
Under review as a conference paper at ICLR 2018

GRAPH TOPOLOGICAL FEATURES VIA GAN

Anonymous authors
Paper under double-blind review

ABSTRACT

Inspired by the success of generative adversarial networks (GANs) in image do-
mains, we introduce a novel hierarchical architecture for learning characteristic
topological features from a single arbitrary input graph via GANs. The hierar-
chical architecture consisting of multiple GANs preserves both local and global
topological features, and automatically partitions the input graph into represen-
tative stages for feature learning. The stages facilitate reconstruction and can be
used as indicators of the importance of the associated topological structures. Ex-
periments show that our method produces subgraphs retaining a wide range of
topological features, even in early reconstruction stages. This paper contains orig-
inal research on combining the use of GANs and graph topological analysis.

1 INTRODUCTION

Graphs have great versatility, able to represent complex systems with diverse relationships between
objects and data. With the rise of social networking, and the importance of relational properties to
the “big data” phenomenon, it has become increasingly important to develop ways to automatically
identify key structures present in graph data. Identification of such structures is crucial in under-
standing how a social network forms, or in making predictions about future network behavior. To
this end, a large number of graph analysis methods have been proposed to analyze network topology
at the node (Muppidi & Koraganji, 2016), community (Fortunato, 2010; Martı́nez et al., 2016), and
global levels (Wu et al., 2017).

Each level of analysis is greatly influenced by network topology, and thus far algorithms cannot be
adapted to work effectively for arbitrary network structures. Modularity-based community detection
(Xiang et al., 2016) works well for networks with separate clusters, whereas edge-based methods
(Delis et al., 2016) are suited to dense networks. Similarly, when performing graph sampling, Ran-
dom Walk (RW) is suitable for sampling paths (Leskovec & Faloutsos, 2006), whereas Forrest Fire
(FF) is useful for sampling clusters (Leskovec et al., 2005). When it comes to graph generation,
Watts-Strogatz (WS) graph models (Watts & Strogatz, 1998) can generate graphs with small world
features, whereas Barabsi-Albert (BA) graph models (Barabási & Albert, 1999) simulate super hubs
and regular nodes according to the scale-free features of the network.

However, real-world networks typically have multiple topological features. Considering real-world
networks also introduces another issue that traditional graph analysis methods struggle with; having
a mere single instance of a graph (e.g. the transaction graph for a particular bank), making it difficult
to identify the key topological properties in the first place. In particular, we are interested in both
“local topological features” (such as the presence of subgraph structures like triangles) and “global
topological features” such as degree distribution.

Instead of directly analyzing the entire topology of a graph, GTI first divides the graph into several
hierarchical layers. A hierarchical view of a graph can split the graph by local and global topological
features, leading to a better understanding of the graph (Watts et al., 2002). As different layers
have different topological features, GTI uses separate GANs to learn each layer and the associated
features. By leveraging GANs renowned feature identification (Goodfellow et al., 2014) on each
layer, GTI has the ability to automatically capture arbitrary topological features from a single input
graph. Figure 1 demonstrates how GTI can learn to reproduce an input graph where a single GAN
cannot.

In addition to learning topological features from the input graph, the GTI method defines a recon-
struction process for reproducing the original graph via a series of reconstruction stages (the number
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Original Graph DCGAN Output Graph GTI Output Graph

Figure 1: How GTI recovers the original graph while naive GAN methods do not: The DCGAN
output looks like a complete graph, whereas GTI can capture the super-hub structure of node 3 and
node 2.

of which is automatically learned during training). As stages are ranked in order of their contribution
to the full topology of the original graph, early stages can be used as an indicator of the most im-
portant topological features. Our focus in this initial work is on the method itself and demonstrating
our ability to learn these important features quickly (via demonstrating the retention of identifiable
structures and comparisons to graph sampling methods).

2 METHOD

In this section, we demonstrate the work flow of GTI (see Figure 2), with a particular focus on
the GAN, Sum-up and Stage Identification modules. At a high level, the GTI method takes an
input graph, learns its hierarchical layers, trains a separate GAN on each layer, and autonomously
combines their output to reconstruct stages of the graph. Here we give a brief overview of each
module.

Hierarchical Identification Module: This module detects the hierarchical structure of the original
graph using the Louvain hierarchical community detection method (Blondel et al., 2008), denoting
the number of layers as L. The number of communities in each layer is used as a criterion for how
many subgraphs a layer should pass to the next module.

