
Workshop track - ICLR 2017

DELVING INTO ADVERSARIAL ATTACKS ON DEEP
POLICIES

Jernej Kos
National University of Singapore

Dawn Song
University of California, Berkeley

ABSTRACT

Adversarial examples have been shown to exist for a variety of deep learning ar-
chitectures. Deep reinforcement learning has shown promising results on training
agent policies directly on raw inputs such as image pixels. In this paper we present
a novel study into adversarial attacks on deep reinforcement learning polices. We
compare the effectiveness of the attacks using adversarial examples vs. random
noise. We present a novel method for reducing the number of times adversarial ex-
amples need to be injected for a successful attack, based on the value function. We
further explore how re-training on random noise and FGSM perturbations affects
the resilience against adversarial examples.

1 INTRODUCTION

Adversarial examples have been shown to exist for a variety of deep learning architectures. They
are small perturbations of the original inputs, often barely visible to a human observer, but carefully
crafted to misguide the neural network into producing incorrect outputs. Seminal work by Szegedy
et al. (2013) and Goodfellow et al. (2014), as well as much recent work, has shown that adversarial
examples are abundant and finding them is easy. Deep neural networks have been used in deep
reinforcement learning (DRL) with promising results on training policies directly on raw inputs
such as image pixels. One of the most successful algorithms for training deep policies is A3C (Mnih
et al., 2016), which enables asynchronous updates of policy weights, leading to an efficient parallel
implementation. As the policies may drive various autonomous agents such as self-driving cars in
the real world, adversarial attacks may be of even greater importance.

Our paper is among the first to investigate adversarial examples on DRL policies, showing that these
deep policies are easily fooled by adversarial attacks with very small adversarial perturbations. In
addition, in this paper, we examine three new dimensions about adversarial attacks on DRL policies
that no other work has not addressed before. First, we compare adversarial examples to random
noise and show that the former are an order of magnitude more effective for attacking DRL policies.

Another important dimension with DRL systems is time. If the attacker needs to inject adversarial
perturbations less frequently, then the attack is easier to perform. To this end, we explore using
the policy’s value function as a guide for when to inject perturbations. Our experiments show that
with guided injection, the attacker can succeed with injecting perturbations in only a fraction of the
frames, and is more effective than injecting perturbations with similar frequency but without the
guidance. Our results show that adversarial attacks can be much more complex in the reinforcement
learning setting than other settings previously studied such as image classification.

The third dimension is policy resilience through re-training. We present preliminary results showing
that the agents are able to become more resilient to fast-gradient sign method (FGSM) attack under
re-training with both random noise and FGSM perturbations, while re-training with FGSM pertur-
bations may be more effective than re-training with random noise. The re-trained agent may still be
vulnerable to other attack methods such as optimization-based attacks, however, these other attack
methods are much slower to perform, often rendering the attacks extremely slow especially for the
agent setting.

Concurrently and independently from our work (submission to the same ICLR workshop), Huang
et al. (2017) also presented a study into adversarial attacks on DRL policies, showing when an
attacker injects small adversarial perturbations into every frame, the learned agent will fail.

1



Workshop track - ICLR 2017

Due to space limit, we focus on agents trained on the Atari Pong task using the A3C algorithm
and FGSM adversarial perturbations. Our work is a first step towards better understanding of the
challenges and limitations of DRL under adversarial inputs.

2 STUDY OBJECTIVES

Attack Effectiveness of Adversarial Examples vs. Random Noise We study how injecting ran-
dom noise into the environment compares to injecting FGSM adversarial perturbations.

Using the Value Function to Guide Adversarial Perturbation Injection We want to see if re-
ducing the frequency of adversarial perturbation injection can still generate an effective attack. We
study three different methods: a) we only inject an adversarial perturbation every N frames and the
intermediate frames are without any perturbation, b) we only recompute an adversarial perturbation
every N frames and inject the last computed perturbation in the intermediate frames; and c) we use
the value function, computed over the original input, in order to estimate when to inject the adver-
sarial perturbation for it to be most effective, and only inject the adversarial perturbation when this
estimate is above a certain threshold.

