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ABSTRACT

In this paper, we design and analyze a new zeroth-order (ZO) stochastic opti-
mization algorithm, ZO-signSGD, which enjoys dual advantages of gradient-free
operations and signSGD. The latter requires only the sign information of gradient
estimates but is able to achieve a comparable or even better convergence speed
than SGD-type algorithms. Our study shows that ZO-signSGD requires

√
d times

more iterations than signSGD, leading to a convergence rate of O(
√
d/
√
T ) under

some mild conditions, where d is the number of optimization variables, and T is
the number of iterations. In addition, we analyze the effects of different types of
gradient estimators on the convergence of ZO-signSGD, and propose several vari-
ants of ZO-signSGD with O(

√
d/
√
T ) convergence rate. On the application side

we explore the connection between ZO-signSGD and black-box adversarial attacks
in robust deep learning. Our empirical evaluations on image classification datasets
MNIST and CIFAR-10 demonstrate the superior performance of ZO-signSGD on
the generation of adversarial examples from black-box neural networks.

1 INTRODUCTION

Zeroth-order (gradient-free) optimization has attracted an increasing amount of attention for solving
machine learning (ML) problems in scenarios where explicit expressions for the gradients are difficult
or infeasible to obtain. One recent application of great interest is to generate prediction-evasive
adversarial examples, e.g., crafted images with imperceptible perturbations to deceive a well-trained
image classifier into misclassification. However, the black-box optimization nature limits the practical
design of adversarial examples, where internal configurations and operating mechanism of public
ML systems (e.g., Google Cloud Vision API) are not revealed to practitioners and the only mode of
interaction with the system is via submitting inputs and receiving the corresponding predicted outputs
(Papernot et al., 2017; Liu et al., 2017; Chen et al., 2017; Tu et al., 2018; Ilyas et al., 2018b; Cheng
et al., 2018; Bhagoji et al., 2018). It was observed in both white-box and black-box settings1 that
simply leveraging the sign information of gradient estimates of an attacking loss can achieve superior
empirical performance in generating adversarial examples (Goodfellow et al., 2015; Madry et al.,
2018; Ilyas et al., 2018a). Spurred by that, this paper proposes a zeroth-order (ZO) sign-based descent
algorithm (we call it ‘ZO-signSGD’) for solving black-box optimization problems, e.g. design of
black-box adversarial examples. The convergence behavior and algorithmic stability of the proposed
ZO-signSGD algorithm are carefully studied in both theory and practice.

In the first-order setting, a sign-based stochastic gradient descent method, known as signSGD, was
analyzed by (Bernstein et al., 2018; Balles & Hennig, 2017). It was shown in (Bernstein et al., 2018)
that signSGD not only reduces the per iteration cost of communicating gradients, but also could yield
a faster empirical convergence speed than SGD (Kinga & Adam, 2015). That is because although
the sign operation compresses the gradient using a single bit, it could mitigate the negative effect of
extremely components of gradient noise. Theoretically, signSGD achieves O(1/

√
T ) convergence

rate under the condition of a sufficiently large mini-batch size, where T denotes the total number of
iterations. The work in (Balles & Hennig, 2017) established a connection between signSGD and
Adam with restrictive convex analysis. Prior to (Bernstein et al., 2018; Balles & Hennig, 2017),
although signSGD was not formally defined, the fast gradient sign method (Goodfellow et al., 2015)
to generate white-box adversarial examples actually obeys the algorithmic protocol of signSGD.
The effectiveness of signSGD has been witnessed by robust adversarial training of deep neural
networks (DNNs) (Madry et al., 2018). Given the advantages of signSGD, one may wonder if it can

1‘white-box’ (vs ‘black-box’) implies whether the knowledge on the target model is known a priori.
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be generalized for ZO optimization and what the corresponding convergence rate is. In this paper, we
answer these questions af�rmatively.

Contributions We summarize our key contributions as follows.
� We propose a new ZO algorithm, `ZO-signSGD', and rigorously prove its convergence rate

of O(
p

d=
p

T) under mild conditions.

� Our established convergence analysis applies to both mini-batch sampling schemes with
and without replacement. In particular, the ZO sign-based gradient descent algorithm can be
treated as a special case in our proposed ZO-signSGD algorithm.

� We carefully study the effects of different types of gradient estimators on the convergence of
ZO-signSGD, and propose three variants of ZO-signSGD for both centralized and distributed
ZO optimization.