Layer Partition Module: Here we partition a given layer intoM non-overlapping subgraphs, where
M is the number of communities. We do not use the learned communities from the Louvain method
as we cannot constrain the size of any community. We instead balance the communities into fixed
size subgraphs using the METIS approach (Karypis & Kumar, 1995).

Layer GAN Module: Rather than directly using one GAN to learn the whole graph, we use different
GANs to learn features for each layer separately. If we use a single GAN to learn features for the
whole graph, some topological features may be diluted or even ignored. This module regenerates
subgraphs, with the Layer Regenerate Module generating the adjacency matrix for the corresponding
layer. For more detail see Section 2.1.

Layer Regenerate Module: Here, for a given layer, the corresponding GAN has learned all the
properties of each subgraph, meaning we can use the generator in this GAN to regenerate the topol-
ogy of the layer by generating M subgraphs of k nodes. Note that this reconstruction only restores
edges within each non-overlapping subgraph, and does not include edges between subgraphs.

All Layer Sum-up Module: This module outputs a weighted reconstructed graph by summing up
all reconstructed layers along with the edges between subgraphs that were not considered in the
Regenerate Module. The “weight” of each edge in this module represents its importance to the
reconstruction. Indeed, we rely upon these weights to identify the reconstruction stages for the
original graph. For more details, see Section 2.2.

Stage Identification Module: By analyzing the weighted adjacency matrix of the Sum-up Module,
we extract stages for the graph. These stages can be interpreted as steps for a graph reconstruction
process. See Section 2.3 for details.
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Figure 2: Work flow for GTI.

2.1 LAYER GAN MODULE

Figure 3(a) and Figure 3(b) show the architectures for the generator and discriminator of the GAN.
Where the generator is a deconvolutional neural network with the purpose of restoring a k × k
adjacency matrix from the standard uniform distribution, the discriminator is instead a CNN whose
purpose is to estimate if the input adjacency matrix is from a real dataset or from a generator. Here,
BN is short for batch normalization which is used instead of max pooling because max pooling
selects the maximum value in the feature map and ignores other values, whereasBN will synthesize
all available information. LR stands for the leaky ReLU active function (LR = max(x, 0.2 × x))
which we use since 0 has a specific meaning for adjacency matrices. In addition, k represents
the size of a subgraph, and FC the length of a fully connected layer. We set the stride for the
convolutional/deconvolutional layers to be 2. We adopt the same loss function and optimization
strategy (1000 iterations of ADAM (Kingma & Ba, 2014) with a learning rate of 0.0002) used in the
DCGAN method of Radford et al. (2015).
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Figure 3: Generator and discriminator architecture

2.2 SUM-UP MODULE

In this module, we use a linear function (see Equation 1) to add the graphs from all layers together.
reG is the reconstructed adjacency matrix (with input from all layers), G′i, i ∈ L is the reconstructed
adjacency matrix for each layer (with G representing the full original graph with N nodes), E refers
to all the inter-subgraph (community) edges identified by the Louvain method from each hierarchy,
and b represents a bias. While each layer of the reconstruction may lose certain edge information,
summing up the hierarchical layers along withE will have the ability to reconstruct the entire graph.

reG =

L∑
i=1

wiG
′
i + wE + b (1)

To obtain w and b for each layer, we use Equation 2 as the loss function (where we add ε = 10−6

to avoid taking log(0) or division by 0), minimizing over 500 iterations of SGD with learning rate
0.1. We note that Equation 2 is similar to a KL divergence, though of course reG and G are not
probability distributions.

Loss (reG, G) =
∑

i∈1···N2

vec(G+ ε)i · log
vec(G+ ε)i
vec(reG + ε)i

(2)
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2.3 STAGE IDENTIFICATION

reG can be interpreted as representing how each edge contributes to the entire topology. According
to these weights we can then divide the network into several stages, with each stage representing a
collection of edges greater than a certain weight. We introduce the concept of a “cut-value” to turn
reG into a binary adjacency matrix.