Effectiveness of Re-training with Adversarial Examples and Random Noise We study whether
the agents can be re-trained on an environment with injected random noise or adversarial perturba-
tions in order to make them more resilient against further adversarial perturbations. Additionally, we
study whether this obtained resilience transfers to environments with different magnitudes and dif-
ferent types of perturbations (e.g., is an agent trained on random noise any more resilient to FGSM
adversarial perturbations).

3 EXPERIMENTAL EVALUATION

To perform our experiments, we use a TensorFlow implementation of the A3C (Mnih et al., 2016)
algorithm. We evaluate the method on the Atari Pong task, where the initial input image pixels are
cropped and scaled to 42x42. Finally, luminosity is computed from RGB values, giving us frame
dimensions of 42x42x1.

To generate adversarial perturbations, we use the fast gradient sign method (FGSM) initially devel-
oped by Goodfellow et al. (2014). FGSM requires a loss function J(θ, x, y) in order to compute its
gradient ∇x. We use the cross-entropy loss between y (a vector of logits, representing weights for
each action, produced by the policy) and the one-hot encoding of argmax y. This means that the
attack attempts to generate an input which moves the policy output away from the optimal action.

In all our experiments, the agent is first trained on a baseline (non-noisy) environment until it
achieves an optimal reward for a number of episodes (baseline agent). Then, for generating the
FGSM perturbations we set an appropriate ε and compute ε sgn∇xJ(θ, x, y). For generating ran-
dom noise, we sample from a uniform distribution Unif(0, β), where we set β based on the required
intensity.

Attack Effectiveness of Adversarial Examples vs. Random Noise The baseline agent is eval-
uated on a modified version of the environment, where either random noise or FGSM perturbation
is injected on every frame. Figure 3 in Appendix shows the difference in attack effectiveness be-
tween random noise and FGSM perturbations. While low levels of random noise (β ≤ 0.02) do
not impact the agent’s performance much, using random noise of greater magnitude (β ≥ 0.05)
severely degrades performance. FGSM adversarial perturbations are orders of magnitude more ef-
fective than random noise for successful attacks, succeeding on attacking the baseline agent at much
lower perturbation levels.

Using the Value Function to Guide Adversarial Perturbation Injection First, we explore how
the frequency of injecting adversarial perturbation affects attack success. In this experiment, we
either inject FGSM perturbations only every tenth frame and use original frames in-between, or re-
compute perturbations every tenth frame and use the last computed perturbation in-between. All

2



Workshop track - ICLR 2017

0 1000000 2000000 3000000 4000000 5000000 6000000
30

20

10

0

10

20

30

Training on
non-noisy environment

Adversarial
Evaluation

FGSM (0.005), Skip 10

0 1000000 2000000 3000000 4000000 5000000 6000000
30

20

10

0

10

20

30

Training on
non-noisy environment

Adversarial
Evaluation

FGSM (0.005), Skip 10 (reuse)

Figure 1: Attack effectiveness when FGSM perturbations are only injected every 10th frame (left)
and when the perturbations are only recomputed every 10th frame, but reused in the intermediate
frames (right).

experiments were performed with ε set to 0.001. Our results hwo that only injecting FGSM pertur-
bations on every tenth frame does not seem to be a particularly effective attack (Figure 1, left). On
the other hand, recomputing perturbations every tenth frame and reusing the previous perturbation
in intermediate frames is equally effective as the original attack (Figure 1, right).

