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ABSTRACT

Residual connections are one of the main components in transformers, helping
stabilize training and improve optimization, yet it remains unclear how they influ-
ence memorization, a behavior that transformers are known to exhibit, especially
in overparameterized regimes. Therefore, in this work, we investigate the impact
of residual connections on memorization in transformers. Our analysis shows
that residual connections do not influence memorization; instead, their removal
primarily impairs learning, which is a novel finding. Furthermore, we find that
residual connections in early layers are significantly more important for perfor-
mance than those in later layers. To explain these findings, we perform a gradient
flow and output margin analysis, demonstrating how residual connections support
learning dynamics without propagating memorization.

1 INTRODUCTION
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Figure 1: Residual Connections have no impact on memorization. (a) Residual connections
do not relay memorization, as indicated by nearly identical 100% memorization before and after
removal (red-bars) (b) Removal of residual connections impairs learning (green-bars), leading to
significant drops in generalization performance. (Removing residual connections from layer 1)

Residual connections, first introduced by He et al. (2016) for deep convolutional networks
(ResNets), have become a key component of modern deep neural networks because they stabilize
the training of very deep models by mitigating vanishing gradients and facilitating smoother gradi-
ent flow. By introducing identity mappings to relay the previous input to the next layer along with
the main flow, they preserve information across layers and stabilize optimization. Due to their effec-
tiveness, residual connections have also been adopted in the transformer architecture, which enables
direct propagation of input information past the attention and feed-forward sublayers.

Although transformers have shown remarkable success in learning complex patterns, they are also
prone to memorizing data, a phenomenon often referred to as label memorization (Feldman, 2020;
Feldman & Zhang, 2020), which acts as a hindrance to the model’s generalization ability because
it focuses on merely fitting training labels rather than learning meaningful, generalizable patterns.
Although there have been some studies considering memorization in transformer architectures (Ha-
viv et al., 2022; Stoehr et al.), residual connections’ impact on memorization has never been studied
in transformers. This is particularly important because residual connections propagate information,
directly from one layer to the next, bypassing intermediate transformations. Such information may
contain a mixture of generalizable patterns and memorized signals. Hence, it motivates us to ask the
following question:

“Whether residual connections carry over memorization or not?”

1
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To answer the question, in our paper, we systematically investigate the influence of residual con-
nections on memorization and learning, respectively, in transformer models. We identify that, sur-
prisingly, residual connections have no impact on memorization and only influence learning, and
explain the phenomenon through the lens of gradients. We then localize learning across different
regions of the network architecture—early, middle, and later residual connections, where we find
out that early residuals are critical for learning, supported by their higher gradient norms and
significant drop in output margins and test accuracy when removed. In summary, the core findings
of our paper are as follows:

• Residual connections have no impact on memorization: We identify that residual connec-
tions in transformers do not contribute to memorization and rather only impact learning.

• Gradients explain why: We explain why residual connections have no impact on memorization
but primarily influence learning by investigating gradients across layers.

• Early Residual connections are critical for learning: Our analysis through gradients, stan-
dard deviation of residual connections, and output margin reveals that early layers residual
connections are the most significant, where there removal destabilizes learning.

2 RELATED WORKS

Memorization & Learning: Transformers are highly effective in capturing broad, generalizable
patterns from training data (Arpit et al., 2017; Shah et al., 2020; Zhou & Wu, 2023), yet they also
tend to memorize atypical, noisy, and/or too complex examples (Stephenson et al., 2021; Baldock
et al., 2021; Agarwal et al., 2022; Maini et al., 2023), a phenomenon known as label memoriza-
tion (Feldman & Zhang, 2020; Feldman, 2020). Several metrics have been proposed to identify
memorized samples, including prediction depth (Baldock et al., 2021), the EL2N score (Paul et al.,
2021), and input curvature (Jiang et al., 2020; Ravikumar et al., 2024; Garg et al., 2023). Beyond
identification, recent works have sought to localize factual recall knowledge within feedforward and
self-attention layers in the transformer architecture, (Dai et al., 2021; Haviv et al., 2023; Geva et al.,
2023; Stoehr et al., 2024; Menta et al., 2025), and developing mitigation techniques. Additionally,
recent studies have also shown how deeper layers in transformers have limited effect on their learn-
ing ability (Yin et al., 2023; Lad et al., 2024; Men et al., 2024; Li et al., 2024; Sun et al., 2025).
Despite these insights, no prior work has explored to verify whether residual connections influence
memorization or not.

Residual Connections: Training deep neural networks has historically been hindered by the prob-
lem of vanishing gradients (Bengio et al., 1994; Pascanu et al., 2013), where gradients diminish as
they propagate through many layers. To address this, residual connections were introduced by He
et al. (2016), providing a shortcut that adds the input of a layer (block) to its output, a special case
of highway networks (Srivastava et al., 2015) This simple mechanism stabilized gradient flow and
enabled the successful training of very deep models (Huang et al., 2020). Several theoretical works
have further demonstrated their benefits: Hardt & Ma (2016) established convergence guarantees in
deep linear residual networks; Liu et al. (2019) showed that residuals help avoid spurious local op-
tima in convolutional settings; Scholkemper et al. (2024) found that they alleviate oversmoothing in
graph neural networks; Veit et al. (2016), showed that gradients flowing through the residual connec-
tions have the most impact on training, Hence, due to their effectiveness, residual connections have
also been adopted in transformer architectures (Vaswani et al., 2017; Xiong et al., 2020; Dosovit-
skiy et al., 2020). They are critical for stable optimization and have recently been shown to prevent
rank collapse (Dong et al., 2021). Yet, despite growing interest, their influence on memorization in
transformers remains unexplored—the gap this work aims to close.

3 PRELIMNARIES

In the transformer architecture (Vaswani et al., 2017), residual connections, also known as skip
connections or identity mappings, are adopted from the original ResNet architecture (He et al.,
2016). They operate by directly adding the input of a transformation F(·) to its output. Formally,
given an input x and the transformation F(·), the output of the residual block is given by,

Residual output = x+ F(x) (1)

Each layer in the transformer architecture consists of two residual connections: one surrounding
the multi-head self-attention (MHSA) sub-layer and another surrounding the feedforward network

2
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(FFN) sub-layer. These residual pathways enable the direct flow of input information across layers,
supporting both gradient propagation and information preservation. In this paper, we investigate the
pre-layer normalization architecture (Xiong et al., 2020), due to its superior training stability and its
widespread adoption in modern large-scale models such as GPT, Qwen, and LLaMA. The formal
description of each residual block for the ith transformer layer is as follows:

MHSA Residual output: x̃i = xi + MHSA(LN(xi))

FFN Residual output: yi = x̃i + FFN(LN(x̃i))
(2)

where xi and x̃i are the inputs (also the residual connections) of the MHSA and FFN residual blocks,
respectively, yi is the output of ith transformer layer, and LN is the layer-normalization operation.

3.1 FORMALIZING LABEL MEMORIZATION (LM) AND LEARNING

Deep neural networks, including transformers, tend to learn rich and meaningful representations be-
tween features and labels, which are then generalized to unseen test data, a phenomenon commonly
known as generalization/learning. Despite this capability of learning rich patterns, these models
also strive to minimize the error based on the empirically seen data samples during training, which
is based on Empirical Risk Minimization (ERM) (Vapnik, 1998). Hence, they exhibit a tendency to
memorize specific training examples without capturing underlying patterns that can be generalized
to the test set, a behavior known as label memorization (LM) (Feldman, 2020; Feldman & Zhang,
2020), which ultimately leads to overfitting. This behavior occurs due to several factors, such as
the presence of noisy labels and/or samples that are overly complex or ambiguous (Baldock et al.,
2021), which hinder the model’s ability to extract meaningful patterns.

In this study, we investigate memorization by introducing noisy labels (Maini et al., 2023; Feldman,
2020) in the training set. Specifically, we reassign the labels of a subset of training samples to an
incorrect, random label which differs from the true class labels. To ensure that the model memorizes
the noisy labels, we train the model until it achieves 100% training accuracy. We conduct experi-
ments under multiple noise ratios: 1%, 5%, 10%, and 20%. We validate our claim also on generative
language modeling tasks showing that our results are consistent across various types of tasks.

3.2 METRICS TO MEASURE MEMORIZATION AND LEARNING

To study the impact of residual connections on memorization and learning in transformers, we focus
on two key metrics, Test Accuracy (%) and Memorization (%), as described below.

Test Accuracy (%) indicates the model’s ability to generalize to unseen data by evaluating its pre-
dictions on the held-out test set. It is formally computed as the ratio (%) of the number of correctly
predicted samples over the total samples in the test set.

Memorization (%) quantifies the extent to which the model fits to mislabeled or corrupted training
examples, instead of capturing meaningful patterns. A higher score implies effective memorization
of noisy data, rather than true learning. The metric is formally defined as the ratio (%) of the number
of correctly predicted samples over the total number of noisy samples.

3.3 DATASETS AND MODELS USED

We extensively verify all of our claims on both vision and language modalities as follows:

Datasets: Emotions (Saravia et al., 2018), 20NewsGroup (Lang, 1995), TweetTopic (Antypas et al.,
2022), CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), Places365Mini
(Zhou et al., 2017), and UTK-Face (Zhang et al., 2017).

Models: GPT2-Small (Radford et al., 2019), GPT2-Medium (Radford et al., 2019), Smol-LM (Allal
et al., 2025), Qwen2 (Team, 2024) ,ViT-Base (Dosovitskiy et al., 2020), TinyViT (Wu et al., 2022),
BEiT (Bao et al., 2021), and DeiT (Touvron et al., 2021).