� We conduct extensive synthetic experiments to thoroughly benchmark the performance of
ZO-signSGD and to investigate its parameter sensitivity. We also demonstrate the superior
performance of ZO-signSGD for generating adversarial examples from black-box DNNs.

Related work Other types of ZO algorithms have been developed for convex and nonconvex
optimization, where the full gradient is approximated via a random or deterministic gradient estimate
(Jamieson et al., 2012; Nesterov & Spokoiny, 2015; Ghadimi & Lan, 2013; Duchi et al., 2015;
Gao et al., 2014; Shamir, 2017; Hajinezhad et al., 2017; Ghadimi et al., 2016; Lian et al., 2016;
Liu et al., 2018b;c; Wang et al., 2018). Examples include ZO-SGD (Ghadimi & Lan, 2013), ZO
stochastic coordinate descent (ZO-SCD) (Lian et al., 2016), and ZO stochastic variance reduced
gradient descent (ZO-SVRG) (Liu et al., 2018c;a; Gu et al., 2016). Both ZO-SGD and ZO-SCD can
achieveO(

p
d=

p
T) convergence rate. And ZO-SVRG can further improve the iteration complexity

to O(d=T) but suffers from an increase of function query complexity due to the additional variance
reduced step, known as `gradient blending' (Liu et al., 2018c), compared to ZO-SGD. The existing
work showed that ZO algorithms align with the iteration complexity of their �rst-order counterparts
up to a slowdown effect in terms of a small-degree polynomial of the problem sized.

2 SIGNSGD & ITS CONNECTION TOADVERSARIAL MACHINE LEARNING

In this section, we provide a background on signSGD, together with the problem setup of our interest.
In particular, we show that the commonly-used methods for generating adversarial attacks fall into
the framework of signSGD.

Preliminaries on signSGD Consider anonconvex�nite-sum problem of the form

minimize
x

f (x ) := (1 =n)
P n

i =1 f i (x ); (1)

wherex 2 Rd are optimization variables, andf f i g aren individual nonconvex cost functions. The
�nite-sum form (1) encompasses many ML problems, ranging from generalized linear models to
neural networks. If the gradients off f i g are available, then problem (1) can be solved by many
�rst-order methods such as SGD, SCD, and signSGD. The method of our interest is signSGD, which
differs from SGD and SCD, takes thesignof gradient (or its estimate) as the descent direction. It was
recently shown in (Bernstein et al., 2018) that signSGD is quite robust to gradient noise and yields
fast empirical convergence.

Algorithm 1 provides a generic sign-based gradient descent framework that encapsulates different vari-
ants of signSGD. In Algorithm 1,GradEstimate(�) signi�es a general gradient estimation procedure,
which adopts either astochasticgradient estimate in the �rst-order setting (Bernstein et al., 2018) or
a function differencebased random gradient estimate in the ZO setting (Nesterov & Spokoiny, 2015;
Duchi et al., 2015). We call the ZO variant of signSGD `ZO-signSGD', which will be elaborated on
in Sec. 3.

Adversarial attacks meet signSGD It is now widely known that ML models (e.g., deep neural
networks) are vulnerable toadversarial attacks, which craft inputs (e.g., images) with imperceptible
perturbations to cause incorrect classi�cation (Szegedy et al., 2013; Goodfellow et al., 2015; Kurakin
et al., 2017; Lin et al., 2019). The resulting inputs crafted by adversaries are known asadversarial
examples. Investigating adversarial examples not only helps to understand the limitation of learning
models, but also provides opportunities to improve the models' robustness (Papernot et al., 2016;
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Algorithm 1 Generic sign-based gradient descent

1: Input: learning ratef � k g, initial valuex0, and number of iterationsT
2: for k = 0 ; 1; : : : ; T � 1 do
3: ĝk  � GradEstimate(x k ) # applies to both �rst and zeroth order gradient estimates
4: sign-gradient update

x k +1 = x k � � k sign(ĝk ); wheresign(x ) takes element-wise signs ofx (2)

5: end for

Athalye et al., 2018; Madry et al., 2018). In what follows, we show that the generation of adversarial
examples in (Goodfellow et al., 2015; Kurakin et al., 2017) can be interpreted through signSGD.