We also develop an attack method (VF) where we inject adversarial perturbations only when the
value function, computed over the original frame, is above a certain threshold (in this experiment
we set the threshold to 1.4). The reasoning behind this is that we only want to disrupt the agent in
crucial moments, when it is close to achieving a reward. Figure 2 shows the effectiveness of this
method, demonstrating that the VF attack method is very effective while only injecting adversarial
perturbations in a fraction of the frames. We can compare the VF method against blindly injecting
perturbations on every tenth frame (Figure 1, left). Even though both methods inject perturbations a
similar number of times on average during one episode (120 for the VF method and 125 for the blind
method), the VF method shows to be much more effective. This demonstrates that an attacker can
use the value function to conduct a more efficient attack than the traditional attack method where
the adversarial perturbation is injected in every frame (as in (Huang et al., 2017)). This also shows
that adversarial attacks can be much more complex in the reinforcement learning setting than other
setting previously studied such as image classification.

0 200 400 600 800 1000 1200 1400 1600 1800
0.5

0.0

0.5

1.0

1.5

2.0
Baseline

0

5

10

15

20

Value Function

Rewards

0 1000000 2000000 3000000 4000000 5000000 6000000
30

20

10

0

10

20

30

Training on
non-noisy environment

Adversarial
Evaluation

FGSM (0.005), VF Skip

Figure 2: Policy’s value function approximation during one baseline episode (left). Effectiveness of
injecting FGSM perturbations only in frames where the value function is above a threshold (right).

Effectiveness of Re-training with Adversarial Examples and Random Noise Finally, we also
explore if the agents can be re-trained to improve resilience to both random noise and FGSM adver-
sarial perturbations. We additionally explore if this resilience then transfers to different magnitudes
and types of perturbations. During these experiments, after the initial training in non-noisy envi-
ronment, the agent is first allowed to re-train while we inject random noise or FGSM perturbations
on each frame. After the agent achieves good performance, it is then frozen and evaluated in a new
noisy environment, either with random noise or FGSM perturbations.

Figure 4 in Appendix shows that in this setting, the baseline agent can be resilient against certain
levels of FGSM perturbations after re-training on a noisy environment for a number of episodes, with
sufficient level of random noise or FGSM perturbations added during re-training. More interestingly,
our experiment shows that the re-trained agent is also resilient against FGSM perturbation of much
greater (or smaller) magnitude than the magnitude of the FGSM perturbations were used during
re-training. We also visualize the actions predicted by the policy in image space (see Figure 5).

3



Workshop track - ICLR 2017

REFERENCES

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

A APPENDIX

0.0 0.2 0.4 0.6 0.8 1.0
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Random Noise
Evaluation

Random Noise Evaluation (0.02)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Random Noise
Evaluation

Random Noise Evaluation (0.05)

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000
30

20

10

0

10

20

30

Training on
non-noisy environment

Adversarial
Evaluation

FGSM Evaluation (0.001)

0 1000000 2000000 3000000 4000000 5000000 6000000
30

20

10

0

10

20

30

Training on
non-noisy environment

Adversarial
Evaluation

FGSM Evaluation (0.005)

Figure 3: Attack effectiveness of random noise with β values 0.02 and 0.05 (top) vs. attack effec-
tiveness of FGSM adversarial perturbations with ε values 0.001 and 0.005 (bottom).

A.1 VISUALIZING THE POLICY NETWORK ACTION BOUNDARY

We further study how the action boundary looks like for the policy network and how re-training
affects it. To this end, we prepare a visualization of predicted actions in image space (Figure 5). We
generate the plot by defining two normalized vectors, d1 and d2, spanning the input image space.
The one shown on the x-axis points in the direction of the generated adversarial perturbation (d1),
while the other shown on the y-axis points in a randomly chosen orthogonal direction (d2). The
points in the plane represent actions predicted by the policy network for input x+ud1+vd2, where
x is the original image (a single frame). Since A3C is stochastic, we sample the predictions from
the policy network 7 times for each input and show the most common action. Each discrete action
(action 0 to 5) is represented by its own color, shown in the figure on the far right. Values on the
axes are the values of variables u and v.