4 RESIDUAL CONNECTIONS HAVE NO IMPACT ON MEMORIZATION BUT
ONLY INFLUENCE LEARNING

To evaluate the role of residual connections in transformer models, we conduct a comparative study
by training two model variants: one with residual pathways preserved, and another with these con-
nections explicitly removed (both residual connections removed per layer). We assess their behavior

3
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Figure 2: Residual connections do not influence memorization, but early residuals are critical
for learning. (a) shows that residual connections across all layers have no impact on memorization,
while (b) highlights that early layers residuals significantly influence test accuracy, indicating their
importance for learning, than later ones. The other models’ results are provided in Appendix E.1.

using two key metrics—Test Accuracy (%) to gauge generalization/learning, and Memorization
(%) to quantify the extent of label memorization.

4.1 MEMORIZATION IS Not IMPACTED

From Fig. 1, we observe a surprising result: residual connections have no discernible impact on
memorization - where memorization consistently remains at 100%, across all models. Specifically,
the removal of residual connections does not mitigate the model’s tendency to memorize noisy label
samples. This trend is further reinforced when examined across different layers. As illustrated in
Figs. 2a & 2c for ViT-Base, and GPT2-Small, respectively, the removal of residual connections from
any layer does not alleviate the memorization of noisy labels. Consistent patterns are also observed
across various transformer architectures, including GPT2-Medium, Smol-LM, Qwen2, TinyViT,
BEiT, and DeiT, as presented in Appendix E.1.

4.2 LEARNING IS IMPACTED

In stark contrast to memorization, we find that residual connections primarily facilitate learning.
As shown in Fig. 1, the removal of residual connections significantly degrades the model’s ability to
learn generalizable patterns, reflected in a substantial drop in test accuracy. Furthermore, in Figs. 2b
& 2d for ViT-Base and GPT2-Small, respectively, we observe that models with residual connections
removed fail to generalize effectively, with learning severely affected, especially when early layers’
residuals are removed. Similar trends are also seen across other transformer models, including
GPT2-Medium, Smol-LM, Qwen2, TinyViT, BEiT, and DeiT, as reported in Appendix E.1.

4.3 CONSISTENCY ACROSS VARYING LABEL NOISE RATIOS

To further support the robustness of our results, we also analyze higher label-noise ratios of 5%,
10%, and 20%. The result of 20% noise ratio for Smol-LM is shown in Figs. 3a & 3b, confirming
the claim that residual connections relay generalization but not memorization in transformers. We
further validated these claims for other noise ratios as well, 5% and 10%, and DeiT vision model, as
provided in Appendix E.2.

4.4 CONSISTENT OBSERVATIONS IN GENERATIVE TASKS

To reinforce our claims beyond classification settings, we also evaluate a generative language-
modeling tasks. We convert the TweetTopic dataset into a generation task by appending a natural-
language prompt of the form: The topic is about <label> to each sequence. To examine memoriza-
tion, we randomly replace the <label> in a subset of sequences with an incorrect one. To evaluate
whether memorization of noisy sequences persists or not, we follow the extractable memorization

4
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Figure 3: Consistent results across higher noise ratios. Residual connections do not influence
memorization but only relay generalization even for higher noise ratio (20%). Consistent results are
provided for multiple ratios (1%, 5%, & 10%) and models in Appendix E.2.
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Figure 4: Results in generative tasks. Aligning to classification tasks, residual connections do not
propagate memorization even for generative language modeling tasks, but only relay generalization.
Additional experiments for GPT2-Small are provided in Appendix E.3.

setting proposed in Carlini et al. (2022). Based on this, we prompt the model with the exact same
noisy sequence and ask what topic it is associated with. If the model still outputs the noisy label,
then that means memorization still persists even after residual connections removal. We conduct
experiments with two models, GPT2-Small and Smol-LM. The results for Smol-LM (Figs. 4a &
4b) show that residual connections do not propagate memorization; instead, they primarily relay
generalization. This demonstrates that our findings hold not only for classification tasks but also
for generative modeling. Additional consistent results corresponding to GPT2-Small results are
provided in Appendix E.3.

4.5 GRADIENTS EXPLAIN WHY RESIDUAL CONNECTIONS DO NOT IMPACT MEMORIZATION

To understand why residual connections do not impact memorization, we look into the gradient of
the loss function L with respect to the residual input x (i.e., the input to the residual block), de-
noted as gx = ∇xL = ∂L

∂x , and measure its ℓ2 norm, ∥gx∥2 (similarly we compute for the other
residual input, x̃, denoted as ∥gx̃∥2). This gradient norm quantifies the sensitivity of a residual con-
nection to either memorization or learning. To assess the impact on learning, we compute ∥gx∥2
(and ∥gx̃∥2) for each test sample and report the average across the test set—referred to as the learn-
ing gradient norm, ∥glearn

x ∥2 (and ∥glearn
x̃ ∥2). For memorization, we compute ∥gx∥2 over samples

with noisy labels and average them to obtain the memorization gradient norm, ∥gmem
x ∥2 (and

∥gmem
x̃ ∥2). A high gradient norm at a given layer indicates that its residual connection plays a signif-

icant role in learning or memorization, while a low value suggests insignificant influence. As shown
in Figs. 5a & 5b, the learning gradient norm, ∥glearn∥2 (where ∥glearn∥2 = (∥glearn

x ∥2 + ∥glearn
x̃ ∥2)/2),

is significantly and consistently larger than the memorization gradient norm, ∥gmem∥2 (where
∥gmem∥2 = (∥gmem

x ∥2 + ∥gmem
x̃ ∥2)/2), across all layers. This observation suggests that residual

connections primarily aid in the propagation of gradients contributing to generalization, rather than
memorization.

Consequently, removing residual connections is expected to impair learning performance while hav-
ing minimal effect on memorization, as previously observed in Figs. 2b, 2a & Figs. 2d, 2c, where
residual removal leads to a notable drop in test accuracy (learning), but leaves memorization accu-
racy virtually unchanged. These trends hold consistently across a range of architectures, including
GPT2-Small, Smol-LM, Qwen2, ViT-Base, BEiT, and DeiT, as further detailed in Appendix E.6.
Together, these findings reinforce the notion that residual connections only relay generalization but
skip memorization.
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Figure 5: Memorization gradient norms are consistently smaller than learning gradient norms,
with early residuals exhibiting the highest activity. ∥gmem∥2 remains significantly lower than
∥glearn∥2 across all layers, explaining why residuals do not influence memorization. The learning
gradients peak in early layers, underscoring their critical role in learning.
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Figure 6: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj ,
σx̃j ) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1 , σWj,2 ). Importantly, σxj & σx̃j statistics are nearly identical for learning and
memorization samples. (CIFAR100-TinyViT).

Even though gradient norms provide a useful explanation that residual connections do not impact
memorization, we still do not know why the memorization gradient norm is consistently smaller.
Hence, in Sec. 4.6, we investigate this issue in detail, aiming to uncover the factors in structure and
optimization process that drive this discrepancy.

4.6 WHY ARE THE GRADIENT NORMS SMALLER FOR MEMORIZATION THAN LEARNING?
In Figs. 5a & 5b, we observed that ∥glearn∥2 is significantly and consistently larger than the mem-
orization gradient norm, ∥gmem∥2 across all layers. Going further, in this section, we investigate
why memorization samples tend to exhibit lower gradient norms than learning samples. To better
understand the reasons behind this consistent disparity, we derive an upper bound on the gradient
norm with respect to the residual block input in Theorem 1. The upper bound provides theoretical
intuition by breaking the gradient into interpretable components: (i) the prediction error, (ii) resid-
ual connections, and (iii) model parameter statistics, while shedding light on why memorization
gradient norms are smaller than learning gradient norms across the network.

Theorem 1 (Upper Bound of Gradient Norm). Let xi be the input to the ith layer’s first residual
block. Then, the gradient norm satisfies:

∥gxi∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ ∥ŷ − y∥2︸ ︷︷ ︸
error

·σout

(√
dout +

√
d1

)

·

 N∏
j=i

{(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)
·
(
1 +

σWO,j

σxj

Cj
attn

)} (3)
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where y is the ground truth one-hot encoded vector, ŷ is the predicted softmax probability vec-
tor, σxj

, σx̃j
are the standard deviations of the residual stream inputs xj and x̃j , respectively,

σW1,j
, σW2,j

are the standard deviations of the FFN weight matrices W1,j , W2,j , respectively,

σWO,j
is the standard deviation of the MHSA output projection matrix, Cffn =

(√
d1 +

√
d2
)2

,

d1 & d2 are intermediate hidden sizes, Cj
attn = 2d1 ·

∥∥∥Jj
Z

∥∥∥
2
, σout is the standard deviation of

classification head weight matrix Wout, and dout is output size of classification head.

A formal proof of Theorem 1, along with the expression for ∥gx̃i
∥2, is provided in Appendix A.

Theorem 1 provides an upper bound on the gradient norm while expressing how it depends on
- prediction error, residual connections, and model parameters statistics. Specifically, it shows
that the upper bound of the gradient norm for any layer i is dependent on (i) prediction error ∥ŷ−y∥2,
(ii) standard deviation of residual connections xj , x̃j , and (iii) standard deviation of weight matrices
W1,j , W2,j , WO,j , and Wout. This becomes especially useful when comparing gradient behaviors
across learning and memorization regimes as discussed below.

