
Under review as a conference paper at ICLR 2018

HALLUCINATING BRAINS WITH ARTIFICIAL BRAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Human brain function as measured by functional magnetic resonance imaging
(fMRI), exhibits a rich diversity. In response, understanding the individual vari-
ability of brain function and its association with behavior has become one of the
major concerns in modern cognitive neuroscience. Our work is motivated by the
view that generative models provide a useful tool for understanding this variabil-
ity. To this end, this manuscript presents two novel generative models trained
on real neuroimaging data which synthesize task-dependent functional brain im-
ages. Brain images are high dimensional tensors which exhibit structured spatial
correlations. Thus, both models are 3D conditional Generative Adversarial net-
works (GANs) which apply Convolutional Neural Networks (CNNs) to learn an
abstraction of brain image representations. Our results show that the generated
brain images are diverse, yet task dependent. In addition to qualitative evaluation,
we utilize the generated synthetic brain volumes as additional training data to im-
prove downstream fMRI classifiers (also known as decoding, or brain reading).
Our approach achieves significant improvements for a variety of datasets, classifi-
cation tasks and evaluation scores. Our classification results provide a quantitative
evaluation of the quality of the generated images, and also serve as an additional
contribution of this manuscript.

1 INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a common tool used by cognitive neurosci-
entists to investigate the properties of brain function in response to stimuli. Classic analysis ap-
proaches (Poldrack et al., 2011) focused on analyzing group-averaged brain function images. How-
ever, it was discovered that brain activation patterns vary significantly between individuals. Thus,
modern analysis now prioritizes understanding the inter-subject variability of brain function (Dubois
& Adolphs, 2016; Geerligs et al., 2017). Our work is motivated by the view that generative models
provide a useful tool for understanding this variability – as they enable the synthesis of a variety
of plausible brain images representing different hypothesized individuals, and high-quality genera-
tive models can be analyzed to posit potential mechanisms that explain this variability (Horn et al.,
2008). The results presented in this paper provide – to our knowledge for the first time, positive
results suggesting that it is indeed possible to generate high quality diverse and task dependent brain
images.

While we can qualitatively evaluate generative brain images, quantitative evaluation allows us to
objectively compare between various results. To this end, we utilize the generated synthetic brain
volumes as additional training data to improve downstream fMRI classifiers. The use of classifiers to
predict behavior associated with brain images is also known as decoding or brain reading (Varoquaux
& Thirion, 2014; Pereira et al., 2009). Classifiers such as support vector machines and deep networks
have been applied for decoding brain images. For example, Cox & Savoy (2003) attempted to
classify which of 10 categories of object a subject was looking at (including similar categories, such
as horses and cows) based on limited number of brain images. Besides visual tasks, Mitchell et al.
(2008) distinguished active regions of brains when subjects listened to linguistic words, where the
stimuli included five items from each of 12 semantic categories (animals, body parts etc.).

Beyond providing a model for individual variability, high quality brain image synthesis addresses
pressing data issues in cognitive neuroscience. Progress in the computational neurosciences is stifled
by the difficulty of obtaining brain data either because of a limited culture of data sharing, or due to
medical privacy regulations (Poldrack & Gorgolewski, 2014). For the computational neuroscientist,
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generated images deliver unlimited quantities of high quality brain imaging data that can be used
to develop state of the art tools before application to real subjects and/or patients (Varoquaux &
Thirion, 2014). This approach of using modern generative models to synthesize data, which in
turn accelerates scientific study, has already proven useful in many scientific fields such as particle
physics and astronomy (Castelvecchi et al., 2017). Our work represent a first application for this
approach to neuroscience.

One of the promising generative models are Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), capturing complex distributions using a non-cooperative two-player game formulation:
a generator produces synthetic data by transforming samples drawn from a simple distribution; a
discriminator focuses on distinguishing synthetic and real data. Despite (or possibly due to) the
compelling formulation, GAN training is known to be unstable. To address this difficulty various
variants have been proposed. Wasserstein GANs (WGANs) (Arjovsky et al., 2017) formulate the
objective using the Wasserstein distance rather than the classical Jenson-Shannon divergence. Im-
proved training of WGANs (Gulrajani et al., 2017) applies an additional gradient penalty, which
avoids the critical weight clipping in WGANs which might lead to pathological behavior. Dualing
GANs restrict the discriminator and formulate the dual objective (Li et al., 2017). Beyond improv-
ing the stability, conditional GANs (Mirza & Osindero, 2014) make it possible to control the data
generation process by conditioning the model on additional information. Auxiliary Classifier GANs
(AC-GANs) (Odena et al., 2016) unify a GAN and classifier to a single architecture, employing la-
bels to generate ImageNet samples. 3D GANs (Wu et al., 2016) reconstruct 3D objects and Edward
& David (2017) propose to use improved WGAN to enhance the stability of 3D GANs.