We observe that many edges in reG share the same weight, which implies these edges share the same
importance. Furthermore, the number of unique weights can define different reconstruction stages,
with the most important set of edges sharing the highest weight. Each stage will include edges
with weights greater than or equal to the corresponding weight of that stage. Hence, we define an
ordering of stages by decreasing weight, giving insight on how to reconstruct the original graph in
terms of edge importance. We denote the ith largest unique weight-value as CVi (for “cut value”)
and thereby define the stages as in Equation 3 (an element-wise product), where I[w ≥ CVi] is an
indicator function for each weight being equal or larger than the CVi.

reiG = reGI[w ≥ CVi] (3)

In Section 4, we use synthetic and real networks to show that each stage preserves identifiable
topological features of the original graph during the graph reconstruction process. As each stage
contains a subset of the original graphs edges, we can interpret each stage as a sub-sampling of
the original graph. This allows us to compare with prominent graph sampling methodologies to
emphasize our ability to retain important topological features.

3 RELATED WORK

The importance of deep learning and the growing maturity of graph topology analysis has led to
more focus on the ability to use the former for the latter (Li et al., 2015). A number of supervised
and semi-supervised learning methods have been developed for graph analysis. A particular focus is
on the use of CNNs (Bruna et al., 2014; Henaff et al., 2015; Duvenaud et al., 2015; Defferrard et al.,
2016). These new methods have shown promising results for their respective tasks in comparison
to traditional graph analysis methods (such as kernel-based methods, graph-based regularization
techniques, etc).

Since GANs were first introduced (Goodfellow et al., 2014), its theory and application has expanded
greatly. Many advances in training methods (Denton et al., 2015; Chen et al., 2016; Zhao et al.,
2016; Nowozin et al., 2016) have been proposed in recent years, and this has facilitated their use
in a number of applications. For example, GANs have been used for artwork synthesis (Tan et al.,
2017), text classification (Miyato et al., 2016), image-to-image translation (Yi et al., 2017), imitation
of driver behavior (Kuefler et al., 2017), identification of cancers (Kohl et al., 2017), and more. The
GTI method expands the use of GANs into the graph topology analysis area.

A distinguishing feature of our method is that it is an unsupervised learning tool (facilitated by the
use of GANs) that leverages the hierarchical structure of a graph. GTI can automatically capture
both local and global topological features of a network. To the best of the authors’ knowledge, this
is the first such unsupervised method.

4 EVALUATION

All experiments in this paper were conducted locally on CPU using a Mac Book Pro with an Intel
Core i7 2.5GHz processor and 16GB of 1600MHz RAM. Though this limits the size of our ex-
periments in this preliminary work, the extensive GAN literature (see Section 3) and the ability to
parallelize GAN training based on hierarchical layers suggests that our method can be efficiently
scaled to much larger systems.

4.1 DATASETS

We use a combination of synthetic and real datasets. Through the use of synthetic datasets with
particular topological properties, we are able to demonstrate the retention of these easily identifiable
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Table 1: Size of original datasets, and corresponding reconstruction stages
Graph # Nodes # Edges # Stages Retained edge percentage for ordered stages (%)
BA 500 996 7 19.48, 26.31, 36.04, 39.36, 41.57, 57.43, 100
ER 500 25103 4 4.32, 21.73, 94.91, 100
Kronecker 2178 25103 10 87.77, 88.65, 91.76, 91.89, 92.47, 93.32, 96.06, 97.05, 98.57, 100
WS 500 500 7 11.20, 11.40, 16.00, 18.00, 54.60, 97.80, 100
Facebook 4039 88234 7 52.28, 83.33, 87.49, 91.41, 90.31, 91.95, 100
Wiki-Vote 7115 103689 4 58.31, 73.79, 85.60, 100
RoadNet 5371 7590 12 0.62, 3.87, 26.64, 27.98, 31.79, 32.42, 34.22, 34.65, 34.80, 64.06, 76.81, 100
P2P 3334 6627 7 49.04, 53.90, 70.32, 87.54, 88.40, 89.65, 100

properties across the reconstruction stages. Of course, in real-world applications we do not know
the important topological structures a priori, and so also demonstrate our method on a number of
real-world datasets of varying sizes.

We use the ER graph model (Erdos & Rényi, 1960), the BA graph model (Barabási & Albert, 1999),
the WS graph model (Watts et al., 2002) , and the Kronecker graph model (Leskovec et al., 2010) to
generate our synthetic graphs. The varying sizes of our synthetic graphs (as well as our real-world
datasets) are outlined in Table 1. The ER (p = 0.2), WS (k = 2, p = 0.1) and BA (m = 2)
graphs were generated using the NetworkX package (Hagberg et al., 2008). The Kronecker graph
was generated using the krongen package of the SNAP project1.

