch normalization before the activations of each layer.
Depending on the experiment, the ReLU activations are replaced by Softplus activations, and the
dropout layer is implemented with binary dropout, Information Dropout or completely removed.

(a) All-CNN-32

Input 32x32
3x3 conv 96 ReLU
3x3 conv 96 ReLU

3x3 conv 96 ReLU stride 2
dropout

3x3 conv 192 ReLU
3x3 conv 192 ReLU

3x3 conv 192 ReLU stride 2
dropout

3x3 conv 192 ReLU
1x1 conv 192 ReLU
1x1 conv 10 ReLU

spatial average
softmax

(b) All-CNN-96

Input 96x96
3x3 conv 32 ReLU
3x3 conv 32 ReLU

3x3 conv 32 ReLU stride 2
dropout

3x3 conv 64 ReLU
3x3 conv 64 ReLU

3x3 conv 64 ReLU stride 2
dropout

3x3 conv 96 ReLU
3x3 conv 96 ReLU

3x3 conv 96 ReLU stride 2
dropout

3x3 conv 192 ReLU
3x3 conv 192 ReLU

3x3 conv 192 ReLU stride 2
dropout

3x3 conv 192 ReLU
1x1 conv 192 ReLU
1x1 conv 10 ReLU

spatial average
softmax

that dropout severely reduces the already limited capacity of the network, while Information Dropout
can adapt the amount of noise to the data and to the size of the network so that the relevant information
can still flow to the successive layers.

VAE. To validate what we said in Section 5, we replicate the basic variational autoencoder of
Kingma & Welling (2013), implementing it both with Gaussian latent variables, as in the original,
and with an Information Dropout layer. We trained both implementations for 300 epochs dropping
the learning rate by 0.1 at 30 and 120 epochs. We report the results in the following table. The
Information Dropout implementation has similar performance to the original, confirming that a
variational autoencoder can be considered a special case of Information Dropout.

Table 1: Average variational lower-bound L on the testing dataset for a simple VAE, where the size
of the latent variable z is 256 · k and the encoder/decoder each contain 512 · k hidden units. The
latent variable z is implemented either using a Gaussian vector or using Information Dropout. Both
methods achieve a similar performance.

k Gaussian Information

1 -98.75 -100.04
2 -99.03 -99.07
3 -98.72 -99.10

7 CONCLUSION

We introduced a new dropout method that can be seen as an efficient implementation of the Infor-
mation Bottleneck principle and that helps the network learn the structure of the nuisance factors
affecting the data and build representations that are insensitive to those nuisances, therefore improving
generalization performance. We also analyzed from an information theoretic viewpoint the role that
noise injected in a network has in learning nuisance invariance. Experimental evidence confirms the
insights stemming from the theory thus developed.

Another interpretation of Information Dropout is as a way of biasing the network towards recon-
structing representations of the data that are compatible with a Markov chain generative model,

9
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making it more suited to data coming from hierarchical models, and in this sense is complementary
to architectural constraint, such as convolutions, that instead bias the model toward geometrical tasks.

An important topic in representation learning, which we did not discuss explicitly, is whether we can
also learn a “disentangled” representation of the data, and whether the factors of this representation
are related to the latent factors of the real generative model. In Appendix B and Appendix C, we
show that by adding independent (multiplicative) noise to the activations and by using the IB loss, we
naturally favor representations which have mutually independent components and, in some restricted
situations, we prove that we can disentangle the relevant part of the information from the nuisance
variability. We leave proving more general results in this direction to a future work.
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A COMPUTATION OF THE KL-DIVERGENCE

Proposition (Information dropout cost for ReLU activations). Let z = ε · f(x), where ε ∼ pα(ε),
and assume p(z) = qδ0(z) + c/z. Then, assuming f(x) 6= 0, we have

KL(pθ(z|x) ‖ p(z)) = −H(pα(x)(log ε)) + log(c)

In particular, if pα(ε) is chosen to be the log-normal distribution pα(ε) = logN (0, α2
θ(x)), we have

KL(pθ(z|x) ‖ p(z)) = − logαθ(x) + const.