We make the following contributions in this paper:
1. We develop Improved Conditional Wasserstein GANs (ICW-GAN) and Auxiliary Classifier

and Discriminator GANs (ACD-GAN), two types of 3D conditional GANs to synthesize
fMRI brain data, both of which we find to be stable to train.

2. We assess the qualitative quality and diversity of generated brain volumes. Our results
suggest that the proposed models are able to generate high quality task-dependent and
diverse 3D brain images.

3. We evaluate our models on three datasets using a series of image classification tasks with
support vector machines and deep network classifiers at two levels of brain image reso-
lution. Results show that augmenting training data using synthetic data generated by our
models can greatly improve test classification accuracy of brain volumes.

2 RELATED WORK

2.1 NEURAL NETS FOR FMRI BRAIN DATA

We are unaware of any published papers using neural networks to generate brain imaging data.
However, neural networks have been used by several authors for classifying brain imaging data. Firat
et al. (2014) and Koyamada et al. (2015), used 2D deep nets to extract features of fMRI brain images
to classify brain states. Nathawani et al. (2016) applied both 2D and 3D neural networks to classify
fMRI brain data. Svanera et al. (2017) decoded fMRI data of video stimuli and classify data into
visual categories. Similarly, Nathawani et al. (2016) extracted features from 4-D fMRI data and
used deep learning methods for discrimination of cognitive processes.

2.2 GENERATIVE ADVERSARIAL NETS

To learn a distribution over data x, a GAN (Goodfellow et al., 2014) formulates a 2-player non-
cooperative game between two deep nets. The generator G uses a random noise vector z sampled
from a prior distribution Pz(z) as input and produces an imageG(z). The generator is trained to fool
the discriminator, which receives either synthetic data or real data and differentiates between them.
Formally, G and D play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (G,D) := Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]. (1)

For the conditional GAN (Mirza & Osindero, 2014), both G and D are conditioned on some extra
information y, for instance, class labels or other features. The conditioning can be presented by
feeding y into both the generator and the discriminator. This work is successful in one-to-many
mappings such as image labeling with many tags.
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Figure 1: The generator of our ICW-GAN. The 128 dimensional encoding z is drawn from a multi-
variate normal distribution. The label vector is a one-hot encoding, i.e., the one entry that equals
one represents the class that the generated volume belongs to. It is concatenated to input and hidden
layers and for each of these layers, a fully connected layer transforms the label vector to a volume.
Our stride in the de-convolutional layers is [1,2,2,2,1] in the batch, height, width, length, feature
map dimension.

The Wasserstein GAN (WGAN) (Arjovsky et al., 2017) uses Wasserstein-1 distance W (q, p) as the
objective function. It computes the minimum cost of transporting mass to transform the distribution
q into the distribution p. Under this circumstance,W (q, p) is continuous everywhere and its gradient
with respect to its input was found to be more stable than its classical GAN counterpart. Improved
Wasserstein GAN (IWGAN) (Gulrajani et al., 2017) argues that weight clipping of the critic, i.e., the
discriminator, in WGANs inevitably causes the gradient to either vanish or to explode. To address
this issue Gulrajani et al. (2017) propose an alternative penalty term in the critic loss based on the
gradient norm.

In an auxiliary classifier GAN (AC-GAN) (Odena et al., 2016), every generated sample has a cor-
responding label which can be used as a condition in the generator and the classifier. The discrim-
inator is modified to contain an auxiliary decoder network to reconstruct the training data class.
Further, 3D-GANs (Wu et al., 2016) extend GANs to 3D object generation. Different from classical
GANs, 3D-GANs apply the three dimensional convolution in both G and the D. By learning deep
object representations, 3D GANs can generate visually appealing yet variable 3D object volumes.

3 APPROACH

In the following we introduce two models for fMRI data generation: ICW-GAN and ACD-GAN.
They differ in model structure and in the way label information is taken into account. We first show
the model structure of 3D ICW-GAN and its downstream classifiers in Section 3.1, and present
ACD-GAN in Section 3.2.