Let x0 denote thenatural (legitimate) input of an ML model associated with the true labelt0, and
x0 = x0 + � be theadversarialexample to be designed, where� are adversarial perturbations. If
f (x ; t0) is the training loss of a learning model, then the goal of (white-box) adversarial attack is to
�nd minimal perturbation� that is suf�cient to mislead the learning model, namely, to maximize
the lossf (x0 + � ; t0). Taking the �rst-order approximation off (x0; t0) aroundx0, we obtain
f (x0; t0) � f (x0; t0) + hr x f (x0; t0); � i . By constraining the strength of perturbation in the`1
ball of small radius� (i.e., k� k1 � � ), the linear approximation off (x0; t0) is then maximized
at � = � sign(r x f (x0; t0)) (Shaham et al., 2018). Therefore, generation of adversarial examples
proposed in (Goodfellow et al., 2015) obeys the sign-gradient update rule in (2),

x 0 = x 0 � � sign(�r x f (x 0 ; t0)) :

Such a connection between adversarial example generation and signSGD also holds in other attacks,
e.g., the iterative target attack method (Kurakin et al., 2017). Similarly, a so-calledblack-boxattack
(Ilyas et al., 2018a; Bhagoji et al., 2018) is associated with our proposedZO-signSGDalgorithm.

3 ZO-SIGNSGD FOR BLACK -BOX OPTIMIZATION

One limitation of signSGD (Bernstein et al., 2018) is the need of �rst-order information, i.e., stochastic
gradients. However, there exists a large practical demand for solving ML problems where explicit
expressions of the gradients are dif�cult or infeasible to obtain, e.g., the generation of adversarial
examples from black-box neural networks as discussed in Sec. 1 and 2.

Gradient estimation via ZO oracle In the ZO setting where the �rst-order information is unavail-
able, the gradient estimator at Step 3 of Algorithm 1 has only access to function values off f i (x)g
given a query pointx. Based on that, we construct a ZO gradient estimate through a forward differ-
ence of two function values (Nesterov & Spokoiny, 2015; Gao et al., 2014; Duchi et al., 2015). In
Algorithm 1,GradEstimate(x) is then speci�ed as

GradEstimate( x ) =
1
bq

X

i 2I k

qX

j =1

r̂ f i (x ; u i;j ); r̂ f i (x ; u i;j ) :=
d[f i (x + � u i;j ) � f i (x )]

�
u i;j ; (3)

wherex = x k in Algorithm 1, I k is a mini-batch of sizejI k j = b, f u i;j gq
j =1 are i.i.d. random

directions drawn from a uniform distribution over a unit sphere, andr̂ f i (x ; u i;j ) gives a two-point
based random gradient estimate with directionu i;j and smoothing parameter� > 0. We remark
that the random direction vectors in (3) can also be drawn from the standard Gaussian distribution
(Nesterov & Spokoiny, 2015). However, the uniform distribution could be more useful in practice
since it is de�ned in a bounded space rather than the whole real space required for Gaussian.

We highlight that unlike the �rst-order stochastic gradient estimate, the ZO gradient estimate (3) is a
biased approximation to the true gradient off . Instead, it becomes unbiased to the gradient of the
randomized smoothing functionf � (Duchi et al., 2012; Gao et al., 2014),

f � (x ) = Ev [f (x + � v )] =
1
n

nX

i =1

Ev [f i (x + � v )] =
1
n

nX

i =1

f i;� (x ); (4)

wheref i;� gives the randomized smoothing version off i , and the random variablev follows a
uniform distribution over the unit Euclidean ball. Clearly, there exists a gap between a ZO gradient
estimate and the true gradient off , but as will be evident later, such a gap can be measured through
the smoothing functionf � .
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Motivations of ZO-signSGD. Compared to SGD-type methods, the fast empirical convergence of
signSGD and ZO-signSGD has been shown in the application of generating white-box and black-box
adversarial examples (Goodfellow et al., 2015; Madry et al., 2018; Ilyas et al., 2018a). As mentioned
in (Bernstein et al., 2018), the sign operation could mitigate the negative effect of (coordinate-wise)
gradient noise of large variance. Recall that the ZO gradient estimate is a biased approximation to the
true gradient, and thus, could suffer from having larger noise variance than (�rst-order) stochastic
gradients. In this context, one could bene�t from ZO-signSGD due to its robustness to gradient
noise. In Appendix 1, we provide two concrete examples (Fig. A1 and Fig. A2) to con�rm the
aforementioned analysis. In Fig. A1, we show the robustness of ZO-signSGD against sparse noise
perturbation through a toy quadratic optimization problem, originally introduced in (Bernstein et al.,
2018) to motivate the fast convergence of signSGD against SGD. In Fig. A2, we show that gradient
estimation via ZO oracle indeed encounters gradient noise of large variance. Thus, taking the sign of
a gradient estimate might scale down the extremely noisy components.