If instead f(x) = 0, we have
KL(pθ(z|x) ‖ p(z)) = − log q.

Proof. If f(x) 6= 0, then we also have z 6= 0. Since the KL-divergence is invariant under parameter
transformations we can write

KL(pθ(z|x) ‖ pθ(z)) = KL(pθ(log z|x) ‖ pθ(log z))

=

∫
log

(
pθ(log z|x)
pθ(log z)

)
pθ(log z|x)dz

=

∫
log
(
pα(x)(log ε)

)
pα(x)(log ε)dε− log c

= −H(pα(x)(log ε))− log c.

For the second part, notice that by definition pα(x) = N (0, α2
θ(x)) and

H(N (0, α)) = logαθ(x) +
1

2
log(2πe).

Finally, if f(x) = 0, then also z = 0, so p(z|x) = δ0(z). It is then easy to see that

KL(pθ(z|x) ‖ p(z)) = − log p(z = 0) = − log q.

Proposition (Information dropout cost for Softplus activations). Let z = ε·f(x), where ε ∼ pα(ε) =
logN (0, α2

θ(x)), and assume pθ(z) = logN (µ, σ2). Then, we have

KL(pθ(z|x) ‖ p(z)) =
1

2σ2

(
α2(x) + µ2

)
− log

α(x)

σ
− 1

2
.

Proof. Since the KL divergence is invariant for reparametrizations, the divergence between two
log-normal distributions is equal to the divergence between the corresponding normal distributions.
Therefore, using the known formula for the KL divergence of normals, we get the desired result.

B EFFECTS OF USING A FACTORIZED APPROXIMATE PRIOR

In Information Dropout, we want to find a representation z ∼ q(z|x) that minimizes the objective

Hq(y|z) + βI(z;x).

This objective can be rewritten as

Hq(y|z) + βEx[KL(q(z|x) ‖ q(z))],

11
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where the parameters of the posterior distribution q(z|x) are learned using a neural network. The prior
distribution q(z) should in theory be computed from the posterior by integrating over x. However,
since this is not feasible, we instead introduce a factorized approximation of the prior in the form
p(z) =

∏
j pj(zj), and solve the problem

Hq(y|z) + βEx[KL(q(z|x) ‖ p(z))].

In this appendix, we show that the latter problem is indeed equivalent to the former when the
components of the representation are mutually independent, and that assuming a factorized prior
automatically favors the creation of such representations. In the following proposition, for simplicity,
we concentrate on discrete random variables. Recall that the total correlation, or multivariate mutual
information, of a variable z = (z1, . . . , zn) is defined as

TC(z) =
∑
j

H(zj)−H(z)

= KL(q(z) ‖
∏

j qj(zj)),

and that TC(z) = 0 if and only if the components of z are mutually independent.
Proposition 3. Let z = (z1, . . . , zn) be a discrete random variable, let q(z|x) be a generic probabil-
ity distribution, and let p(z) =

∏
i=1n p(zi) be a factorized prior distribution. Then, for any function

F (q), a minimization problem in the form
minimizeq,p F (q) + βEx[KL(q(z|x) ‖ p(z))],

is equivalent to
minimizeq F (q) + β {Iq(z;x) + TCq(z)} ,

where Iq(z;x) is the mutual information and TCq(z) is the total correlation of z, assuming z ∼ q(z).

Proof. To prove the proposition, we just need to minimize with respect to p and substitute back
the solution. Adding a Lagrange multiplier for the constrain

∑
zi
pi(zi) = 1, the problem can be

rewritten as

L(q, p) = F (q) + βEx

[∑
z

q(z|x) log q(z|x)
p(z)

dz

]
+ λ

(∑
zi

pi(zi)− 1

)

= F (q) + βEx

[∑
z

q(z|x) log q(z|x)∏n
j=1 pj(zj)

dz

]
+ λ

(∑
zi

pi(zi)− 1

)
.

Taking the derivative with respect to to pi(z̄i) we have

∂L(q, p)
∂pi(z̄i)

= βEx

[∑
z

q(z|x) log q(z|x)∏n
j=1 pj(zj)

]
+ λ

= −β
∑
zi=z̄i

Ex[q(z|x)]
pi(z̄i)

+ λ

= −β
q(z̄i)

p(z̄i)
+ λ.