For real datasets, we use data available from the Stanford Network Analysis Project (Leskovec,
2014). In particular, we use the Facebook network, the wiki-Vote network, and the P2P-Gnutella
network. The Facebook dataset consists of “friends lists”, collected from survey participants ac-
cording to the connections between user-accounts on the online social network. It includes node
features, circles, and ego networks; all of which has been anonymized by replacing the Facebook-
internal ids. Wiki-vote is a voting network (who votes for whom etc) that is used by Wikipedia to
elect page administrators; P2P-Gnutella is a peer-to-peer file-sharing network: Nodes represent hosts
in the Gnutella network topology, with edges representing connections between the hosts. RoadNet
is a connected component of the road network of Pennsylvania. Intersections and endpoints are
represented by nodes, and the roads connecting them are edges.

4.2 LOCAL TOPOLOGICAL FEATURES

Here we use two examples to demonstrate how GTI retains important local topological structure
during each reconstruction stage.

BA Network Stage Analysis: We demonstrate the reconstruction process of a BA network in Figure
4, with the top row demonstrating the entire reconstruction process of the full network. We clearly
observe that each reconstructed network becomes denser and denser as additional stages are added.
The bottom row of Figure 4 shows the subgraphs corresponding to nodes 0 to 19 at each recon-
struction stage. We observe that these subgraphs retain the most important feature of the original
subgraph (the star structures at node 0), even during the first reconstruction stage.

Road Network Stages Analysis: We observe in Table 1 that the retained edge percentages of the
RoadNet reconstruction decrease more consistently with each stage than in the BA network. This
is reasonable, because geographical distance constraints naturally result in fewer super hubs, with
each node having less variability in its degree. In Figure 5, we observe the reconstruction of the
full network, and the node 0 to node 19 subgraph of RoadNet. We observe in the bottom row of
Figure 5 that the dominant cycle structure of the original node 0-19 subgraph clearly emerges. We
also observe an interesting property of the stages of the original graph in the top row of Figure 5.
As SNAP does not provide the latitude and longitude of nodes, we cannot use physical location.
We instead calculate the modularity of each stage, where modularity represents the tightness of the
community (Newman, 2006). We found that the modularity deceases from 0.98 to 0.92 approxi-
mately linearly. This indicates that GTI views the dense connections between local neighborhoods
as a particularly representative topological property of road networks, as such clusters are formed
before links between clusters.

1https://github.com/snap-stanford/snap/tree/master/examples/krongen
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Stage 1 Stage 3 Stage 5 Final Stage = Original Graph

Figure 4: The topology of original graph and corresponding stages of BA network.

Stage 4 Stage 8 Stage 11 Final Stage = Original Graph

Figure 5: The topology of original graph and corresponding stages of road network.

4.3 GLOBAL TOPOLOGICAL FEATURES

In the previous section, we demonstrated GTI’s ability to the preserve local topological features.
Here we focus on degree distribution and the distribution of cluster coefficients, global topological
features. Figure 6 and Figure 7 respectively show the log-log degree distributions and log-log cluster
coefficient distributions for each of the datasets given in Table 1, where the horizontal axis represents
the ordered degrees (ordered cluster coefficient), and the vertical axis the corresponding density. The
red line is used to demonstrate the degree distribution (cluster coefficient distribution) of the original
graph, with the distributions of the ordered stages represented by a color gradient from green to blue.

We observe that with the exception of the ER network, the degree distributions and the cluster
coefficient distributions of early stages are similar to the original graphs, and only become more
accurate as we progress through the reconstruction stages. Although the degree distributions and
cluster coefficient distributions for the early stages of the ER network reconstruction are shifted, we
observe that GTI quickly learns the Poisson like shape in degree distribution, and also learns the
“peak-like” shape in the cluster coefficient distribution. This is particularly noteworthy given that
the ER model has no true underlying structure (as graphs are chosen uniformly at random). Finally,
we note that GTI quickly learns that the cluster coefficient of the WS network is zero.

4.4 COMPARISON WITH GRAPH SAMPLING

The graphs generated by GTI can be considered as samples of the original graph in the sense that
they are representative subgraphs of a large input graph. We compare the performance of GTI with
that of other widely used graph sampling algorithms (Random Walk, Forest Fire and Random Jump)
with respect to the ability to retain topological structures (Leskovec & Faloutsos, 2006).