As stated previously, to compute the learning gradient norm ∥glearn∥2, we use clean samples (cor-
rectly labeled) from the test set, while the memorization gradient ∥gmem∥2 is calculated using noisy
labeled training samples. Now, suppose we select one sample from each of these sets, (xc, yc) and
(xNL, yNL), where both xc and xNL belong to the same true (semantic) class yc, but xNL is mislabeled
as yNL (̸= yc). Since both inputs correspond to the same semantic class, the residual connections xc

j

and xNL
j (and similarly the second residual connection x̃c

j and x̃NL
j ) are expected to be similar, i.e.,

xc ≈ xNL =⇒ xc
j ≈ xNL

j =⇒ σxc
j
≈ σxNL

j
; xc ≈ xNL =⇒ x̃c

j ≈ x̃NL
j =⇒ σx̃c

j
≈ σx̃NL

j
(4)
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Figure 7: Memorization
and Learning error ∥ŷ−y∥2
(in log scale).

We also empirically verify this approximation in Figs. 6b & 6c, which
show a strong similarity of σxi and σx̃i for both memorization and
learning cases, across all layers. This trend also holds across vari-
ous architectures, including GPT2-Small, GPT2-Medium, Smol-LM,
Qwen2, ViT-Base, and BEiT, DeiT, as shown in Appendix E.7.

Moreover, since the model parameters are shared across
both learning and memorization gradient computations, the
standard deviations of all weights remain unchanged for
both cases. Consequently, the term, σout

(√
dout +

√
d1
)

·[∏N
j=i

{(
1 +

σW1,j
σW2,j

σx̃j
Cffn

)
·
(
1 +

σWO,j

σx
Cj

attn

)}]
, in equa-

tion 3 in Theorem 1, remains approximately the same for both
memorization and learning gradient norm. Hence, the difference
between the upper bounds for ∥glearn

xi
∥2 and ∥gmem

xi
∥2 (likewise for ∥glearn

x̃i
∥2 and ∥gmem

x̃i
∥2) primarily

arises due to the prediction error term, ∥ŷ − y∥2. In particular, as the model is highly overfitted,
during inference on a memorized sample (xNL, yNL), it confidently predicts the noisy label. As
a result, the softmax output ŷmem places nearly all of its probability mass on the noisy class yNL,
i.e., ŷmem ≈ yNL. Therefore, ∥ŷmem − yNL∥2 is close to zero. In contrast, for a clean test sample
(xc, yc), the model has acquired generalizable features for class c, but has also been exposed to
noisy label instances during training, which (when overfitted) prevents ideal generalization (i.e.,
perfect test accuracy). As a result, the prediction ŷlearn is not sharply peaked at class yc, and instead
distributes some probability mass across incorrect classes. Consequently, the prediction error
∥ŷlearn − yc∥2 is noticeably larger, leading to a higher upper bound—and typically, a larger actual
learning gradient norm—compared to the memorization case. This behavior, where the prediction
error for memorization samples is smaller than that for learning samples, is also verified empirically,
as shown in Fig. 7 for TinyViT. Similar trends are observed across other architectures, including
GPT2-Small, GPT2-Medium, Smol-LM, Qwen2, ViT-Base, BEiT, and DeiT, as mentioned in
Appendix E.5. As a result, this consistent gap in prediction error results in the following relation:

∥glearn
xi

∥2 > ∥gmem
xi

∥2 & ∥glearn
x̃i

∥2 > ∥gmem
x̃i

∥2 across all layers. (5)

Please note that an ideal case of perfect learning, where 100% memorization and 100% learning
co-exist, is not achievable in practice as memorization inherently hinders generalization. Hence, the
equality (∥glearn

xi
∥2 = ∥gmem

xi
∥2 and ∥glearn

x̃i
∥2 = ∥gmem

x̃i
∥2) can be disregarded in almost all cases.
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(a) Output Margins after removing residual connec-
tions across layers. (CIFAR100-TinyViT)
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(b) Output Margins after removing residual connec-
tions across layers. (Emotions-GPT2-Medium)

Figure 8: Output margin corroborates the importance of early residuals. Removing residual
connections from early layers drastically reduces the output margin, increasing uncertainty and mis-
classifications. In contrast, removing later residuals has a smaller effect—highlighting that early
residuals play a crucial role in enabling confident learning.

To summarize, both theoretical and empirical evidence coincide to explain why learning gradients
dominate memorization gradients. Theoretically, Theorem 1 explains that the gradient norm is gov-
erned primarily by the prediction error term ∥ŷ − y∥2, which is inherently smaller for memorized
samples as seen in Fig. 7. Empirically, this difference translates to consistently smaller memoriza-
tion gradient norms in comparison to learning gradient norms, as seen in Figs. 5a, 5b.

5 EARLY RESIDUALS ARE CRITICAL FOR LEARNING

5.1 EARLY RESIDUALS IMPACT ON ACCURACY

In Sec. 4, we revealed how and why residual connections do not contribute to memorization but play
a critical role in enabling learning. Now we further investigate the details of this phenomenon, where
we analyze the layer-wise impact of residual connections on learning performance. From Figs. 2b &
2d, it is clearly observed that removing residual connections from early layers substantially impairs
learning. Consistent results are observed for higher noise level ratios as shown in Figs. 3a & 3b
and for the generative modeling tasks presented in Figs. 4a & 4b. Formally, removing the residual
connections from the ith layer leads to lower test accuracy than removing it from the (i+ 1)th layer,
i.e., Acc(Resi) ≤ Acc(Resi+1), ∀ 1 ≤ i < N . Consistent trends are also observed across various
architectures, including GPT2-Medium, Smol-LM, Qwen2, DeiT, BEiT, and TinyViT, as detailed in
Appendix E.1. This finding is also supported in part by prior works (Gromov et al., 2024; Li et al.,
2024; Lad et al., 2024; Men et al., 2024), which demonstrated the importance of early layers from
a coarse-grained view but not specifically for residual connections nor memorization. However, our
study provides a distinctive observation by isolating the impact of residual flow on memorization
and learning in each layer.

5.2 EXPLAINING THE IMPORTANCE OF EARLY RESIDUALS FOR LEARNING

In Sec. 5, we observed that residual connections in early layers are especially critical for learning in
Transformers. A natural question that arises is: why are early residuals more important than those
in later layers? To answer this, we examine three metrics: gradient norms, standard deviation of
residual connections, and output margins.

5.2.1 GRADIENT NORM ANALYSIS

First, we analyze the learning gradient norm, ∥glearn∥2, layer by layer. As shown in Figs. 5a & 5b, we
find that early layers exhibit significantly higher gradient magnitudes than later layers. This indicates
that the residual connections in early layers are more actively involved in propagating meaningful
learning signals, in comparison to later residuals. This provides us with a plausible explanation of
why removing early residuals would lead to a significant drop in the test accuracy as seen in Figs. 2b
& 2d. Similar trends are observed for other models, GPT2-Small, Smol-LM, Qwen2, ViT-Base,
BEiT, and DeiT, as shown in Appendix E.6. We also did the gradient norm analysis across epochs
and observed a consistent trend that early residuals exhibit higher norms than middle/later ones
during the course of training, as shown in Appendix E.10.1.

To explain the observed empirical phenomenon, we provide a layer-wise theoretical analysis of
the upper bound of the gradient norm, as defined in Theorem 1. In the expression, the gradient
norm at any layer depends on several components, including the prediction error, classification
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head, FFN weights, MHSA weights, and residual connections standard deviations. When comparing
two consecutive layers, the prediction error and classification head terms remain constant. Mean-
while, each layer introduces additional multiplicative terms of the form, (1 + A)(1 + B), where
A =

σW1,j
σW2,j

σx̃j
Cffn, & B =

σWO,j

σxj
Cj

attn. Here, clearly A ≥ 0 & B ≥ 0, since they are composed

of standard deviations, where σW1,j , σW2,j , σWO,j
, σx̃j , σxj ≥ 0, and Cffn > 0, Cj

attn ≥ 0 (proof pro-
vided in Appendix C.). Therefore, as these (1+A)(1+B) multiplicative factors accumulate through
the layers, early layers experience a compounded effect, which pushes their gradient norms upper
bound higher in comparison to later layers. Hence, building upon this formulation, we establish in
Theorem 2 that the gradient norm’s upper bound decays with depth, thereby providing a theoreti-
cal explanation for why early residuals tend to exhibit larger gradient norm than later residuals, as
observed in Figs. 5a & 5b.

Theorem 2 (Upper bound of the gradient norm of early layers residuals are higher than
that of later layers residuals). It is formally represented as follows:

UB(∥gx1
∥2) ≥ UB(∥gx2

∥2) ≥ · · · ≥ UB(∥gxN
∥2) (6)

where UB(∥gxi
∥2) denotes the upper bound of ∥gxi

∥2, and xi is the input to the ith layer’s first
residual block.

A formal proof of Theorem 2 is provided in Appendix B.