ZO-signSGD & technical challenges beyond signSGDAlgorithm 1 becomes ZO-signSGD as
the ZO gradient estimate (3) is applied. We note that the extension from �rst order to ZO is nontrivial,
as the proposed ZO-signSGD algorithm yields three key differences to signSGD.

First, ZO-signSGD has milder assumption on the choice of mini-batch sampling. Recall that signSGD
in (Bernstein et al., 2018) achievesO(1=

p
T) convergence rate given the condition that the mini-batch

size is suf�ciently large,b = O(T). However, this condition only becomes true when the mini-batch
sample is randomly selected from[n] with replacement, which is unusual whenn � T. Here[n]
represents the integer setf 1; 2; : : : ; ng. And signSGD fails to cover signGD whenb = n, since
sampling with replacement leads toI k 6= [ n] even ifb = n. In the proposed ZO-signSGD algorithm,
we will relax the assumption on mini-batch sampling.

Second, in ZO-signSGD both the ZO gradient estimator and the sign operator give rise to approxi-
mation errors to the true gradient. Although the statistical properties of ZO gradient estimates can
be acquired with the aid of the randomized smoothing function (4), the use of mini-batch sampling
without replacement introduces extra dif�culty to bound the variance of ZO gradient estimates since
mini-batch samples are no longer independent. Moreover, the sign-based descent algorithm evaluates
the convergence error in the`1-norm geometry, leading to a mismatch with the`2-norm based gradient
variance. Besides translating the the gradient norm from`1 to `2, the probabilistic convergence
method (Ghadimi & Lan, 2013) is used to bound the eventual convergence error of ZO-signSGD.

Finally, beyond the standard ZO gradient estimator (3), we will cover multiple variants of ZO-
signSGD for centralized or distributed optimization.

4 CONVERGENCEANALYSIS OF ZO-SIGNSGD

In this section, we begin by stating assumptions used in our analysis. We then derive the convergence
rate of ZO-signSGD for nonconvex optimization. Assumptions of problem (1) are listed as follows.

A1: Functionsf f i g haveL-Lipschitz continuous gradients, whereL 2 (0; 1 ).

A2: At time k, the gradient off i is upper bounded bykr f i (x k )k2 � � for i 2 [n].

Both A1 and A2 are the standard assumptions used in nonconvex optimization literature (Bernstein
et al., 2018; Reddi et al., 2018; Chen et al., 2018). A1 implies theL-smoothness off i , namely, for
anyx andy we obtainf i (x) � f i (y ) � hr f i (y ); x � y i + ( L=2)kx � yk2

i . A2 implies the bounded
variance ofr f i in (Bernstein et al., 2018, Assumption 3), namely,1

n

P n
i =1 kr f i (x) � r f (x)k2

2 �
4� 2, where we have used the fact thatkr f (x)k2 � � under A2. Throughout the paper, we assume
that problem (1) is solvable, namely,f (x � ) > �1 wherex � is an optimal solution.

We recall that Algorithm 1 becomes ZO-signSGD when the gradient estimation step (3) is applied.
For nonconvex problems, the convergence of an algorithm is typically measured by stationarity, e.g.,
usingkr f (x)k2

2 in SGD (Ghadimi & Lan, 2013) andkr f (x)k1 in signSGD (Bernstein et al., 2018).
For the latter, thè1 geometry is met when quantifying the stochasticity through the (non-linear) sign
operation. Different from signSGD, ZO-signSGD only obtains a biased estimate to the true gradient.
In Proposition 1, we bypass such a bias by leveraging the randomized smoothing technique used for
ZO optimization (Gao et al., 2014; Nesterov & Spokoiny, 2015; Duchi et al., 2015).
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Proposition 1 Under A1, the outputsf x k gT � 1
k=0 of ZO-signSGD, i.e., Algorithm 1 with (3), satis�es

T � 1X

k =0

(� k E[kr f � (x k )k1 ]) � E[f � (x 0) � f � (x T )] +
T � 1X

k =0

�
2� k

p
d
q

E[kĝk � r f � (x k )k2
2 ]

�
+

dL
2

T � 1X

k =0

� 2
k ;

(5)

where the expectation is taken with respect to all the randomness of ZO-signSGD,f � is the randomized
smoothing function off in (4), andĝk = GradEstimate( x k ) in (3).