We demonstrate this through the subgraph structures of the BA and Facebook datasets, comparing
stage 1 of GTI against the graph sampling algorithms (designed to terminate with the same number
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Initial Stage Penultimate Stage Final Stage = Original Graph
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Figure 6: Degree distributions for 8 datasets.
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Figure 7: Cluster coefficient distributions for 8 datasets.

of nodes as the GTI stage). We take out each of subgraphs from BA and Facebook network (nodes
0-19 and nodes 0-49) to visually compare the ability of the first stage of GTI to retain topological
features in comparison to the three graph sampling methods. In Figure 8, we observe that stage 1 of
GTI has retained a similar amount of structure in the 20 node BA subgraph as Forest Fire (Leskovec
et al., 2005), while demonstrating considerably better retention than either Random Walk or Ran-
dom Jump. However, for 50 node BA subgraph, only GTI has the ability to retain the two super
hubs present in the original graph. In Figure 9, we observe that GTI demonstrates vastly superior
performance to the other methods when run on the Facebook dataset, which has a number of highly
dense clusters with very sparse inter-cluster connections.

Original Graph GTI Random WalkFirst 20 nodes

First 50 nodes

First 20 nodes First 20 nodes

First 50 nodes First 50 nodes

Random Jump First 20 nodes

First 50 nodes

Forest Fire First 20 nodes

First 50 nodes

Figure 8: Comparison with graph sampling methods on the BA subgraphs.
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Original Graph GTI Random WalkFirst 20 nodes

First 50 nodes

First 20 nodes First 20 nodes

First 50 nodes First 50 nodes

Random Jump First 20 nodes

First 50 nodes

Forest Fire First 20 nodes

First 50 nodes

Figure 9: Comparison with graph sampling methods on the Facebook subgraphs.

Table 2: F-norm numerical evaluation on penultimate stage, corresponding graph sampling methods
and base model

Graph GTI (penultimate stage) Random Walk Random Jump Forest Fire BaseModel
BA 53.02 57.50 56.64 57.79 62.90±0.09
ER 285.86 232.68 231.05 232.64 282.93±0.56
kronecker 124.93 123.92 120.64 124.58 125.32±0.28
WS 44.45 37.17 37.88 43.06 44.61±0.04

Table 3: Average node-node similarity numerical evaluation on penultimate stage, corresponding
graph sampling methods and base model

Graph GTI (penultimate stage) Random Walk Random Jump Forest Fire BaseModel
BA 99.97% 91.40% 91.40% 91.43% 99.96±0.01%
ER 99.64% 99.79% 99.81% 99.81% 99.66±0.03%
kronecker 99.22% 93.13% 93.13% 93.13 99.22±0.07%
WS 99.99% 99.90% 99.90% 99.91% 99.99±0.00%

4.5 NUMERICAL COMPARISON

Here, we use the Frobenius norm between adjacency matrices and average node-node similarity

(Blondel et al., 2004) sim(G′L−1, G) =

∑
i∈N

∑
j∈N

sim

(
n
G′

L−1
i

,nG
j

)
|NG| (where

∣∣NG
∣∣ is the total

number of nodes in original graph) to evaluate the similarity between generated stages, graph sam-
pling methods and the original graph. Let A = G − G′L−1, where G′L−1 is the adjacency matrix

of the penultimate stage, then sim
(
n
G′L−1

i , nGj

)
represents the node-node similarity with mismatch

penalty (Heymans & Singh, 2003) between node i ∈ G′L−1 and node j ∈ G. Here, the average
node-node similarity indicates how G′L−1 resembles G.

For comparison, we use the same model parameters as before to generate 100 examples of BA, ER,
Kronecker, and WS networks. These newly generated networks serve as base models to help us
evaluate the similarity between the penultimate stage of GTI and the original graph, as well as the
effectiveness of the sampling methods. Unlike the sampling methods, the results of Table 2 and
Table 3 demonstrate a consistent ability to retain topological features across a variety of different
graph types.

5 DISCUSSION AND FUTURE WORK

This paper leveraged the success of GANs in (unsupervised) image generation to tackle a fundamen-
tal challenge in graph topology analysis: a model-agnostic approach for learning graph topological
features. By using a GAN for each hierarchical layer of the graph, our method allowed us to re-
construct diverse input graphs very well, as well as preserving both local and global topological
features when generating similar (but smaller) graphs. In addition, our method identifies important
features through the definition of the reconstruction stages. A clear direction of future research is
in extending the model-agnostic approach to allow the input graph to be directed and weighted, and
with edge attributes.
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