5.2.2 STANDARD DEVIATION ANALYSIS

While Theorem 2 explains the depth-wise decay in gradient norm upper bounds through multiplica-
tive (1 + A)(1 + B) terms, the influence of residual connections and model parameters statistics
on this decay remains unresolved. Since both A and B are defined in terms of various standard
deviations, understanding their behavior across layers is crucial. Therefore, we now empirically
examine the layer-wise variation of statistics of (i) FFN weights (σW1,j , σW2,j ), (ii) MHSA weights
(σWO,j

, Cj
attn) statistics, and (iii) residual connection inputs (σxj , σx̃j ). This helps reveal which

statistics dominate the (1 + A)(1 + B) terms and thus influence the observed gradient norm pattern
across depths through Figs. 5a & 5b.
To understand how different standard deviations evolve across the network, we begin by analyzing
the standard deviation of these values across the network. As shown in Table 6a, the standard devia-
tions of model parameters, σWj,1

, σWj,2
, & σWj,O

, remain relatively stable across layers (similarly,
we also show that Cj

attn remains stable across layers in Appendix E.7.1.), as indicated by their low
variability. In contrast, the statistics of the residual connections, σxj

and σx̃j
, exhibit significant

variation, suggesting greater sensitivity to layer depth. This motivates a deeper, layer-wise inves-
tigation into the behavior of residual connection statistics. Figs. 6b & 6c show that the standard
deviations of the residual connection inputs, σxj and σx̃j , are substantially smaller in early layers
compared to later ones. Now, according to equation 3 in Theorem 1, the upper bound of the gradient
norm has an inverse relation with the standard deviations of the residual connections. Consequently,
smaller residual standard deviations in early layers lead to larger upper bounds of gradient norm.
Thus, our empirical analysis reveals that standard deviation of residual connections, is a pivotal
factor that further promotes higher gradient norms in the early layers compared to the later ones as
observed in Figs. 5a & 5b. Similar observations are also seen across other models, GPT2-Small,
Smol-LM, Qwen2, ViT-Base, BEiT, and DeiT, as presented in Appendix E.7.

5.2.3 OUTPUT MARGIN ANALYSIS

Next, we analyze the model’s output margins—defined as the difference between the largest and
second-largest predicted logits for a sample (Jiang et al., 2018). This margin reflects the confidence
in the model’s predictions and can serve as a useful proxy for the distance to the decision boundary.
In our study, we compare the average output margin across all test samples before and after removing
residual connections. As shown in Figs. 8a & 8b, the output margins are substantially reduced when
early residuals are removed, whereas they remain relatively stable when later residuals are ablated.
Smaller margins indicate that predictions are closer to the decision boundary and thus more prone to
misclassification, which explains the observed drop in accuracy following early residuals removal.
Consistent observations are seen across other models, GPT2-Small, Smol-LM, Qwen2, ViT-Base,
BEiT, and DeiT, in Appendix E.8. We also provide the output margin analysis across epochs in
Appendix E.10.2.
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(a) Relation between gradient norm ∥glearn∥2, output
margin, and testing accuracy. (CIFAR10-ViT-Base)
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(b) Relation between gradient norm ∥glearn∥2, output
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Figure 9: Gradient norm correlates with output margin and test accuracy. Residual connec-
tions with higher ∥glearn∥2 (early residuals) yield lower output margins and degraded accuracy when
removed, indicating their greater importance for learning. Conversely, residuals with lower ∥glearn∥2
(later residuals) have minimal effect on margin and accuracy when removed.

5.2.4 UNIFIED VIEW OF GRADIENT NORM, OUTPUT MARGIN AND TEST ACCURACY

Together, these findings, grounded by both empirical analysis and theoretical support, paint a clear
picture of why early residuals play a significant role. They carry the strongest learning signals, as
seen from both their measured and bounded gradient norms. In comparison to later layers, their role
is substantially more critical: when early residuals are removed, the model’s output margins and
prediction confidence drop, leading to higher prediction errors and ultimately reduced test accuracy.

To further validate this connection, we visualize the relationship between these three measures: (i)
gradient norm, ∥glearn∥2, (ii) output margin, and (iii) test accuracy. As shown in Figs. 9a & 9b,
residual connections with higher gradient norms cause more drops in output margin, and thus are
more subject to test accuracy drops when removed. In contrast, since residual connections with
lower gradient norms have less potential, hence, even if they are removed, the impact is insignificant
on the output margin and test accuracy. The trend in Fig. 9 can be formally expressed as follows:

High ∥glearn
xℓ

∥2 =⇒ Low Output Marginremoved
Resℓ =⇒ Low Accremoved

Resℓ

Low ∥glearn
xℓ

∥2 =⇒ High Output Marginremoved
Resℓ =⇒ High Accremoved

Resℓ

(7)

Here, High ∥glearn
xℓ

∥2 indicates that the residual connection at layer ℓ—typically from earlier lay-
ers—has a high learning gradient norm. Removing such a residual causes a substantial drop in
output margin (Low Output Marginremoved

Resℓ ), leading to increased prediction error and reduced test
accuracy (Low Accremoved

Resℓ ). Conversely, Low ∥glearn
xℓ

∥2—often observed in later residuals—suggests
that later residual connections contribute less to learning. Removing these residuals tends to mini-
mally impact the output margin (High Output Marginremoved

Resℓ ) and the test accuracy (High Accremoved
Resℓ ),

relative to early residuals removal. This contrast highlights a clear relation: early residuals with
high gradient norms are essential for preserving model confidence and generalization, while
later residuals with low gradient norms play a more limited role. Consistent observations are
observed for all the other models, GPT2-Medium, Smol-LM, Qwen2, TinyViT, BEiT, and DeiT, in
Appendix E.9.

6 CONCLUSION

In this work, we show that residual connections in transformers only relay generalization but not
memorization, where their removal only impairs learning. We further explain this phenomenon
via gradients analysis where memorization gradient norms are much smaller than learning gradient
norms across all layers, indicating limited flow of memorization related signal through residual
paths. On top of that, we also emphasize the importance of early residuals towards learning where
early residuals have higher gradient norms, and their removal causes a larger drop in output margins
and test accuracy compared to later residuals. Overall, our findings uncover a novel, key insight in
which residual connections only transfer generalization while skipping memorization.
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APPENDIX

A PROOF OF THEOREM 1

Theorem 1: Upper Bound of Gradient Norm Let xi be the input to the ith layer’s first residual
block. Then, the gradient norm satisfies:

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ ∥ŷ − y∥2︸ ︷︷ ︸
error

·σout

(√
dout +

√
d1

)

·

 N∏
j=i

{(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)
·
(
1 +

σWO,j

σxj

Cj
attn

)} (8)

where y is the ground truth one-hot encoded vector, ŷ is the predicted softmax probability vector,
σxj

and σx̃j
are the standard deviations of the residual stream inputs xj and x̃j respectively,

σW1,j
, σW2,j

are the standard deviations of the feedforward network (FFN) weight matrices
W1,j , W2,j respectively, σWO,j

is the standard deviation of the output projection matrix in the

MHSA block for jth layer, Cffn =
(√

d1 +
√
d2
)2

where d1, d2 are intermediate hidden sizes,

Cj
attn = 2d1 ·

∥∥∥Jj
Z

∥∥∥
2
, σout is the standard deviation of classification head weight matrix Wout, and

dout is output size of classification head.

Proof:

Firstly, we formally describe the multi-head self-attention and feed-forward blocks in the trans-
former architecture as follows:

x̃i = xi + MHSA(LN(xi)) & yi = x̃i + FFN(LN(x̃i)) (9)

where xi denotes the input to the first residual block; x̃i denotes the output of the first residual block
and is also the input of the second residual block; yi is the output of the second residual block in the
ith transformer layer. MHSA, FFN, and LN denote the multi-head self-attention, feedforward, and
LayerNorm layers, respectively. Since there are 2 residual blocks, we compute the gradient of loss
with respect to the inputs of both of them separately, which is, xi and x̃i.

A.1 GRADIENT ANALYSIS FOR SECOND RESIDUAL CONNECTION x̃i (i.e., gx̃i
)

The gradient gx̃i
for the second residual connection x̃i, can be written as follows:

gx̃i
=

∂L
∂x̃i

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

(10)

where L is the cross entropy loss, yN is the output of the N th transformer layer, yout is the output of
the classification layer, and yi = xi+1 because ith layer’s output yi is the input of (i+1)th layer, xi+1.
The cross entropy loss L between the ground truth vector y and the predicted softmax probability
vector ŷ (= Softmax(yout)), is written as follows:

L = −
C∑

c=1

yc log(ŷc) (11)

where yc = 1 if c is the ground truth class, otherwise 0, and ŷc is the predicted softmax probability
of class c. We can then write ∂L

∂yout
as follows:

∂L
∂yout

= ŷ − y (12)

We then substitute equation 12 to equation 10 and obtain the following:
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gx̃i =
∂L
∂x̃i

= (ŷ − y) · ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

(13)

We now take the ℓ2 norm on both sides of equation 13 to get the following.