Proof: See Appendix 2. �

In Proposition 1, the rationale behind introducing the smoothing functionf � is thatr f � (x k ) is the
mean of ZO gradient estimatêgk . And thus, the convergence of ZO-signSGD is now linked with the
variance of̂gk , i.e.,E[kĝk � r f � (x k )k2

2]. This crucial relationship presented in Proposition 1 holds
for a general class of signSGD-type algorithms that use different ZO gradient estimators. Spurred by
(5), we next investigate the second-order moment ofĝk in Proposition 2.

Proposition 2 Under A1 and A2, the variance of ZO gradient estimateĝk is upper bounded by

E
�
kĝk � r f � (x k )k2

2

�
�

4� b(q + 1)
bq

� 2 +
(2� b + � b)

bq
C(d; � ); (6)

whereC(d; � ) := 2d� 2 + � 2L 2d2=2. In (6), � b and � b are Boolean variables depending on the
choice of mini-batch sampling,

�
� b = 1 ; � b = 0 for mini-batch with replacement
� b = I (b < n ); � b = I (b > 1) for mini-batch without replacement; (7)

whereI (x > a ) is the indicator function ofx with respect to the constraintx > a , andI (x > a ) = 1
if x > a and0 otherwise.

Proof: See Appendix 3. �

Compared to the variance bound(� 2=b) of the stochastic gradient estimate off in signSGD (Bernstein
et al., 2018), Proposition 2 provides a general result for the ZO gradient estimateĝk . It is clear that
the bound in (6) contains two parts:h1 := 4� b (q+1)

bq � 2 andh2 := (2 � b + � b )
bq C(d; � ), where the former

h1 = O(� 2=b) characterizes the reduced variance (usingb mini-batch samples) for the stochastic
gradient estimate of the smoothing functionf � , and the latterh2 = O(C(d; � )=(bq)) reveals the
dimension-dependent variance induced by ZO gradient estimate usingbmini-batch samples andq
random directions. If a stochastic gradient estimate off is used in signSGD, thenh2 is eliminated
and the variance bound in (6) is reduced to(� 2=b).

Furthermore, Proposition 2 covers mini-batch sampling with and without replacement, while signSGD
only considers the former case. For the latter case, Proposition 2 implies that ifb = n (i.e., I k = [ n]
for ZO-signGD), then the varianceE

�
kĝk � r f � (x k )k2

2

�
is reduced toO(C(d; � )=(nq)) , corre-

sponding to� b = 0 and� b = 1 in (7). In the other extreme case ofb = 1 , both the studied mini-batch
schemes become identical, corresponding to� b = 1 and� b = 0 . Proposition 2 also implies that
the use of largebandq reduces the variance of the gradient estimate, and will further improve the
convergence rate.

With the aid of Proposition 1 and 2, we can then show the convergence rate of ZO-signSGD in terms
of stationarity of the original functionf . The remaining dif�culty is how to bound the gap betweenf
and its smoothed versionf � . It has been shown in (Gao et al., 2014; Nesterov & Spokoiny, 2015) that
there exists a tight relationship betweenf � andf given the fact that the former is a convolution of the
latter and the density function of a random perturbationv in (4). We demonstrate the convergence
rate of ZO-signSGD in Theorem 1.

Theorem 1 Under A1 and A2, if we randomly pickxR fromf x k gT � 1
k=0 with probabilityP(R = k) =

� kP T � 1
k =0 � k

, then the convergence rate of ZO-signSGD is given by

E [kr f (x R )k2 ] �

p
2(f (x 0) � f � + � 2L )

P T � 1
k =0 � k

+
dL
p

2

P T � 1
k =0 � 2

kP T � 1
k =0 � k

+
�Ld
p

2

+
2
p

2
p

d
p

4� b(q + 1) � 2 + C(d; � )(2� b + � b)
p

bq
; (8)

wheref � denotes the minimum value.
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Proof: See Appendix 4. �

In Theorem 1, we translate the gradient norm from`1 to `2, and adopt a probabilistic outputxR
(Ghadimi & Lan, 2013; Lei et al., 2017) to avoid exhaustive search overf x k g for mink kr f (x k )k2.
Note that the convergence rate of ZO-signSGD relies on the learning rate� k , the problem sized,
the smoothing parameter� , the mini-batch sizeb, and the number of random perturbationsq for
ZO gradient estimation. We next obtain explicit dependence on these parameters by specifying
Theorem 1.

If � k = � = O( 1p
dT

) and� = O( 1p
dT

), then the convergence in (8) simpli�es to

E [kr f (x R )k2 ] � O

 p
d

p
T

+

p
d
p

� bq + ( � b + � b)d
p

bq

!

