
Workshop track - ICLR 2018

SCALABLE ESTIMATION VIA LSH SAMPLERS (LSS)

Ryan Spring, Anshumali Shrivastava
Rice University
Houston, TX, USA
{rdspring1, anshumali}@rice.edu

ABSTRACT

The softmax function has multiple applications in large-scale machine learning.
However, calculating the partition function is a major bottleneck for large state
spaces. In this paper, we propose a new sampling scheme using locality-sensitive
hashing (LSH) and an unbiased estimator that approximates the partition function
accurately in sub-linear time. The samples are correlated and unnormalized, but
the derived estimator is unbiased. We demonstrate the significant advantages of
our proposal by comparing the speed and accuracy of LSH-Based Samplers (LSS)
against other state-of-the-art estimation techniques.

1 INTRODUCTION

Context-Based Attention is quickly becoming an integral component in deep learning because it
allows the model to focus only on specific parts of the data depending on the query. (Vaswani et al.,
2017; Olah & Carter, 2016) A classic example of attention is Language Translation with Seq2Seq
networks (Sutskever et al., 2014; Bahdanau et al., 2014; Luong et al., 2015). Instead of compressing
an entire sequence into a single vector, the encoder generates a series of outputs. The attention
mechanism generates a weighted sum of the encoder output sequence for each decoder step using the
Softmax function. Unfortunately, the cost associated with content-based attention scales linearly with
the length of the sequence, limiting its scalability. In addition, it relies on the less efficient, batch
matrix multiplication operation, because the softmax weights change w.r.t the encoding/decoding
sequence.

One option is to use approximate nearest-neighbor (ANN) search to efficiently find the top-k elements
in the encoding sequence. However, ANN algorithms cannot estimate the softmax weights associated
with the top-k elements because of the partition function that normalizes the softmax distribution.
In this work, we demonstrate that Locality-Sensitive Hashing (LSH), which is traditionally used for
ANN search, is also an efficient, adaptive sampler. We can use the items sampled from the LSH
tables to find an accurate, unbiased estimate of the partition function. Therefore, we can use LSH to
reduce the cost of softmax attention to sub-linear time.

Our proposed algorithm utilizes LSH hash tables to generate a large set of samples from the proposal
distribution PMIPS(y) in near-constant time. This work is an auspicious example of using an
algorithmic data structure for efficient and accurate statistical estimation. The obtained samples
are correlated, unnormalized, and unlike any known sampling process in the literature. We further
show that this unusual property is not a hurdle, and that there exists a simple, unbiased estimator
of the partition function using these samples. This proposed algorithm opens a new direction for
sampling and unbiased estimation beyond classical IS. We leverage the striking utility of two-decades
of LSH/MIPS research for statistical estimation tasks.

2 KEY OBSERVATION: LSH IS AN EFFICIENT, INFORMATIVE SAMPLER

The traditional LSH algorithm retrieves a subset of potential candidates for a given query in sub-linear
time. For each neighbor in this candidate subset, we compute its actual distance to the query and then
report the closest nearest-neighbor. A close observation reveals that an item returned as candidate
from a (K,L)-parameterized LSH algorithm is sampled with probability 1− (1− pK)L where p is
the collision probability of LSH function (Leskovec et al., 2014). The precise form of p is defined

1

Workshop track - ICLR 2018

by the LSH family used to build the hash tables. However, the traditional LSH algorithm does not
represent a valid probability distribution

∑N
i=1 Pr(yi) 6= 1. Also, due to the nature of LSH, the

sampled candidates are likely to be highly correlated. It turns out that there is a simple, unbiased
estimator for the partition function using the samples from the LSH algorithm.

LSH Sampler and Partition Function Estimator: Assume there is a set of states Y = [y1 . . . yN].
We associate a probability value pi with each state yi. Here is the description of the sampling process:
We flip a Bernoulli coin mi with probability pi for each state yi. The sample set S contains all of the
states accepted by the Bernoulli sampling process. The probabilities are not required to sum to 1,
and the sampling process is allowed to be correlated. Given the sample set S, we have an unbiased
estimator for the partition function.

mi ∼ P (mi = 1|pi) yi ∈ S ⇐⇒ mi = 1 (1)
Theorem 2.1. Assume that every state yi has a weight given by f(yi) with partition function∑

yi∈Y f(y) = Zθ. Then we have the following as an unbiased estimator of Zθ:

Est =
∑
yi∈S

f(yi)

pi
=

N∑
i=1

1[yi∈S] ·
f(yi)

pi
E[Est] =

N∑
i=1

E[1[yi∈S]] ·
f(yi)

pi
= Zθ

Theorem 2.2. The variance of the partition function estimator is:

V ar[Est] =

N∑
i=1

f(yi)

pi

2

−
N∑
i=1

f(yi)
2 +

∑
i6=j

f(yi)f(yj)

pipj
Cov(1[yi∈S] · 1[yj∈S])

Methodology: Given these observations, we design a fast, scalable approach for estimating the
partition function of log-linear models. Here is an overview of our LSH sampling process:

1. During the pre-processing phase, we use randomized hash functions to build hash tables from the
weight vectors θy for each class y ∈ Y .

2. For each partition function estimate, we sample a subset of weight vectors S from the hash tables
with probability p = 1− (1−M(θyi ·x)K)L, which is monotonic w.r.t. the unnormalized density
of the feature vector and the class weight vector

3. For each weight vector θy in the retrieved set S, we calculate the probability p of retrieving the
element given the query feature vector x.

4. The partition function estimate Ẑθ is the sum of each unnormalized density eθy·x in the sample
set S weighted by the inverse retrieval probability 1

p .