∥gx̃i
∥2 =

∥∥∥∥ ∂L∂x̃i

∥∥∥∥
2

=

∥∥∥∥∥∥(ŷ − y) · ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

∥∥∥∥∥∥
2

(14)

From the Cauchy–Schwarz inequality (Steele, 2004) (via the multiplicative property of the operator
norm), we know that:

∥A1A2 · · ·An∥2 ≤ ∥A1∥2 · ∥A2∥2 · · · ∥An∥2 (15)
where Ai are matrices/vectors. Accordingly, after applying equation 15 to equation 14, we obtain
the following:

∥gx̃i
∥2 =

∥∥∥∥ ∂L∂x̃i

∥∥∥∥
2

=

∥∥∥∥∥∥(ŷ − y) · ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

∥∥∥∥∥∥
2

≤ ∥ŷ − y∥2 ·
∥∥∥∥∂yout

∂yN

∥∥∥∥
2

·

[
N∏

j=i+1

(∥∥∥∥ ∂yj∂x̃j

∥∥∥∥
2

·
∥∥∥∥∂x̃j

∂xj

∥∥∥∥
2

)]
·
∥∥∥∥ ∂yi∂x̃i

∥∥∥∥
2

(16)

We know that, yout = Wout∗yN , where Wout is the weight matrix of the classification head. Similarly,
from equation 2, we know that x̃j = xj + MHSA(LN(xj)) and yj = x̃j + FFN(LN(x̃j)). Also,
from Takase et al. (2023), we already know the upper bounds of the ℓ2-norms of ∂yout

∂yN
, ∂yj

∂x̃j
, and ∂x̃j

∂xj
,

as follows:

UB
(∥∥∥∥∂yout

∂yN

∥∥∥∥
2

)
= σout

(√
dout +

√
d1

)
, UB

(∥∥∥∥ ∂yj∂x̃j

∥∥∥∥
2

)
= 1 +

σWO,j

σxj

Cj
attn,

UB
(∥∥∥∥∂x̃j

∂xj

∥∥∥∥
2

)
= 1 +

σW1,j σW2,j

σx̃j

Cffn,

(17)

where, σxj
and σx̃j

are the standard deviations of the residual stream inputs xj and x̃j , respectively,
σW1,j

, σW2,j
are the standard deviations of the feedforward network (FFN) weight matrices W1,j ,

W2,j , respectively, σWO,j
is the standard deviation of the output projection matrix in the MHSA

block for jth layer, Cffn =
(√

d1 +
√
d2
)2

, Cj
attn = 2d1 ·

∥∥∥Jj
Z

∥∥∥
2
, d1, d2 are intermediate hidden

sizes, σout is the standard deviation of classification head weight matrix Wout, dout is output size of
classification head,

∥∥∥Jj
Z

∥∥∥
2
= h

((√
L+ 2 + 1√

L

)
σ3
Q,j

√
d31dhead + σQ,j

(√
d1 +

√
dhead

))
where

σQ,j is the standard deviation of attention query matrix, h is the number of attention heads, dhead is
size of each attention head, and L is the input sequence length.

Therefore, we replace the gradient norms terms in equation 16 with the terms defined in equation 17,
to obtain the following expression:

∥gx̃i∥2 =

∥∥∥∥ ∂L∂x̃i

∥∥∥∥
2

≤ ∥ŷ − y∥2︸ ︷︷ ︸
error

·σout

(√
dout +

√
d1

)

·

[
N∏

j=i+1

{(
1 +

σWO,j

σxj

Cj
attn

)(
1 +

σW1,j σW2,j

σx̃j

Cffn

)}](
1 +

σWO,i

σxi

Ci
attn

)
(18)

∥gx̃i∥2 =

∥∥∥∥ ∂L∂x̃i

∥∥∥∥
2

≤ ∥ŷ − y∥2︸ ︷︷ ︸
error

·σout

(√
dout +

√
d1

)

·

[
N∏
j=i

(
1 +

σWO,j

σxj

Cj
attn

)]
·

[
N∏

j=i+1

(
1 +

σW1,j σW2,j

σx̃j

Cffn

)] (19)
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A.2 GRADIENT ANALYSIS FOR FIRST RESIDUAL CONNECTION xi (i.e., gxi
):

Similar to gx̃i
, we can represent the gradient norm for the first residual connection xi, i.e., gxi

as
follows:

gxi
=

∂L
∂xi

=
∂L
∂yout

· ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

· ∂x̃i

∂xi
(20)

In that, we substitute ∂L
∂yout

with equation 12, as follows:

gxi
=

∂L
∂xi

= (ŷ − y) · ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

· ∂x̃i

∂xi
(21)

We then apply the ℓ2 norm on both sides of the Eq. equation 21,

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

=

∥∥∥∥∥∥(ŷ − y) · ∂yout

∂yN
·

N∏
j=i+1

(
∂yj
∂x̃j

· ∂x̃j

∂xj

)
· ∂yi
∂x̃i

· ∂x̃i

∂xi

∥∥∥∥∥∥
2

(22)

We then apply the Cauchy–Schwarz inequality (Steele, 2004), as shown in equation 15, to obtain
the following:

∥gxi∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ ∥ŷ − y∥2 ·
∥∥∥∥∂yout

∂yN

∥∥∥∥
2

·

[
N∏

j=i+1

(∥∥∥∥ ∂yj∂x̃j

∥∥∥∥
2

·
∥∥∥∥∂x̃j

∂xj

∥∥∥∥
2

)]
·
∥∥∥∥ ∂yi∂x̃i

∥∥∥∥
2

·
∥∥∥∥∂x̃i

∂xi

∥∥∥∥
2

(23)

We now, expand the ℓ2-norms of the gradients using equation 17 to obtain the following expression:

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ ∥ŷ − y∥2︸ ︷︷ ︸
error

·σout

(√
dout +

√
d1

)

·

[
N∏

j=i+1

{(
1 +

σWO,j

σxj

Cj
attn

)(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)}]

·
(
1 +

σWO,i

σxi

Ci
attn

)
·
(
1 +

σW1,i σW2,i

σx̃i

Cffn

)
(24)

∥gxi
∥2 =

∥∥∥∥ ∂L∂xi

∥∥∥∥
2

≤ ∥ŷ − y∥2︸ ︷︷ ︸
error

·σout

(√
dout +

√
d1

)

·

 N∏
j=i

{(
1 +

σWO,j

σxj

Cj
attn

)
·
(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)} (25)

In conclusion, the ℓ2 norm of the gradient of the loss L w.r.t the input of each of the residual blocks,
x̃i and xi, is upper bounded as shown in equation 19 and equation 25, respectively.

B PROOF OF THEOREM 2
Theorem 2: Upper bound of the gradient norm of early layers residuals are higher than
that of later layers residuals. It is formally represented as follows:

UB(∥gx1
∥2) ≥ UB(∥gx2

∥2) ≥ · · · ≥ UB(∥gxN
∥2) (26)

where UB(∥gxi∥2) denotes the upper bound of ∥gxi∥2, and xi is the input to the ith layer’s first
residual block.

Proof:

We utilize the derived upper bound of the ℓ2-norm of the loss gradient w.r.t. each of the 2 residual
block inputs, x̃i and xi in equation 19 and equation 25, respectively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.1 UPPER BOUND ANALYSIS FOR SECOND RESIDUAL CONNECTION’S GRADIENT NORM
∥gx̃i

∥2

To analyze how the gradient norms behave across layers, we compare the upper bounds of the
gradient norms of the second residual connection, for 2 consecutive layers, i and i + 1, ∥gx̃i

∥2 and
∥gx̃i+1

∥2. Accordingly, from Theorem 1, the upper bound of ∥gx̃i
∥2 and ∥gx̃i+1

∥2 can be written as:

UB (∥gx̃i
∥2) = ∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

[
N∏
j=i

(
1 +

σWO,j

σxj

Cj
attn

)]
·

[
N∏

j=i+1

(
1 +

σW1,j σW2,j

σx̃j

Cffn

)] (27)

UB
(∥∥gx̃i+1

∥∥
2

)
= ∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

[
N∏

j=i+1

(
1 +

σWO,j

σxj

Cj
attn

)]
·

[
N∏

j=i+2

(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)] (28)

We now check if UB(∥gx̃i∥2) ≥ UB(∥gx̃i+1∥2) from equation 27 and equation 28 respectively, as
follows:

∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

[
N∏
j=i

(
1 +

σWO,j

σxj

Cj
attn

)]
·

[
N∏

j=i+1

(
1 +

σW1,j σW2,j

σx̃j

Cffn

)]

≥ ∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

[
N∏

j=i+1

(
1 +

σWO,j

σxj

Cj
attn

)]
·

[
N∏

j=i+2

(
1 +

σW1,j σW2,j

σx̃j

Cffn

)]
(29)

After further reducing the inequality, we obtain the following:(
1 +

σWO,i

σxi

Ci
attn

)
·
(
1 +

σW1,i+1
σW2,i+1

σx̃i+1

Cffn

)
≥ 1. (30)

We know that all the standard-deviation terms, σWO,i
, σxi

, σW1,i+1
, σW2,i+1

, σx̃i+1
, are ≥ 0 by

default. Furthermore, we know that Ci
attn ≥ 0 and Cffn > 0 as proved in Section C. This means that,

σWO,i

σxi

Ci
attn ≥ 0 &

σW1,i+1
σW2,i+1

σx̃i+1

Cffn ≥ 0 (31)

This further proves that,

1 +
σWO,i

σxi

Ci
attn ≥ 1 & 1 +

σW1,i+1
σW2,i+1

σx̃i+1

Cffn ≥ 1 (32)

Hence, equation 32, proves that equation 30 holds true, and thereby also proving that UB(∥gx̃i∥2) ≥
UB(∥gx̃i+1∥2) for all 1 ≤ i ≤ N .

Therefore, we can conclude that the upper bound of the gradient norms of the second residual
of the early layers is larger than that of the later layers.