; (9)

where� b and� b were de�ned in (7), and1 � (� b + � b) � 2. We provide several key insights on the
convergence rate of ZO-signSGD through (9).

First, the convergence rate of ZO-signSGD is measured throughkr f (xR )k2 rather than itssquared
counterpartkr f (xR )k2

2, where the latter was used in measuring the convergence of ZO-SGD. We
recall from (Ghadimi & Lan, 2013, Theorem 3.2 & Corollary 3.3) that ZO-SGD yields the convergence
error E

�
kr f (xR )k2

2

�
� O(

p
dp
T

). Sincekr f (xR )k2
2 � kr f (xR )k2 as kr f (xR )k2

2 � 1, the
convergence of ZO-signSGD meets a stricter criterion than that of ZO-SGD. The possible downside
of ZO-signSGD is that it suffers an additional error of orderO(

p
dp
b

+ dp
bq

) in the worst case. The
aforementioned results imply that ZO-signSGD could only converge to a neighborhood of a stationary
point but with a fast convergence speed. Here the size of the neighborhood is controlled by the
mini-batch sizeband the number of random direction vectorsq.

Also, our convergence analysis applies to mini-batch sampling both with and without replacement.
Whenb 2 [1; n), ZO-signSGD achievesO(

p
dp
T

+
p

dp
b

+ dp
bq

) convergence rate regardless of the
choice of mini-batch sampling. Whenb = n, it is known from (9) that the use of mini-batch
without replacement recovers ZO-signGD, yielding the convergence rateO(

p
dp
T

+ dp
nq ). By contrast,

the use of mini-batch with replacement leads to the worse convergence rateO(
p

dp
T

+ dp
nq +

p
dp
n ).

Clearly, asb = n andn < T , ZO-signSGD using mini-batch with replacement fails to achieve
the rateO(

p
dp
T

) regardless of the choice ofq. By contrast, ZO-signSGD using mini-batch without

replacement recoversO(
p

dp
T

) asq = O( dT
n ). Whenb > n, ZO-signSGD is restricted to using

mini-batch sampling with replacement. Similar to signSGD (Bernstein et al., 2018), we can obtain
O(

p
dp
T

) convergence rate asb = O(T) andq = O( dT
n ), where the dependence onq is induced by

the use of ZO gradient estimation.

5 VARIANTS OF ZO-SIGNSGD

Here we study three variants of ZO-signSGD, where the gradient will be estimated using a) the
centraldifference of function values, b) the sign of ZO gradient estimates withmajority vote, or c)
the sign of ZO gradient estimates with majority vote fordistributedoptimization. That is,

a) GradEstimate( x ) =
1
bq

X

i 2I k

qX

j =1

d[f i (x + � u i;j ) � f i (x � � u i;j )]u i;j

2�
(10)

b) GradEstimate( x ) =
1
bq

X

i 2I k

qX

j =1

sign
�

r̂ f i (x ; u i;j )
�

; (11)

c) GradEstimate( x ) =
1

M

MX

m =1

sign

0

@ 1
bm q

X

i 2I m;k

qX

j =1

r̂ f i (x ; u i;j )

1

A ; (12)

wheref u i;j g andr̂ f i (x ; u i;j ) have been de�ned in (3). The gradient estimator (12) is proposed for
distributed optimization over a star network that consists ofM agents and1 central processor. Each
agentm 2 [M ] has only access tonm data (in terms ofnm individual costsf f i g) with

P M
m =1 nm =

n, and the mini-batchI m;k per agent satis�esbm = jI m;k j 2 [1; nm ]. According to (12), the
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central processor receives1-bit compressed gradientssign
�

1
bm q

P
i 2I m;k

P q
j =1 r̂ f i (x ; u i;j )

�
from

M agents and then performs the sign-based descent (2) and sends its 1-bit update back to every agent.

The ZO gradient estimator (10) was used in (Shamir, 2017) for bandit convex optimization and in
(Ilyas et al., 2018a) for designing black-box adversarial attacks. Compared to the form of forward
difference (3), the central difference (10) requiresb(q � 1) times more function queries in gradient
estimation. At the cost of more function queries, one may wonder if the convergence rate of
ZO-signSGD can be further improved.

Corollary 1 Suppose that the conditions in Theorem 1 hold, ZO-signSGD with gradient estimator
(10) yields the same convergence rate of ZO-signSGD that uses the estimator (3).