Running Time: The LSH sample size |S| is controlled by two parameters - K, the number of bits in
the hash fingerprint and L, the number of hash tables. The total running time includes the K × L
hash computations, followed by evaluating the formula over the samples returned from the LSH hash
tables O(|S|). By increasing K linearly, there is an exponential drop in the sample size. We can fix
K such that the expected number of samples in each table is a small constant. In fact, the theory of
LSH states that we can ensure a constant number of samples from each hash table when K = log n
where n is the number of states. See (Indyk & Motwani, 1998; Andoni & Indyk, 2004) for more
details. Thus, with a small number of hash tables L and K = log n, we can easily obtain a constant
sample size, independent of n. Therefore, the total computational cost is on the order of O(log n).

3 EXPERIMENTS

We designed the experiment to answer the following three important questions:

1. How accurately does our LSH Sampling approach estimate the partition function?
2. What is the running time of our LSH Sampling approach?
3. How does our LSH sampling approach compare with the alternative approaches in terms of speed

and accuracy?

2

Workshop track - ICLR 2018

For this experiment, we trained a standard language model on the Penn Tree Bank (PTB) (Marcus
et al., 1993) and Text8 (Mikolov et al., 2014) datasets. The output layer is a softmax classifier that
predicts the next word in the text using the context vector x generated by the LSTM. Our model is a
single layer LSTM with 512 hidden units. The dimensionality of the word embeddings is equal to
the number of hidden units. The model is unrolled 20 steps for the back-propagation through time
(BPTT). The model is trained with an Adagrad optimizer for 10 epochs with a mini-batch of size 32.

We implemented the following approaches to compare and contrast against our approach:

1. Uniform Importance Sampling: An IS estimate where the proposal distribution is a uniform
distribution U[0, N]. All samples are weighted equally.

2. Exact Gumbel: The Max-Gumbel Trick is used to estimate the partition function. The maximum
over all of the states is used for this estimate. (Gumbel & Lieblein, 1954)

3. MIPS Gumbel: A MIPS data structure is used to collect a subset of the states efficiently. This
subset contains the states that are most likely to have a large inner product with the query. The
partition function is estimated via the Max-Gumbel Trick using the subset instead of all the states.
(Mussmann & Ermon, 2016; Mussmann et al., 2017)

We took a snapshot of the weights θy for all the words and the context vector x, after training the
language model for a single epoch. The number of examples in the snapshot is the mini-batch size ×
BPTT steps. i.e. (32 examples x 20 steps = 640 total) Using the snapshot, we show how well each
approach estimates the partition function by measuring the Mean Absolute Error (MAE). The x-axis
is the number of samples used for the partition function estimate. i.e. PTB # samples - [50, 250, 400,
800, 1350] and Text8 # samples - [50, 250, 450, 950, 1800, 3350]. Table 1 shows how the wall-clock
time performance scales w.r.t the number of samples.

Figure 1 shows that our LSH estimate is more accurate than the Uniform IS and LSH Gumbel
estimates. Exact Gumbel is the most accurate estimator with the lowest MAE for both datasets. MIPS
Gumbel is 50% faster than the Exact Gumbel, but its accuracy is significantly worse. Exact Gumbel
and MIPS Gumbel are much slower than Uniform IS and LSH by several orders of magnitude. As
the number of samples increases, the MAE for the Uniform IS and LSH estimate decreases.

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400

M
A

E

#Samples

PTB - 10K Words

Random

LSH

MIPS Gumbel

Exact Gumbel

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500

M
A

E

#Samples

Text8 - 44K Words

Figure 1: Accuracy of Partition Function Estimate - (Left) PTB / (Right) Text8

PTB - 10K words Text8 - 44K words
Samples Uniform LSH Exact

Gumbel
MIPS
Gumbel

Samples Uniform LSH Exact
Gumbel

MIPS
Gumbel

50 0.10 0.19 79 46 50 0.13 0.23 531 261
150 0.33 0.60 249 141 400 0.92 1.66 3,962 1,946
400 0.94 1.74 690 406 1500 3.41 6.14 14,687 7,253
1000 1.87 3.44 1,648 1,064 5000 9.69 17.40 42,035 20,669

Table 1: Wall-Clock Time performance (seconds) for the Partition Function Estimate

3

Workshop track - ICLR 2018

REFERENCES

Alexandr Andoni and Piotr Indyk. E2lsh: Exact euclidean locality sensitive hashing. Technical report,
MIT, 2004.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Emil Julius Gumbel and Julius Lieblein. Statistical theory of extreme values and some practical
applications: a series of lectures. US Government Printing Office Washington, 1954.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In STOC, pp. 604–613, Dallas, TX, 1998.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge
University Press, 2014.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Tomas Mikolov, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio Ranzato.
Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753, 2014.

Stephen Mussmann and Stefano Ermon. Learning and inference via maximum inner product search.
In Proceedings of The 33rd International Conference on Machine Learning, pp. 2587–2596, 2016.

Stephen Mussmann, Daniel Levy, and Stefano Ermon. Fast amortized inference and learning in log-
linear models with randomly perturbed nearest neighbor search. In Proceedings of the Thirty-Third
Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2017.

Chris Olah and Shan Carter. Attention and augmented recurrent neural networks. Distill, 2016. doi:
10.23915/distill.00001. URL http://distill.pub/2016/augmented-rnns.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 6000–6010, 2017.

4

http://distill.pub/2016/augmented-rnns

	Introduction
	Key Observation: LSH is an Efficient, Informative Sampler
	Experiments