3.1 3D IMPROVED CONDITIONAL WASSERSTEIN GAN (ICW-GAN)
Similar to classical generative adversarial networks (GANs), ICW-GANs are formulated as a non-
cooperative two-player game between two adversaries: (1) a generator x̂ = Gθ(z), which generates
artificial samples x̂ from randomly drawn latent encodings z via a transformation using a deep net
parameterized by θ; and (2) a discriminator Dw(x) represented via the logit obtained from a deep
net parameterized by w.

Following Arjovsky et al. (2017), we build our models based on minimizing the Wasserstein distance
via

min
θ

max
w∈W

Ex∼Pdata(x)[Dw(x)]− Ez∼Pz(z)[Dw((Gθ(z)))], (2)

where {Dw}w∈W denotes a set of functions that are K-Lipschitz for some K. IW-GANs (Gulrajani
et al., 2017) provide a more stable method for enforcing the Lipschitz constraint by employing a
gradient penalty rather than weight clipping, when optimizing:

Ez∼Pz(z)[(1−Dw(Gθ(z)))]− Ex∼Pdata(x)[Dw(x)] + λEx̂∼Px̂
[(‖ ∇x̂Dw(x̂) ‖2 − 1)2]. (3)

Hereby x̂ is a convex combination of real data and artifical samples, i.e., x̂ ← εx + (1 − ε)G(z)
with ε drawn from a uniform distribution (ε ∼ U[0, 1]).

In our models, we extend IW-GAN in two directions. First, because fMRI data is three dimensional,
3D convolution and deconvolution are used in order to maintain the spatial structure and voxel
information of the fMRI data. Second, we condition both the discriminator Dw and the generator
Gθ on available labeled data.

As shown in Figure 1, our generator consists of three fully convolutional layers. In convolutional
layers, we use kernels with a size 4× 4× 4 and strides 2, with batch normalization and Leaky ReLU
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Figure 2: The classifier (top) and critic (bottom) in our ACD-GANs. The classifier and the critic
possess a similar architecture but not identical in terms of the output and leveraging of labels. The
label is only employed in the critic, not in the classification stream. The way to transform the label
vector and the stride are identical to what we illustrated in Figure 1.

layers added between and a tanh layer at the end. The discriminator architecture is a mirrored
generator, but no activation function is used at its end.

This ICW-GAN model follows models proposed in (Gulrajani et al., 2017; Mirza & Osindero, 2014;
Wu et al., 2016), however, we found the following modifications to stabilize training and supervise
the generation process for classification data: compared to existing GANs, our ICW-GAN applies
a more stable upper bound for Wasserstein distance as an objective function, leverages condition-
ing labels to supervise the generation process, and utilizes 3D convolution methods for 3D object
generation.

To include label information, we concatenate labels to the input and to the hidden layers. At the
input of the generator, one-hot labels are combined with the brain vector. Then, for each of the inter-
mediate layers, we use a fully connected layer followed by a tanh activation to transform the one-hot
vector to a volume of appropriate size, i.e., 15× 2× 2 for the first hidden layer, and 15× 3× 3 for
the next. We empirically found dimensions other than 15, e.g., 3 to work well too. We concatenate
the label volume to intermediate volumes on feature dimension and pass the joint one to the next
deconvolution layer. We follow the same procedure in the architecture of the discriminator.

Referring to the volume labels via y, the objective function L of our ICW-GAN model is as follows:

L = Ez∼Pz(z)[(1−D(G(z|y)))]−Ex∼Pdata(x)[D(x|y)]+λEx̂∼Px̂
[(‖ ∇x̂D(x̂|y) ‖2−1)

2], (4)

where x̂ ← εx + (1 − ε)G(z), ε ∼ U[0, 1]. λ is a gradient penalty coefficient. We optimize both
the discriminator and generator loss using Adam optimizer (Kingma & Ba, 2014).

DOWNSTREAM CLASSIFIERS FOR ICW-GAN
Our work is partially motivated by the difficulty of acquiring fMRI data, so we consider the task
of enlarging the dataset for downstream tasks such as classification, using synthetically generated
samples. To assess the suitability of the developed generation procedure, we employ a variety of
downstream classification processes. More specifically, we train a classifier with real (‘Real’) or real
plus generated (‘Real+G’) data. Common classifiers in neuroscience are Support Vector Machines
(SVMs) and 3D deep networks. We think usage of both provides valuable insights as their number of
trainable parameters differ significantly, i.e., 14 parameters for SVMs and several hundred thousand
for our deep networks. To measure the results obtained from different training datasets we use
accuracy, macro F1, precision and recall metrics.