B.2 UPPER BOUND ANALYSIS FOR FIRST RESIDUAL CONNECTION’S GRADIENT NORM
∥gxi∥2

To analyze how the gradient norms behave across layers, we compare the upper bounds of the
gradient norms of the first residual connection, for 2 consecutive layers, i and i + 1, ∥gxi∥2 and
∥gxi+1

∥2. Accordingly, from Theorem 1, the upper bound of ∥gxi
∥2 and ∥gxi+1

∥2 can be written as:

UB (∥gxi∥2) = ∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

 N∏
j=i

{(
1 +

σWO,j

σxj

Cj
attn

)
·
(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)} (33)
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UB
(∥∥gxi+1

∥∥
2

)
= ∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

 N∏
j=i+1

{(
1 +

σWO,j

σxj

Cj
attn

)
·
(
1 +

σW1,j σW2,j

σx̃j

Cffn

)} (34)

We now check if UB(∥gxi∥2) ≥ UB(∥gxi+1∥2) from equation 33 and equation 34 respectively, as
follows:

∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

N∏
j=i

[(
1 +

σWO,j

σxj

Cj
attn

)
·
(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)]

≥ ∥ŷ − y∥2 · σout

(√
dout +

√
d1

)
·

N∏
j=i+1

[(
1 +

σWO,j

σxj

Cj
attn

)
·
(
1 +

σW1,j
σW2,j

σx̃j

Cffn

)]
.

(35)
After further reducing the inequality we obtain the following:(

1 +
σWO,i

σxi

Ci
attn

)
·
(
1 +

σW1,i σW2,i

σx̃i

Cffn

)
≥ 1. (36)

We already know that all the standard-deviation terms - σWO,i
, σxi

, σW1,i
, σW2,i

, σx̃i
, are ≥ 0.

Furthermore, we know that Ci
attn ≥ 0 and Cffn > 0 as proved in Section C. This means that,

σWO,i

σxi

Ci
attn ≥ 0 &

σW1,i
σW2,i

σx̃i

Cffn ≥ 0 (37)

This further proves that,

1 +
σWO,i

σxi

Ci
attn ≥ 1 & 1 +

σW1,i
σW2,i

σx̃i

Cffn ≥ 1 (38)

Hence, equation 38, proves that equation 36 holds true, and thereby also proving that UB(∥gxi
∥2) ≥

UB(∥gxi+1
∥2) for all 1 ≤ i ≤ N .

Therefore, we can conclude that the upper bound of the gradient norms of the first residual of
the early layers is larger than that of the later layers.

C PROOF FOR CFFN > 0 AND Cj
ATTN ≥ 0

From Takase et al. (2023), we already know that for each transformer
layer Cffn =

(√
d1 +

√
d2
)2

and Cj
attn = 2d1 ·

∥∥∥Jj
Z

∥∥∥
2
, where

∥∥∥Jj
Z

∥∥∥
2

=

h
((√

L+ 2 + 1√
L

)
σ3
Q,j

√
d31dhead + σQ,j

(√
d1 +

√
dhead

))
.

We now need to prove that Cffn > 0 and Cj
attn ≥ 0. We do that as follows:

We know that for each transformer layer the intermediate hidden sizes, d1 and d2 are > 0. Hence,(√
d1 +

√
d2
)2

> 0. This proves that Cffn > 0.

For Cj
attn, we expand it as follows:

Cj
attn = 2d1h

((√
L+ 2 +

1√
L

)
σ3
Q,j

√
d31dhead + σQ,j

(√
d1 +

√
dhead

))
(39)

We know that for any transformer model, the number of attention heads h > 0, the size of the
attention head dhead > 0, the intermediate hidden size d1 > 0, and the standard deviation of the
attention query matrix σQ,j ≥ 0, across all layers. Furthermore, we know that the input length
sequence would also be of size at least 1 (assuming that we do not have an empty string as the
input). This proves that across all transformer layers,

Cj
attn = 2d1h

((√
L+ 2 +

1√
L

)
σ3
Q,j

√
d31dhead + σQ,j

(√
d1 +

√
dhead

))
≥ 0 (40)

Hence, we have proven that Cffn > 0 and Cj
attn ≥ 0 across all transformer layers.
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D TRAINING DETAILS

In this section, we explain the experimental setup of our work, spanning across different vision and
language datasets and models used in this study, along with the hyperparameters used to train the
models.

D.1 DATASETS

As part of this study, we considered 7 different datasets covering both vision and language modali-
ties, as follows:

20NewsGroup proposed in Lang (1995), is a collection of approximately 20,000 newsgroup docu-
ments, partitioned (nearly) evenly across 20 different news groups. We split the dataset into training,
validation, and testing using a stratified split of 70:20:10. To induce the notion of noisy labels, we
randomly flip labels of 1% proportion of class 1 samples during training, while keeping the rest of
the data points the same.

Emotions created by Saravia et al. (2018), comprised of 20,000 samples, split across training
(16,000), validation (2,000), and testing (2,000). It consists of a total of 6 classes depicting dif-
ferent emotion types. To evaluate memorization, we introduce noisy labels in 1% of the trainset
class 5 samples, by changing their labels to a random, different label and keeping the remaining
samples unaltered.

TweetTopic proposed in Antypas et al. (2022), consists of a collection of social media tweets cov-
ering a range of everyday topics. The dataset is split across train (2,858), validation (352), and test
(376) sets, consisting of 6 classes. To measure the notion of memorization, we introduce noisy la-
bels, by flipping labels of 1% of class 3 train samples to any other random class label, while keeping
rest of the samples the same.

Places365Mini is a subset of the standard Places365 dataset originally introduced by Zhou et al.
(2017). The Places365Mini version is publicly available on Huggingface1, and it consists of 8,000
samples spanning across 10 classes, with 7,500 samples in the train set and 500 in the test set.
We also resize the images to size 224x224x3 for compatibility with model’s input requirements.
Furthermore, to study memorization, we induce noisy labels by randomly flipping labels of 1% of
class 9 train samples to a different class.

CIFAR10 proposed by Krizhevsky et al. (2009), comprises of 60,000 samples spanning equally
across 10 classes. The training, validation, and testing sets consists of 40,000, 10,000 and 10,000
samples respectively. Furthermore, we resize the images to 224x224x3 for model input require-
ments. To study memorization, we randomly flip labels of 1% of class 9 train samples to any other
random class label.

CIFAR100 introduced by Krizhevsky et al. (2009), consists of 60,000 samples, spread equally
across 100 classes, split across training (40,000), validation (10,000), and testing (10,000) sets.
Prior to training, all images are resized to 224×224×3 to match the model’s input dimensions. We
induce noisy labels, by randomly flipping labels of 1% of class 16 train samples to any other random
class label.

UTK-Face proposed in Zhang et al. (2017), provides 23,705 face images annotated with 5 ethnicity
groups. The dataset is partitioned into training, validation, and testing subsets following a stratified
65:15:20 split to preserve class balance. Before model training, each image is resized to 224×224×3,
so that it conforms to the input specifications of the model. To add label noise, we randomly alter
the labels of 1% of training samples from class 2, assigning each a label from one of the remaining
classes.

Lastly, for each case, to ensure the model memorizes the noisy labels, we train the model till it
achieves 100% train accuracy.

1https://huggingface.co/datasets/dpdl-benchmark/places365-mini-sample-hard
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D.2 MODELS

In this study, we consider 8 transformer models covering both vision and language modalities. We
utilize the Sequence Classification variant of these models available on Huggingface2.

Language Models Description
GPT2-Medium (Radford
et al., 2019)

24-layer unidirectional decoder-only transformer trained for
causal language modeling.

GPT2-Small (Radford et al.,
2019)

12-layer unidirectional decoder-only transformer trained for
causal language modeling.

Smol-LM-135m (Allal
et al., 2025)

30-layer small, efficient transformer model developed for easy
on-device use.

Qwen2-0.5B (Team, 2024) 24-layer efficient LLM optimized for generative tasks, using
RMSNorm.

Vision Models Description
ViT-Base (Dosovitskiy
et al., 2020)

12-layer Vision Transformer Base model for image classifica-
tion.

TinyViT (Wu et al., 2022) 12-layer tiny and efficient small vision transformer pretrained on
large-scale datasets with a fast distillation framework.

BEiT (Bao et al., 2021) 12-layered transformer that learns rich image representations
by predicting masked image patches in a BERT-style self-
supervised pretraining framework.

DeiT (Touvron et al., 2021) 12-layer Data-efficient Image Transformer trained with distilla-
tion, without external data.

Table 1: Overview of the 8 language and vision transformer models.

2https://huggingface.co/docs/transformers/index
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D.3 TRAINING SETTINGS & HYPER-PARAMETERS

In our work, we study the following datasets and models setups: (i) Emotions-GPT2-Medium,
(ii) 20NewsGroup-GPT2-Small, (iii) TweetTopic-Smol-LM, (iv) TweetTopic-Qwen2, (v) CIFAR10-
ViT-Base, (vi) CIFAR100-TinyViT, (vii) Places365Mini-BEiT, and (viii) UTK-Face-DeiT.

In addition to this, we maintain a consistent training setting across all variations. We use Adam as
the optimizer and set a learning rate of 2e-5, along with a batch size of 16 for all the models. Then,
we train the models for 70 epochs to achieve memorization. In addition to that, we do not use any
data augmentation in our training procedures to obscure any impact from augmentations. We used
A100, H100 and A5000 GPUs to train our models.

E ADDITIONAL EXPERIMENTS & RESULTS

In this section, we provide supplementary results for the remaining models for the experiments done
in Sec. 4 and Sec. 5. These results further corroborates our contributions - (i) residual connections
skip memorization and only relays generalization, (ii) memorization gradient norm is smaller than
learning gradient norm across all layers, (iii) memorization gradient norms are smaller because of
low prediction error in comparison to learning case, (iv) early residuals are critical for learning and
exhibit high gradient norms, (v) residual connections standard deviations significantly impact early
residuals gradient norms, (vi) output margin decreases as we remove residual connections from
early layers, and (vii) gradient norms strongly correlate with output margins and test-accuracy. We
provide the additional results for the same in Sec. E.1, E.5, E.6, E.7, E.8, and E.9.