Proof: Recall that Proposition 1 is independent of speci�c forms of gradient estimators, and thus
holds for (10). Although Proposition 2 relies on the second-order moments of each gradient estimator,
we prove that under A1 and A2, both (3) and (10) maintain the same statistical properties. As a result,
Proposition 2 and Theorem 1 also hold for (10); see more details in Appendix 5. �

We next study the gradient estimator (11), whose sign is equivalent to the majority vote (i.e., the
element-wise median) of signs of individual gradient estimatesf r̂ f i (x ; u i;j )g. It was shown in
(Bernstein et al., 2018) that signSGD with majority vote has a better convergence rate under additional
assumptions of unimodal symmetric noise distribution of coordinate-wise gradient estimates. In
Corollary 2, we show that such a speed-up in convergence can also be achieved by ZO-signSGD with
majority vote, which we refer to as `ZO-M-signSGD'.

Corollary 2 Suppose that the conditions in Theorem 1 hold, and the distribution of gradient noise is
unimodal and symmetric. Then, ZO-M-signSGD with� k = O( 1p

dT
) and� = O( 1p

dT
) yields

E [kr f (x R )k2 ] = O
� p

d=
p

T + d=
p

bq
�

: (13)

Proof: See Appendix 6. �

We recall from Theorem 1 that under the same parameter setting of Corollary 2, ZO-signSGD
yieldsO(

p
dp
T

+
p

dp
b

+ dp
bq

) convergence rate in the worst case. It is clear from (13) that the error

correction term of order
p

dp
b

is eliminated in ZO-M-signSGD. Such an improvement in convergence
is achieved under the condition of unimodal symmetric gradient noise. We remark that different from
the stochastic gradient noise studied in (Bernstein et al., 2018), the ZO gradient estimation noise
could violate this assumption. For example, in a scalar case, if the gradient estimateg follows the
distribution whereg = 1 with probability0:9, g = � 10 with probability0:1, thenE[g] < 0 and
sign(E[g]) < 0. However,E[sign(g)] > 0. This implies that without the assumption of symmetry,
the sign of gradient estimates with majority vote (E[sign(g)]) can be in the opposite direction of the
sign of averaged gradients (sign(E[g])). Our results in the next section show that ZO-M-signSGD
may not outperform ZO-signSGD.

Lastly, we focus on the gradient estimator (12), whose sign can be interpreted as the major vote ofM
distributed agents about the sign of the true gradient (Bernstein et al., 2018). The resulting variant
of ZO-signSGD is called `ZO-D-signSGD', and its convergence rate is illustrated in Corollary 3.
Compared to ZO-M-signSGD for centralized optimization, ZO-D-signSGD suffers an extra error
correction termO(

p
dp
n ) in the distributed setting. It is also worth mentioning that ifM = n and

q = 1 , then the gradient estimator (12) reduces to (11) withI k = [ n]. In this case, Corollary 2 and 3
reach a consensus onO(

p
dp
T

+ dp
n ) convergence error.

Corollary 3 Suppose that the conditions in Corollary 2 hold. ZO-M-signSGD withbm = b n
M c,

� k = O( 1p
dT

) and� = O( 1p
dT

) yields

E [kr f (x R )k2 ] = O
� p

d=
p

T +
p

d=
p

n + d=
p

nq
�

: (14)

Proof: See Appendix 7. �

7



Published as a conference paper at ICLR 2019

(a) (b) (c)

(d) (e) (f)

Figure 1: Performance comparison of ZO-signSGD, ZO-M-signSGD, ZO-SGD, ZO-SCD, signSGD and SGD
under a synthetic dataset. The solid line represents the loss/accuracy averaged over10 independent trials with
random initialization, and the shaded region indicates the standard deviation of results over random trials. (a)-(b):
Training loss and test accuracy versus iterations. (c)-(d): Effects of mini-batch sizeq and number of random
direction vectorsq on the convergence of studied algorithms. Here (c) presents the training loss versus iterations,
and (d) is the heat map of the �nal loss for different values ofbandq. (e)-(f): Effects of problem sized. Here (e)
shows the �nal training loss versusd, and (f) presents the convergence trajectory whend 2 f 200; 400g.

6 EXPERIMENTS

In this section, we empirically show the effectiveness of ZO-signSGD, and validate its convergence
behavior on both synthetic and real-world datasets such as MNIST and CIFAR-10. For the synthetic
experiment, we study the problem of binary classi�cation in the least squared formulation. For the
real-world application, we design adversarial examples from black-box neural networks as mentioned
in Sec. 2. Throughout this section, we compare ZO-signSGD and its variants with SGD, signSGD
(Bernstein et al., 2018), ZO-SGD (Ghadimi & Lan, 2013), and ZO-SCD (Lian et al., 2016).