SVM: We use a simple linear SVM to classify test data and don’t extract any intermediate features.
Instead, we use raw brain data, vectorized to a 1-dimensional vector for classification to avoid any
form of collusion.
Deep Net: The deep net structure is similar to the discriminator, having a 3 dimensional structure
and identical number of convolution layers with a Leaky ReLU activation. Obviously the classi-
fier doesn’t concatenate intermediate and input data with any label information. We provide the
respective information for each dataset in the experimental section.
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Figure 3: 2D projections of synthetic brain volumes generated using the proposed ICW-GAN. The
training dataset is collection 1952. The tag above each image sequence shows the class the pic-
ture belongs to. Qualitative evaluation by experts suggests that the generated images are indeed
qualitatively realistic.

Downsampling Input Classifier Accuracy Macro F1 Precision Recall

4.0×
Real SVM 0.797 0.797 0.813 0.797
Real NN 0.802 0.802 0.817 0.802
Real+Synth. SVM 0.806 0.803 0.823 0.807
Real+Synth. NN 0.819 0.817 0.830 0.819

2.0×
Real SVM 0.855 0.857 0.867 0.857
Real NN 0.863 0.863 0.872 0.863
Real+Synth. SVM 0.860 0.863 0.860 0.857
Real+Synth. NN 0.891 0.894 0.906 0.891

Table 1: Results on collection 1952. Downsampling reflects the down-scaling of brain volumes.
Input represents the input of a classifier: Real means only use real training data, while ‘Real+Synth.’
means real training data plus synthetic data which is produced by ICW-GAN. Two classifiers are
utilized: SVM and neural networks (NN). Results show that augmenting real data with synthetic
data improves classification performance.

3.2 3D AUXILIARY CLASSIFIER AND DISCRIMINATOR GAN (ACD-GAN)
We also develop a conditional GAN architecture which jointly trains the generator, the discriminator
and the classifier. This form of training is inspired by the AC-GAN (Odena et al., 2016) formula-
tion. Our generator architecture is illustrated in Figure 1 and identical to the one employed for the
ICW-GAN. The combination of classifier and discriminator is provided in Figure 2. As before, the
discriminator assesses the logit of the probability that a provided sample is real or artificially gen-
erated. In addition, the classifier provides a probability distribution over the class labels. In this
model, training passes labels through the generator and the discriminator in order to condition the
adversarial process. However, no labels are employed in the classification stream. The classifier
loss, LC , is the log-likelihood of the correct class. Compared to L in Eq. (4), the discriminator loss,
LD includes the additional classifier component

LC = Ex∼Pdata(x)[logP (C = c|x)] + Ez∼Pz(z)[logP (C = c|G(z)]. (5)

The generator loss function, LG, consists of the likelihood of fake images and one part of LC , i.e.,

LG = Ez∼Pz(z)[P (D = fake |G(z)) + Ez∼Pz(z)[P (C = c|G(z)]. (6)

Similarly, the discriminator loss function is given by LD = L + LC . We optimize the generator,
classifier and discriminator loss functions using Adam optimizer (Kingma & Ba, 2014).

4 EXPERIMENTS

We examine the performance of the two aforementioned models on three different datasets from
Neurovault (Gorgolewski et al., 2015): collections 1952, 2138 and 5031. To evaluate the benefits

1The collections are publicly available online, e.g., https://neurovault.org/collections/503
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Figure 4: Mean MS-SSIM scores between pairs of images within a given class for brain volumes of
4.0× downsampling (left) and 2.0× downsampling (right). We calculated the MS-SSIM scores on
low resolution data of collection 1952 and synthetic data was generated using the ICW-GAN. Each
point represents an individual class. Values in horizontal axis are MS-SSIM scores computed on
real brain images, while values on the vertical axis are calculated using mixed images.