Setting it to zero, we obtain p(zi) = q(zi), that is, the optimal factorized prior is the product of the
marginals. Substituting it back in the second term (the only one containing p), we obtain

Ex[KL(q(z|x) ‖ p(z))] = Ex

[∑
z

q(z|x) log q(z|x)∏n
j=1 qj(zj)

]

= Ex

[∑
z

q(z|x)

(
log

q(z|x)
q(z)

+ log
q(z)∏n

j=1 qj(zj)

)]

= Ex

[∑
z

q(z|x) log q(z|x)
q(z)

]
+
∑
z

Ex[q(z|x)] log
q(z)∏n

j=1 qj(zj)

= Iq(z;x) + KL(q(z) ‖
∏

j qj(zj))

= Iq(z;x) + TCq(z).

12
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C INFORMATION BOTTLENECK PRINCIPLE AND DISENTANGLEMENT

In Appendix B, we showed that the loss function we use, in conjunction with a factorized prior,
automatically favors representations of the data in which all the components are independent. In
this appendix we show that, in the simple case of the data x coming from a Gaussian distribution,
where our task is to recover one component of the data from a noisy observation, the solution of
the Information Bottleneck Lagrangian when noise is added to the computation process naturally
leads to recovering the independent components of the generative model. For simplicity, here we will
use additive noise from a Gaussian distribution, but it is easily seen by exponentiating each random
variable that this is exactly equivalent to using multiplicative noise from a log-normal distribution,
which is the same case treated in the main paper.

Suppose we have a 2-dimensional Gaussian random variable

x = (x, y) ∼ N (0, I),

and that our task is to recover y = eT2 x, given a noisy observation

x̂ = Ax+ ξ,

where A is an orthogonal matrix and ξ ∼ N (0, σ2
ξ ) is some additive noise. We want to find an

optimal representation of the input x̂ for the task y. To simplify the problem, we restrict to the
representations in the form

z = Bx̂,

where B is an orthogonal matrix. Intuitively, the best representation for the task should be obtained
by choosing B = A−1, since then we would have z = A−1x̂ = x+A−1ξ, and the component of x̂
relevant to the task, that is y, would be disentangled from the nuisance x. However, as we show in
the following proposition, if we evaluate the representation using the conditional cross-entropy loss
L = H(y|z), then all the choices of B are equivalent, while if we add noise to the representation and
use the IB loss, we naturally obtain that the optimal representation is disentangled.
Proposition 4. Let x ∼ N (0, I), x̂ = Ax+ ξ, where A is orthogonal and ξ ∼ N (0, σ2

ξ ). We want
to find a representation z of x for the task y = eT2 x.

(i) Assume the representation z is in the form z = Bx̂, where B is an orthogonal matrix. Then the
cross-entropy loss L = H(y|z) does not depend on choice of B, so all the representations are
equivalent for the cross-entropy loss.

(ii) Assume the representation z is in the form z = Bx̂+ ε, where B is an orthogonal matrix and
the noise ε has distribution ε ∼ N (0,Σ = diag(σ2

1 , σ
2
2)). Without loss of generality, assume

that σ2 ≤ σ1. Then, for β small enough, the representation that minimizes the IB Lagrangian

L = H(y|z) + βI(x̂, z),

is the disentangled representation obtained by choosing B = A−1 and, for β → 0+, we have
σ1 → +∞ and σ2 → 0, so the added noise selectively preserve only information relative to the
task.

Proof. For (i), notice that, since y = eT2 x = eT2 (C
−1z−Bξ) we have

y|z ∼ N (eT2 C
−1z, σ2

ξ ),

therefore,

H(y|z) = log σξ +
1

2
log(2πe)

is independent from B.

For (ii), reasoning as before, we have

y|z ∼ N (eT2 C
−1z, σ2

ξ + eT2 C
TΣCe2),

where we have defined C = BA. Since C is orthogonal, we can write Ce2 = (sin θ, cos θ) for some
θ. Notice in particular that for θ = 0 we would have C = I , and so B = A−1. Using this, we can
rewrite the expression above as

y|z ∼ N (eT2 C
−1z, σ2

ξ + σ2
1 sin

2 θ + σ2
2 cos

2 θ).