E.1 RESIDUAL CONNECTIONS DO NOT IMPACT MEMORIZATION BUT INFLUENCES
GENERALIZATION

In this section, we show that residual connections do not relay memorization but primarily influ-
ence generalization, where their removal has no impact on memorization and rather impairs test
accuracy. We verify the claim against the following additional models, GPT2-Medium, Smol-LM,
Qwen2, TinyViT, BEiT, and DeiT, as presented in Figs. 10g, 10h; Figs. 10k, 10l; Figs. 10i, 10j;
Figs. 10a, 10b; Figs. 10c, 10d, and Figs. 10e, 10f, apart from GPT2-Small and ViT-Base results
provided in the main paper in Figs. 2c, 2d & Figs. 2a, 2b.
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(b) Impact of Residual Connections on Test Accuracy
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(c) Impact of Residual Connections on Memorization
across Layers (Places365Mini-BEiT)

No Removal 1 2 3 4 5 6 7 8 9 10 11 12
Layer ID

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

(d) Impact of Residual Connections on Test Accuracy
across Layers (Places365Mini-BEiT)
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(e) Impact of Residual Connections on Memorization
across Layers (UTK-Face-DeiT)
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(f) Impact of Residual Connections on Test Accuracy
across Layers (UTK-Face-DeiT)

No Removal 1 3 5 7 9 11 13 15 17 19 21 24
Layer ID

0

20

40

60

80

100

M
em

or
iza

tio
n 

(%
)

(g) Impact of Residual Connections on Memorization
across Layers (Emotions-GPT2-Medium)
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(h) Impact of Residual Connections on Test Accuracy
across Layers (Emotions-GPT2-Medium)
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(i) Impact of Residual Connections on Memorization
across Layers (TweetTopic-Smol-LM)
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(j) Impact of Residual Connections on Test Accuracy
across Layers (TweetTopic-Smol-LM)
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(k) Impact of Residual Connections on Memorization
across Layers (TweetTopic-Qwen2)
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(l) Impact of Residual Connections on Test Accuracy
across Layers (TweetTopic-Qwen2)

Figure 10: Residual connections do not influence memorization, but early residuals are crit-
ical for learning. (a) shows that residual connections across all layers have almost no impact on
memorization, while (b) highlights that early layers residuals significantly influence test accuracy,
indicating their importance for learning, than later ones.
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E.2 ANALYSIS ACROSS HIGHER LABEL NOISE RATIOS

We validate consistency of our claims, i.e., (1) residual connections do not propagate memorization
but relay generalization, and (2) early residuals have the most influence on learning, for higher label
noise ratios: 5%, 10%, and 20% for Smol-LM and DeiT models across Figs. 11a,11b; Figs. 11c,11d;
Figs. 3a,3b; Figs. 11e,11f; Figs. 11g,11h; and Figs. 11i,11j.
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(b) Impact on Test Accuracy across Layers
(TweetTopic-Smol-LM & 5% Label Noise)
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(c) Impact on Memorization across Layers
(TweetTopic-Smol-LM & 10% Label Noise)
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(d) Impact on Test Accuracy across Layers
(TweetTopic-Smol-LM & 10% Label Noise)
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(e) Impact on Memorization across Layers
(UTK-Face-DeiT & 5% Label Noise)
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(f) Impact on Test Accuracy across Layers
(UTK-Face-DeiT & 5% Label Noise)
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(g) Impact on Memorization across Layers
(UTK-Face-DeiT & 10% Label Noise)
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(h) Impact on Test Accuracy across Layers
(UTK-Face-DeiT & 10% Label Noise)
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(i) Impact on Memorization across Layers
(UTK-Face-DeiT & 20% Label Noise)
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(j) Impact on Test Accuracy across Layers
(UTK-Face-DeiT & 20% Label Noise)

Figure 11: Consistent results across higher noise ratios. Residual connections do not influence
memorization but only relay generalization even for higher noise ratios of 5%, 10%, and 20%.
Furthermore, early residuals are the most impactful towards generalization.
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E.3 RESULTS IN GENERATIVE TASKS

To verify the applicability of our claims beyond classification tasks, we carry out the analysis on a
generative language modeling task. From Figs. 4a, 4b; Figs. 12a, 12b, we can clearly observe that
even in a generative task, the claims that (1) residual connections do not propagate memorization
but only relays generalization, and (2) early residuals are the most impactful towards generalization,
hold true.
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(TweetTopic-GPT2-Small & Generative Task)
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(b) Impact on Test Accuracy across Layers
(TweetTopic-GPT2-Small & Generative Task)

Figure 12: Results in generative tasks. Consistent with classification tasks, residual connections do
not propagate memorization even for generative language modeling tasks, but only relay generaliza-
tion.

E.4 SCALING RESIDUAL CONNECTIONS BY FACTOR c

We provide another ablation study where instead of completely removing the residual connection,
we multiply it by a scaling factor c, where c = [0, 0.25, 0.5, 0.75, 1], and c = 0 means complete
removal and c = 1 means no removal, with other values depicting partial removal. We do this
analysis for the residual connections in the first transformer layer as they are the most influential
layers, and present their influence on memorization and generalization in Figs. 13a & 13b.

(a) Impact of scaling factor c on memorization
(UTK-Face-DeiT)

(b) Impact of scaling factor c on generalization
(UTK-Face-DeiT)

Figure 13: Impact of residual connections on memorization and generalization in generative tasks.

From Figs. 13a & 13b, we can clearly observe that even partially removed residual connections can
not influence memorization. Apart from that as c decreases from 1 to 0, we can observe a drop
in generalization, as we are gradually removing the residual connection, with memorization still
remaining intact, which thoroughly aligns with all other our claims made in this paper.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E.5 MEMORIZATION AND LEARNING ERROR

In this section, we provide the empirical results for confirming that the memorization error is smaller
than learning error which causes memorization gradient norms to be smaller than learning gradient
norms, as discussed in Section 4.6.

Accordingly, the results are verified against remaining 7 models, GPT2-Small, GPT2-Medium,
Smol-LM, Qwen2, ViT-Base, BEiT, and DeiT, as shown in Figs. 14a, 14b, 14c, 14d, 14e, 14f,
and 14g, respectively, with TinyViT results present in the main paper in Fig. 7.
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Figure 14: Comparison of memorization and learning errors measured as ∥ŷ − y∥2 in log scale
across datasets and models.
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E.6 GRADIENT NORMS ANALYSIS ACROSS LAYERS

In this section, we provide additional results exhibiting that memorization gradient norm ∥gmem∥2 is
smaller than learning gradient norm ∥glearn∥2 across all layers. This explains why residual connec-
tions do not impact memorization and only influences learning.

We below present the results for additional models, GPT2-Small, Smol-LM, Qwen2, ViT-Base,
BEiT, and DeiT, in Figs. 15a, 15b, 15c, 15d, 15e, and 15f, respectively, apart from GPT2-Medium
and TinyViT results which are already shown in the main paper in Figs. 5b & 5a.
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(a) ∥glearn∥2 & ∥gmem∥2 (20NewsGroup-GPT2-
Small)
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(b) ∥glearn∥2 & ∥gmem∥2 (TweetTopic-Smol-LM)
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(c) ∥glearn∥2 & ∥gmem∥2 (TweetTopic-Qwen2)
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(d) ∥glearn∥2 & ∥gmem∥2 (CIFAR10-ViT-Base)
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(e) ∥glearn∥2 & ∥gmem∥2 (Places365Mini-BEiT)
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(f) ∥glearn∥2 & ∥gmem∥2 (UTK-Face-DeiT)

Figure 15: Memorization gradient norms are consistently smaller than learning gradient
norms, with early residuals exhibiting the highest activity. Across all datasets, ∥gmem∥2 remains
significantly lower than ∥glearn∥2 across all layers, explaining why residuals do not influence mem-
orization. The learning gradients peak in early layers, underscoring their critical role in learning.
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E.7 STANDARD DEVIATION ANALYSIS ACROSS LAYERS

In this section, we further show (i) how for both memorization and learning, σWj,O
, σWj,1

, σWj,2
,

σxj
& σx̃j

are of similar magnitudes, and (ii) σxj
& σx̃j

exhibiting a high variation across layers
while rest of the statistics having very less variation.

We present the results for additional models, GPT2-Small, GPT2-Medium, Smol-LM, Qwen2, ViT-
Base, BEiT, and DeiT, in Figs. 16, 17, 18, 19,20, 21, and 22, respectively, other than for TinyViT
which is already present in the main paper in Fig. 6.