Downsampling Input Classifier Accuracy Macro F1 Precision Recall

8.0×
Real SVM 0.523 0.480 0.497 0.523
Real NN 0.530 0.517 0.545 0.530
Real+Synth. SVM 0.531 0.493 0.510 0.533
Real+Synth. NN 0.562 0.539 0.568 0.563

4.0×
Real SVM 0.555 0.507 0.517 0.533
Real NN 0.723 0.712 0.737 0.723
Real+Synth. SVM 0.562 0.517 0.527 0.563
Real+Synth. NN 0.737 0.715 0.727 0.723

Table 2: Results on collection 2138. The synthetic images used here were generated from the
ICW-GAN. Input represents the input of a classifier: Real means only use real training data, while
‘Real+Synth.’ means real training data plus generated data. Two classifiers are utilized: SVM
and neural networks (NN). Results show that augmenting real data with synthetic data improves
classification performance.

of generated fMRI data for classifier training, we focus on two variants of the model architecture
for generating images. The original images are downsampled using the nilearn python package2 to
13× 15× 11 (lower resolution) and 26× 31× 23 (higher resolution) spatial resolutions for collec-
tion 1952, and 13× 15× 11 (lower resolution) and 26× 31× 22 (higher resolution) resolutions for
the other two collections.

In Section 3, we present the architectures of our models for generating low resolution data, which
only have 3 convolutional layers. For high resolution data we add one more convolutional and de-
convolutional layer in the discriminator and generator respectively. For high resolution data, the
classifier also uses 4 convolutional layers in the ACD-GAN. We first show qualitative results for
generated 3D volumes, then we provide quantitative results for 3D volume classification. We use
cross validation in all reported results to carefully assess the classifier performance. See the supple-
mentary material for details.
Dataset 1: Collection 1952 Collection 1952 has 6573 brain images, 45 classes with a total number
of 19 sub-classes. The labels include task description that subjects were going through during the
imaging process, such as visual, language and calculate. A combination of 2 to 4 sub-classes are
subsumed for a class. There are a total of 45 classes because not every potential combination is
observed. In our experiments, we work on a subset of 36 classes because 9 of the 45 classes have
less than 30 examples. If a class has more than 100 images, we split images in that class 7:1:2 into
training, validation and test datasets. Below 100 images but more than 30 images we use a 3:1:2
data split. Note that we ensure that the test data always consists of real images only. We train the
ICW-GAN and ACD-GAN for 2500 epochs with a learning rate of 1e-4 and 50% exponential decay
for each 3000 iterations and a batch size of 50. 2-D projections of several brain volumes generated
by ICW-GAN are illustrated in Figure 3. The projections in the top row of Figure 3 are brains of

2http://nilearn.github.io
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Downsampling Input Classifier Accuracy Macro F1 Precision Recall

6.0×
Real SVM 0.212 0.210 0.220 0.210
Real NN 0.293 0.287 0.302 0.293
Real+Synth. SVM 0.225 0.227 0.24 0.223
Real+Synth. NN 0.299 0.298 0.321 0.298

3.0×
Real SVM 0.233 0.230 0.233 0.233
Real NN 0.358 0.386 0.390 0.358
Real+Synth. SVM 0.231 0.227 0.230 0.230
Real+Synth. NN 0.373 0.380 0.410 0.372

Table 3: Results on collection 503. Similarly, downsampling reflects the down-scaling of brain
volumes. Input represents the input of a classifier: Real means only use real training data, while
‘Real+Synth.’ means real training data plus generated data. Two classifiers are utilized: SVM
and neural networks (NN). Results show that augmenting real data with synthetic data improves
classification performance.

Figure 5: 2-D projections of synthetic brain volumes by ACD-GAN using training data from col-
lection 503 (4.0× downsampling). The left top tag is the class generated brain belongs to (details in
the supplement). Each class represents a picture being shown to the subjects. Linear normalization
is used and the lower threshold is 0.3.

class ‘visual words, language, visual,’ and those at the bottom are from class ‘places, visual, right
hand.’ By examining the generated brain images, we find diversity in both intra-class and between-
class. We refer the interested reader to the supplementary material for a comparison of generated
and real brain images.

Inspired by Odena et al. (2016), we compute the multi-scale structural similarity (MS-SSIM) (Wang
et al., 2003) to examine the intra-class diversity of the data generated by ICW-GAN. The MS-SSIM
score is a similarity metric based on image similarity at different resolutions. Its values are within
[0, 1]. Higher MS-SSIM values correspond to more similar images. We measure the mean MS-SSIM
score with 100 randomly chosen volumes of mixed data with a given class, and ones of real training
data. In 13× 15× 11 resolution, we find that 22 classes with mixed data have a lower MS-SSIM
score than only with real training data. In other words, 61.1% classes with mixed data have sample
variability that exceeds those only with real training data. In 26× 31× 23 resolution, 69.4% classes
with mixed data have a lower MS-SSIM score. See Figure 4 for details.