13
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Therefore, the conditional entropy is

H(y|z) = log(σ2
ξ + σ2

1 sin
2 θ + σ2

2 cos
2 θ) + const.

We now need to compute the mutual information I(x̂; z) term of the IB Lagrangian. Recall that the
mutual information between two N-dimensional Gaussian variables x and z is

I(x; z) =
1

2
log

(
|Σxx||Σzz|

|Σ|

)
,

where Σxx and Σzz are the covariances matrixes of x and z respectively and Σ is the covariance
matrix of the pair (x, z). Using this, we obtain

I(x̂, z) =
1

2

[
log

(
1 +

1 + σ2
ξ

σ2
1

)
+ log

(
1 +

1 + σ2
ξ

σ2
2

)]
.

Putting everything together, the IB loss function is

L = log(σ2
ξ + σ2

1 cos
2 θ + σ2

2 sin
2 θ) +

β

2

[
log

(
1 +

1 + σ2
ξ

σ2
1

)
+ log

(
1 +

1 + σ2
ξ

σ2
2

)]
.

Since θ appears only in the first term, we can immediately minimize the loss with respect to θ. Recall
that we are assuming σ2 ≤ σ1. Then, there are two possibilities: if σ2 < σ1, then we must have
θ = 0 (or equivalently C = I and hence B = A−1). If instead σ1 = σ2, then all θ are equivalent. In
both cases, the loss function simplifies to

L = log(σ2
ξ + σ2

2) +
β

2

[
log

(
1 +

1 + σ2
ξ

σ2
1

)
+ log

(
1 +

1 + σ2
ξ

σ2
2

)]
.

The terms containing σ1 are now separate from those containing σ2 and we can minimize them
independently. Doing so we obtain

σ1 → +∞,

σ2 = f(β)

where f(β) is a function of β such that f(β) → 0 as β → 0+. Finally, since we have now established
that for β small enough we have σ2 < σ1, we can conclude from what we said before that we must
have θ = 0, and therefore that B = A−1 and the representation is disentangled, as we wanted.

While the previous proposition deals with a very simple case, under restrictive hypotheses on the
form of the representation, we conjecture that a similar property should hold more generally for any
representation. For example, assume that we can find a mapping f(x) = (T (x), n), where T (x)
is a sufficient statistic of the data for the task y, while n is independent from y. That is, f(x) can
“disentangle” the component of the data relevant to the task from the nuisances. Then, it would be
easy to minimize the IB Lagrangian by routing all the noise on n, while leaving T (x) untouched. We
claim that the opposite should also happen: When the IB Lagrangian is minimized, the representation
should be decomposed in a part relevant for the task, and a part which is independent. We leave
further study of this problem to a future work.
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Figure 5: Classification error on CIFAR-10 for several dropout methods applied to the All-CNN-32
network (Table 2) using ReLU activations and varying the number of filters used. While in Figure 3b
we used controlled setting to provide a fairer comparison, here we use the same settings suggested
by Springenberg et al. (2014). In particular we add a weight decay factor of 0.001, reduce the batch
size to 128, and drop the inputs with probability 0.2. The main effect of Information Dropout is to
dynamically reduce the information flow in the network. Since the same can be achieved by carefully
tuning the dropout rate and/or the number of filters used, we expect binary dropout to performs
similarly on a finely tuned standard architecture, as is the case here when using all the filters.
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Figure 6: Plots of (a) the total information transmitted through the two dropout layers of a All-CNN-
32 network with Softplus activations trained on CIFAR and (b) the average quantity of information
transmitted through each unit in the two layers. From (a) we see that the total quantity of information
transmitted does not vary much with the number of filters and that, as expected, the second layer
transmits less information than the first layer, since prior to it more nuisances have been disentangled
and discarded. In (b) we see that when we decrease the number of filters, we force each single unit to
let more information flow (i.e. we apply less noise), and that the units in the top dropout layer contain
on average more information relevant to the task than the units in the bottom dropout layer.
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