The visualization shows that the decision space is fragmented. Small perturbations in the input can
cause the optimal action chosen by the policy network to change drastically. Re-training under a
noisy environment (both random noise and adversarial FGSM perturbations) does not seem to make

4



Workshop track - ICLR 2017

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Re-training with
random noise

Adversarial
Evaluation

FGSM (0.001) After Random Noise Re-training (0.05)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Re-training with
random noise

Adversarial
Evaluation

FGSM (0.005) After Random Noise Re-training (0.1)

0.0 0.5 1.0 1.5 2.0
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Re-training with
random noise

Adversarial
Evaluation

FGSM (0.01) After Random Noise Re-training (0.1)

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000
30

20

10

0

10

20

30

Training on
non-noisy environment

Re-training
with FGSM

Adversarial
Evaluation

FGSM (0.005) After FGSM Re-training (0.001)

0.0 0.5 1.0 1.5 2.0
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Re-training
with FGSM

Adversarial
Evaluation

FGSM (0.01) After FGSM Re-training (0.005)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

30

20

10

0

10

20

30

Training on
non-noisy environment

Re-training
with FGSM

Adversarial
Evaluation

FGSM (0.001) After FGSM Re-training (0.005)

Figure 4: Agent re-training experiments. Initially the agent was trained on a non-noisy environment.
Top: After first re-training with random noise (with β values 0.05 and 0.1). Bottom: After first re-
training with FGSM perturbations (with ε values 0.001 and 0.005). After re-training, the agent was
evaluated on FGSM perturbations (with ε values 0.001, 0.005 and 0.01).

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0

1

2

3

4

5

Figure 5: Visualization of actions in image space for a single frame. The x-axis is in the direction
of the generated adversarial example (FGSM, ε = 0.001) for the target network. The y-axis is in
a random orthogonal direction. Each point is the result of sampling the policy network 7 times
given the image at that point as input, and shows the action most commonly output by the network
(different actions have different colors). Blue “x” marks the position of the original frame, while
the blue square marks the position of the adversarial example. Color bar on the far right shows the
mapping of colors to discrete actions. Left: Baseline network without any re-training (action for the
original input is action 5). Middle: Network with re-training on random noise (β = 0.1, action for
the original input is action 5). Right: Network with re-training on FGSM perturbations (ε = 0.005,
action for the original input is action 0).

the decision boundary more smooth and the space seems to become even more fragmented (Figure 5
middle and right).

We also adjust the visualization for action semantics. The reasoning behind this is that even though
the action space contains 6 valid actions, the actions are actually duplicated (e.g., multiple actions
actually have the exact same effect on the environment). We manually checked the effect of each
action on the environment and mapped the actions accordingly. The three actions are: noop (do
nothing), move the paddle up and move the paddle down. Figure 6 shows that even when we adjust
for duplication, the space remains fragmented.

5



Workshop track - ICLR 2017

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.075 0.050 0.025 0.000 0.025 0.050 0.075
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Noop Move Up Move Down

Figure 6: Visualization of actions, adjusted for action semantics, in image space for a single frame.
The x-axis is in the direction of the generated adversarial example (FGSM, ε = 0.001) for the target
network. The y-axis is in a random orthogonal direction. Each point is the result of sampling the
policy network 7 times given the image at that point as input, and shows the action most commonly
output by the network (different actions have different colors, mapped based on action semantics).
Blue “x” marks the position of the original frame, while the blue square marks the position of
the adversarial example. Color bar below shows the mapping of colors to discrete actions. Left:
Baseline network without any re-training (action for the original input is “move down”). Middle:
Network with re-training on random noise (β = 0.1, action for the original input is “move down”).
Right: Network with re-training on FGSM perturbations (ε = 0.005, action for the original input is
“noop”).

6


	Introduction
	Study Objectives
	Experimental Evaluation
	Appendix
	Visualizing the policy network action boundary