To further assess the quality of the generated data we evaluate classification performance. Note that
the test data is always composed of real images. The classification results are shown in Table 1.
Downsampling refers to the downscaling factor as already discussed. The second column indicates
the type of training data we use for the classifier: only using real data (‘Real’), or using the mixed
data of real and generated volumes (‘Real+G’). The third column denotes the classifier type, i.e., an
SVM or a deep net (‘NN’). We use the validation dataset to choose the best training models and use
these models to classify the test data. We observe the deep net classifier to generally outperform
SVMs and we observe generated data to be beneficial for classifier training.

Dataset 2: Collection 2138 For data in collection 2138, there are 1847 brain images, 61 classes
and 50 labels. Because of the small size of the dataset, we randomly choose 70% of the brain images
as training data and leave 30% as test data. In this case, we do not have development data to supervise
the training process; thus, we train our models for 1000 epochs in several runs and record the best
classification results, which are summarized in Table 2. In this collection, we downsample brains by
a factor of 8 and 4 to volume sizes of 13× 15× 11 and 26× 31× 22 respectively. Similar to the
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Dataset Model Accuracy Macro F1 Precision Recall

1952 AC-GAN 0.800 0.741 0.784 0.745
ICW-GAN 0.819 0.817 0.830 0.819
ACD-GAN 0.835 0.815 0.828 0.817

2138 ICW-GAN 0.562 0.539 0.568 0.563
ACD-GAN 0.569 0.547 0.579 0.560

503 ICW-GAN 0.299 0.298 0.321 0.298
ACD-GAN 0.326 0.299 0.329 0.301

Table 4: Results of ACD-GAN on the three datasets in the low resolution setting. We find the
ACD-GAN to perform slightly better than the ICW-GAN.

earlier reported results we observe deep nets to outperform SVMs, but more importantly, generated
data during training was again suitable to improve the classifier performance on real data.

Dataset 3: Collection 503 5067 brain images are in collection 503. Subjects in this dataset are
required to respond to 30 images from the International Affective Picture Set (Chang et al., 2015).
These 30 images were used to train the Picture Induced Negative Emotion Signature also described
in this paper. We consider the 30 pictures classes of brain data. In other words, there are overall
30 classes and each class represents a picture shown to subjects. This collection needs extra pre-
processing because brain volumes are available with two shapes: 79× 95× 68 and 91× 109× 91.
We conform large volumes to the small ones. Similarly, all experiments are at the two levels of
resolution. Classification results are summarized in Table 3 and again follow the trend reported
earlier.
Results of Using ACD-GAN Since our ICW-GAN achieves the best performance in the three
databases when we use mixed training data, we compare these best results to results of ACD-GAN
at the low resolution. 2-D projections of brain volumes generated by ACD-GAN are shown in
Figure 5. In Table 4, we present classification results of our models and show that ACD-GAN
obtains improved accuracy scores compared to a ICW-GAN for most of the investigated metrics.
As a baseline, we also implemented the recent generative model – the 3-D AC-GAN Odena et al.
(2016). According to all the results presented above, the proposed methods achieve much improved
overall better performance on the three datasets. This is true at both levels of resolution for brain
images. The results also outperform a 3-D AC-GAN applied to the same dataset.

We also observe that our strategy of mixing real and generated data does not always yield the best
results. For example, using real data only to train the NN classifier achieves the largest macro
F1 score at high resolution in Table 3. However, the proposed approach consistently improves
accuracy metrics – which is by far the most popular metric for evaluating multi-class classification
performance.

5 CONCLUSIONS

Generative models provide a useful tool for understanding the individual variability of brain im-
ages. The results of this manuscript show – to our knowledge for the first time, that 3-D conditional
GANs, in particular our proposed ICW-GAN and ACD-GAN, can generate high quality diverse and
task dependent brain images. We hope our results inspire additional research on generative mod-
els for brain imaging data. Beyond qualitative evaluation, we evaluate quantitative performance by
using the generated images as additional training data in a predictive model – mixing synthetic and
real data to train classifiers. The results show that our synthetic data augmentation can significantly
improve classification accuracy – a result which may be of independent interest. Future work will
focus on additional qualitative evaluation of the generated images by neuroscience experts and ex-
ploration of various applications. We also plan to more throughly investigate the trained models
to further explore what it may contribute to the science of individual variability in neuroimaging.
Finally, we plan to expand our models to combine data across multiple studies – each of which
use different labels, by exploring techniques for merging labels based on the underlying cognitive
processes (Poldrack, 2006).
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6 SUPPLEMENTARY MATERIAL