Metric Mean Std

σxj
7.768 4.814

σx̃j
9.147 7.112

σWj,O
0.118 0.030

σWj,1
0.129 0.004

σWj,2
0.120 0.038

(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics
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Figure 16: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj

,
σx̃j

) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1
, σWj,2

). Importantly, σxj
& σx̃j

statistics are nearly identical for learning and
memorization samples. (20NewsGroup-GPT2-Small)

Metric Mean Std

σxj
10.461 5.143

σx̃j
11.103 5.625

σWj,O
0.094 0.021

σWj,1
0.1053 0.001

σWj,2
0.105 0.023

(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer ID

0

5

10

15

20

25

x i

Learning Memorization

(b) σx̃i across all layers
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Figure 17: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj

,
σx̃j

) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1 , σWj,2 ). Importantly, σxj & σx̃j statistics are nearly identical for learning and
memorization samples. (Emotions-GPT2-Medium)
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Metric Mean Std

σxj
558.840 480.539

σx̃j
558.738 480.512

σWj,O
0.228 0.0491

σWj,1
0.258 0.011

σWj,2
0.250 0.008

(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics
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Figure 18: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj

,
σx̃j

) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1
, σWj,2

). Importantly, σxj
& σx̃j

statistics are nearly identical for learning and
memorization samples. (TweetTopic-Smol-LM)

Metric Mean Std
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(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics
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(b) σx̃i across all layers
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Figure 19: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj

,
σx̃j ) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1 , σWj,2 ). Importantly, σxj & σx̃j statistics are nearly identical for learning and
memorization samples. (TweetTopic-Qwen2)

Metric Mean Std

σxj
7.874 6.731
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8.048 6.891

σWj,O
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σWj,1
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(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics
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(b) σx̃i across all layers
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Figure 20: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj ,
σx̃j

) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1
, σWj,2

). Importantly, σxj
& σx̃j

statistics are nearly identical for learning and
memorization samples. (CIFAR10-ViT-Base)
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Metric Mean Std

σxj
3.804 4.136

σx̃j
3.175 3.237

σWj,O
0.033 0.009

σWj,1
0.035 0.002

σWj,2
0.035 0.002

(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics
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(b) σx̃i across all layers
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Figure 21: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj

,
σx̃j

) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1
, σWj,2

). Importantly, σxj
& σx̃j

statistics are nearly identical for learning and
memorization samples. (Places365Mini-BEiT)

Metric Mean Std
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1.886 1.000
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(a) σxj , σx̃j , σWj,O ,
σWj,1 , and σWj,2 statistics
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(b) σx̃i across all layers
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Figure 22: Residual block activations exhibit a high variation across layers but remain consis-
tent between learning and memorization. The standard deviations of residual connections (σxj

,
σx̃j

) vary substantially across layers, in contrast to the relatively stable statistics of model param-
eters (σWj,O

, σWj,1
, σWj,2

). Importantly, σxj
& σx̃j

statistics are nearly identical for learning and
memorization samples. (UTK-Face-DeiT)
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E.7.1 STANDARD DEVIATION ANALYSIS FOR Cj
ATTN

From Theorem 1, we know that the upper bound of the gradient also depends
on Cj

attn, across the layers. From Takase et al. (2023), we know that Cj
attn =

2d1h
((√

L+ 2 + 1√
L

)
σ3
Q,j

√
d31dhead + σQ,j

(√
d1 +

√
dhead

))
.

We also know that across all transformer layers, d1, h, dhead would remain the same. Furthermore,
due to tokenization and truncation/padding, the input length sequence L is also restricted to a con-
stant value (generally 512 in most of the transformer models). Hence, Cj

attn varies across the layers
primarily due to the attention query matrix’s standard deviation σQ,j . Hence, we check how it
varies by computing the standard-deviation of σQ,j for all 8 models, GPT2-Small, GPT2-Medium,
Smol-LM, Qwen2, ViT-Base, TinyViT, BEiT, and DeiT, as shown in Table 2.

Model Mean Std

GPT2-Small 0.139 0.021
GPT2-Medium 0.111 0.013
Smol-LM 0.247 0.0331
Qwen2 0.022 0.006
ViT-Base 0.0859 0.015
TinyViT 0.065 0.005
BEiT 0.038 0.005
DeiT 0.046 0.004

Table 2: Mean and Standard Deviation of σQ,j for all 8 models

From Table 2, we can clearly observe that σQ,j has a very low variance, which means that it does
not vary much between layers, for all models.

Hence, in conclusion, it is the residual connections standard-deviations, σxi , σx̃i , which primarily
influence early layers to have significantly high gradient norms than later layers.
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E.8 OUTPUT MARGINS ANALYSIS ACROSS LAYERS

In this section, we show the importance of early residuals where their removal impacts the model’s
predictions by making it less confident and hence more prone to misclassifications, and thereby
leading to smaller output margins in comparison to later residuals.

We provide the results for remaining models, GPT2-Small, Smol-LM, Qwen2, ViT-Base, TinyViT,
BEiT, and DeiT, in Figs. 23a, 23b, 23c, 23d, 23e, and 23f, respectively, other than GPT2-Medium
and TinyViT results which are presented in the main paper in Figs. 8b, 8a.
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(a) Output Margins after removing residual connec-
tions across different layers. (20NewsGroup-GPT2-
Small)
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(b) Output Margins after removing residual con-
nections across different layers. (TweetTopic-Smol-
LM)
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(c) Output Margins after removing residual connec-
tions across different layers. (TweetTopic-Qwen2)
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(d) Output Margins after removing residual connec-
tions across different layers. (CIFAR10-ViT-Base)
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(e) Output Margins after removing residual connec-
tions across different layers. (Places365Mini-BEiT)
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(f) Output Margins after removing residual connec-
tions across different layers. (UTK-Face-DeiT)

Figure 23: Output margin corroborates the importance of early residuals. Removing residual
connections from early layers drastically reduces the output margin, increasing uncertainty and mis-
classifications. In contrast, removing later residuals has a smaller effect—highlighting that early
residuals play a crucial role in enabling confident learning.
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E.9 UNIFIED VIEW OF GRADIENT NORM, OUTPUT MARGIN AND TEST ACCURACY

In this section, we further strengthen the observation that residuals (early residuals) which exhibit
higher gradient norms, when removed, leads to smaller output margins because the model’s pre-
diction confidence decreases, and hence it leads to more misclassifications and high drop in test
accuracy, in comparison to remove residuals with smaller gradient norms (later residuals) whose
removal has discernible impact on the output margin and test accuracy.

We provide the results for all the models, GPT2-Medium, Smol-LM, Qwen2, TinyViT, BEiT, and
DeiT, in Figs. 24a, 24b, 24c, 24d, 24e, and 24f, respectively, apart from GPT2-Small and ViT-Base
results that are presented in the main paper in Figs. 9b, 9a.
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(a) Relation between gradient norm ∥glearn∥2, out-
put margin and testing accuracy. (Emotions-GPT2-
Medium)
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(b) Relation between gradient norm ∥glearn∥2, output
margin and testing accuracy.(TweetTopic-Smol-LM)
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(c) Relation between gradient norm ∥glearn∥2, output
margin and testing accuracy.(TweetTopic-Qwen2)
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(d) Relation between gradient norm ∥glearn∥2, output
margin and testing accuracy. (CIFAR100-TinyViT)
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(e) Relation between gradient norm ∥glearn∥2, output
margin and testing accuracy. (Places365Mini-BEiT)

1 2 3 4 5 6 7 8 9 10 11 12
Layer ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Gr
ad

ie
nt

 N
or

m

6

7

8

9

10

11

Ou
tp

ut
 M

ar
gi

n

74

76

78

80

82

84

Te
st

 A
cc

ur
ac

y 
(%

)

Gradient Norm
Output Margin

Test Accuracy
No Removal (Margin)

No Removal (Accuracy)

(f) Relation between gradient norm ∥glearn∥2, output
margin and testing accuracy.(UTK-Face-DeiT)

Figure 24: Gradient norm correlates with output margin and test accuracy. Residual connec-
tions with higher ∥glearn∥2 (early residuals) yield lower output margins and degraded accuracy when
removed, indicating their greater importance for learning. Conversely, residuals with lower ∥glearn∥2
(later residuals) have minimal effect on margin and accuracy when removed.
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E.10 GRADIENT NORMS AND OUTPUT MARGIN ANALYSIS ACROSS EPOCHS

We provide further analyses into the output margin and gradient norms over the course of training,
to understand how they evolve.

E.10.1 GRADIENT NORM ANALYSIS OVER EPOCHS

We study how the gradient norm evolves over the course of training when the residual connections
are present and absent. We specifically focus on removing the residual connections in the first layer,
as in general, they are the most impactful. For the gradient norms, we simply track the gradient
norms for the early (1st layer), middle (6th layer) and the later layer (12th layer) for DeiT model, to
get a general sense of how the gradient norms evolve across different layers.

(a) Gradient norm analysis across layers (UTK-
Face & DeiT with no removal)

(b) Gradient norm analysis across layers (UTK-
Face & DeiT, removing layer 1 residual connec-
tions)

Figure 25: Gradient norms evolve gradually over training, with early layers exhibiting higher gradi-
ent norms in comparison to middle/later layers.

From Figs. 25a & 25b, we can clearly understand that the gradient norms evolve gradually over
epochs with early layers exhibiting much higher gradient norms in comparison to middle and later
layers over the course of training.

E.10.2 OUTPUT MARGIN ANALYSIS OVER EPOCHS

(a) Output margin analysis over epochs (UTK-
Face & DeiT with no removal)

(b) Output margin analysis over epochs (UTK-
Face & DeiT, removing layer 1 residual con-
nections)

Figure 26: Output margins evolve gradually over epochs and output margins after residual connec-
tions removal are smaller than without removal, since generalization is impacted.

We study how the output margins evolve over the course of training when the residual connections
are present and absent. We specifically focus on removing the residual connections in the first layer
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as in general, they are the most impactful. From Figs. 26a & 26b, we can observe that similar to
gradient norms, output margins evolve gradually across training. Furthermore, the output margins
corresponding to removing residual connections are generally smaller than without any removal over
the course of training. This explains that generalization is impacted when the residual connections
are removed.
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