6.1 CROSS-VALIDATION STRATEGY

First, we explain our cross-validation strategy. In Figure 6, the blue bar represents training data
and the green bar is test data. For 3-fold cross-validation, first we partition test data to three folds
and each fold maintains a similar proportion of data for each class as original test data. For each
round of cross-validation, we leverage one of the three parts as test data and left two folds together
with training data to train a model. The same strategy is used with generated data to ensure that test
performance is only based on the test data. Each evaluation metric is the average of the three rounds.

Figure 6: Cartoon illustration of our 3-fold cross validation strategy.

6.2 VARIANCE OF CROSS-VALIDATED PERFORMANCE

We tested our model with various cross-validation settings and calculated the variances of the eval-
uation metrics (Table 5). We conducted this experiment on low resolution data from collection 1952
and synthetic data generated by the ICW-GAN. Except for the number of folds used when partition-
ing the test dataset, the training strategy for 5-fold and 10-fold cross-validation is similar to that of
3-fold cross-validation. The small variances suggest that the reported accuracy differences, while
small, are indeed significant.

N-fold Accuracy Var Acc F1 Var F1 Precision Var P Recall Var R
3-fold 0.819 0.0002782 0.817 0.0002543 0.830 0.0001843 0.819 0.0002432

5-fold 0.8368 0.0002432 0.841 0.0001985 0.862 0.0001643 0.837 0.0002434

10-fold 0.843 0.0002782 0.857 0.0003027 0.894 0.0004785 0.843 0.0003789

Table 5: Accuracy, F1, Precision, Recall and their variance (column 3,5,7,9) for 3-fold, 5-fold
and 10-fold cross validation. We conducted this experiment with the training data of mixed
‘Real+Synth.’ data of collection 1952 in the low resolution (4.0×) setup.

6.3 TRAINING LOSS CURVE OF ICW-GAN IN VALIDATION DATASET IN COLLECTION 1952

We present the ICW-GAN training loss curve evaluated on the validation dataset of collection 1952
in Figure 7. This illustrates the stability of the proposed improved Wasserstein variants.
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Figure 8: This figure shows the trajectory of multiclass accuracy along with the number of artificial
training samples resembling collection 1952 at the low resolution setup. In this case, we only use
generated data from the ICW-GAN to train the deep net classifier. The horizontal axis represents the
number of artificial data used for each class, while the vertical axis represents the accuracy value.
Two light brown lines note the accuracy obtained by only using real data with the SVM and NN
classifier.

Figure 7: Training loss curve of the ICW-GAN on the low-resolution validation dataset of collection
1952.

6.4 RESULTS OF ONLY USING GENERATED DATA FOR TRAINING

In order to further evaluate the quality of the generated data for collection 1952, we trained using
only generated data and tested with real data. We used the deep net classifier for evaluation in this
case while varying the number of input samples for each class. Figure 8 shows that in general, the
test accuracy improves as the amount of artificial training data increases. The red and yellow lines
show the accuracy obtained when only using real data. These results suggest that the generated data
can be as effective for classification as real data with sufficient numbers of samples.
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Training data Accuracy F1 Precision Recall
Synth. data from GMM (20 images/class) 0.203 0.309 0.309 0.202

Synth. data from GMM (500 images/class) 0.720 0.725 0.765 0.720

Real+Synth. (from GMM) 0.793 0.798 0.824 0.793

Synth. data from ICW-GAN (20 images/class) 0.458 0.433 0.537 0.458
Synth. data from ICW-GAN (500 images/class) 0.783 0.776 0.805 0.783
Real+Synth. (from GAN) 0.819 0.817 0.830 0.819

Table 6: Results of synthesizing data using collection 1952 (low resolution). Comparison between
the GMM and ICW-GAN. We list 6 training data strategies: in the 1st, 2nd , 4th and 5th row, we
only use synthetic data to train the deep net classifier while in the 3rd and 6th row, we mix real and
synthetic data together to train the same classifier.

We also used a Gaussian Mixture Model (GMM), i.e., trained separately for each class, as a simple
baseline generative model. The results are shown in Table 6, where 6 training strategies were listed
and the deep net classifier (same as the NN classifier) was used for all the strategies. I.e., we lever-
aged 20 synthetic images in each class (20×number of classes in all) to train the NN classifier. Note
that both generative models learned the probability distribution from collection 1952. The evalua-
tion scores of our models are significantly higher than the ones obtained with a GMM, particularly
when using only synthetic data to train the classifier.

6.5 GENERATED IMAGE QUALITATIVE ANALYSIS

We used NeuroSynth3, a brain decoding tool to qualitatively analyze generated volumes. Its princi-
ple is to compare activity regions of a given brain volume to a data pool and then to obtain an analysis
report about correlation to specific activity patterns. Figure 9 shows a generated brain image of col-
lection 1952 by the ICW-GAN in low resolution and its analysis report with the top 10 ranking list
of correlation. The supervised class of this generated brain is “Non-human sound, auditory“, and
several correlations with top rank are related to auditory and sound.

Analysis Correlation
auditory cortex 0.207
auditory 0.198
heschi 0.195
heschl gyrus 0.194
sounds 0.190
fractional anisotropy 0.189
fa 0.188
pitch 0.187
anisotropy fa 0.186
anisotropy 0.185

Figure 9: The projections of a generated brain volume (left) and its corresponding analysis report
(right). The volume belongs to the class ‘Non-human sound, auditory.’

6.6 ADDITIONAL MULTICLASS CLASSIFICATION RESULTS

We also examine our models using a multilabel classification strategy in low resolution data of
collection 1952. As described before, one class in collection 1952 consists of several labels and
the collection has a total of 19 sub-labels. Instead of encoding the classes with a one-hot vector
of 45 dimensions, we encode them in 19 dimensions, each of which represents a sub-label. The
value in a dimension is 1 only if the sample possesses that label, otherwise, 0, i.e., a sample comes
with a 19 dimensional binary vector. This representation is demanding since the probability space is
significantly larger, specifically, 219 possibilities, for a classifier to learn and discriminate. We use
SVM to train real and mixed training data (synthetic data obtained from ICW-GAN), both of which

3The webpage of NeuroSynth is http://neurosynth.org/decode/
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Input Accuracy Macro F1 Precision Recall
Real 0.4838 0.57 0.76 0.48
Real+Synth. 0.4992 0.57 0.75 0.49

Table 7: Multilabel results for collection 1952 at 4.0× downsampling and synthetic data were from
the ICW-GAN. Even in this highly demanding task, accuracy scores with mixed data (the second
row) outperform the baseline (the first row).

are in the resolution of 13× 15× 11, and utilize 3-fold cross-validation as discussed in Section 6.1.
Several evaluation scores are shown in Table 7. We observe that even in this highly demanding task,
accuracy scores with mixed data (the second row) outperform the baseline (the first row).

6.7 REAL BRAIN IMAGES OF COLLECTION 1952 WITH LABELS ON TOP

We present several real images of collection 1952 with their labels above the 2D projections of brain
images in Figure 10.

Figure 10: Real images in collection 1952 at 4.0× downsampling with labels on top. Linear nor-
malization is used and the lower threshold for plotting these images is 0.48.

6.8 ADDITIONAL SYNTHETIC BRAIN IMAGES

More synthetic brain images using ICW-GAN are shown in this section. Figures 11-13 show gen-
erated ones of low resolution from collection 1952, 2138 and 503 respectively. For collection 1952,
classes are given above the images.

As for collection 2138, the corresponding categories of the classes are as follows:

• 14: visual form recognition, feature comparison, response selection, response execution,
relational comparison, visual pattern recognition
• 22: response execution, working memory, body maintenance, visual body recognition
• 4: response selection, response execution, punishment processing
• 43: motion detection
• 2: response selection, response execution, animacy perception, animacy decision, motion

detection
• 3: response selection, response execution, motion detection
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Figure 11: 4.0× downsampled brain images in Collection 1952 generated by ICW-GAN with labels
on top. The lower threshold for plotting these images is 0.3.

Figure 12: 8.0× downsampled brain images in collection 2138 generated by ICW-GAN. A left
top tag is the class generated brains belong to and we list their corresponding categories in the
supplementary material as well.
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Figure 13: 6.0× downsampled brain images in collection 503 generated by ICW-GAN and a left top
tag represents the stimulating picture for subjects.
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