Binary classi�cation We consider the least squared problem with anonconvexloss function (Xu
et al., 2017; Liu et al., 2018b)minx 2 Rd

1
n

P n
i =1 (yi � 1=(1 + e� aT

i x ))2, which satis�es Assump-
tion A2 by letting� = max i f 2kai k2g. Here instead of using the conventional cost function of
logistic regression (a convex function), the considered least squared formulation is introduced to align
with our nonconvex theoretical analysis. For generating the synthetic dataset, we randomly draw
samplesf ai g from N (0; I ), and obtain the labelyi = 1 if 1=(1 + e� aT

i x ) > 0:5 and0 otherwise.
The number of training samplesf ai ; yi g is set byn = 2000 against200testing samples. We �nd the
best constant learning rate for algorithms via a greedy search over� 2 [0:001; 0:1] (see Appendix 8.1
for more details), and we choose the smoothing parameter� = 10=

p
Td. Unless speci�ed otherwise,

let b = q = 10, T = 5000 andd = 100.

In Fig. 1, we report the training loss, the test accuracy, as well as the effects of algorithmic parameters
on the convergence of the studied algorithms. We observe from Fig. 1-(a) and (b) that ZO-signSGD
outperforms other ZO algorithms, and signSGD yields the best convergence performance once the
�rst-order information is available. In Fig. 1-(c) and (d), we observe that the convergence performance
of ZO algorithms is improved asbandq increase. In particular, ZO-signSGD and ZO-M-signSGD at
b = q = 30 approach to the best result provided by signSGD. In Fig. 1-(e) and (f), the convergence of
all algorithms degrades as the problem sized increases. However, ZO-signSGD and ZO-M-signSGD
converge faster than ZO-SGD and ZO-SCD. In Fig. 2, we demonstrate the convergence trajectory
of different variants of ZO-signSGD forb 2 f 40; 400g. To make a fair comparison between ZO-
signSGD and ZO-D-signSGD, let each ofM = 40 agents use a mini-batch of sizeb=M. As we
can see, ZO-signSGD outperforms ZO-M-signSGD and ZO-D-signSGD. And the convergence is
improved as the mini-batch size increases. However, we observe that in all examples, ZO-signSGD

8
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Figure 2: Training loss (left) and testing accuracy (right) of ZO-signSGD, ZO-M-signSGD, ZO-D-signSGD
and ZO-SGD versus iterations.

(a) MNIST – ID 2 (b) MNIST – ID 34

(c) CIFAR-10 – ID 6 (d) CIFAR-10 – ID 10

Figure 3: Black-box attacking loss versus iterations. The solid marker indicates the iteration number that �nds
the �rst successful adversarial example, and its loss corresponds to the squared`2 distortion.

and its variants converge to moderate accuracy much faster than ZO-SGD, only within a few tens of
iterations.

Generating black-box adversarial examples Here we study adversarial robustness by generating
adversarial examples from a black-box image classi�er trained by a deep neural network (DNN)
model; see details on problem formulation in Appendix 8.2. We recall from Sec. 2 that the task of
black-box adversarial attack falls within the category of ZO optimization as one can only access to
the input-output relation of the DNN while crafting adversarial examples.

The DNN models trained on MNIST and CIFAR-10 (Carlini & Wagner, 2017) are performed as the
zeroth-order oracle2. We select one image from each class of MNIST and CIFAR-10 and separately
implement black-box attacks using the same attacking loss function (see Appendix 8.2) but with
different ZO optimization algorithms (ZO-SGD, ZO-signSGD and ZO-M-signSGD). We also set the
same parameters for each method, i.e.,� = 0 :01, q = 9 , and� = 0 :05for MNIST and� = 0 :0005for
CIFAR-10, to accommodate to the dimension factord. Moreover, we benchmark their performance
with the natural evolution strategy (NES) based two-point gradient estimator in (Ilyas et al., 2018a)
for solving the same attacking loss function, where the sign of gradient estimate is also used in the

2https://github.com/carlini/nn_robust_attacks
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Table 1: Iteration comparison of attacking black-box DNN on MNIST (image ID 2).
Iteration 0 40 80 120 160 200 240 280 312 356

ZO-SGD

Classi�ed as 1 1 1 1 1 1 1 1 4 4
Iteration 0 40 80 120 145 202 240 280 320 359

ZO-signSGD

Classi�ed as 1 1 1 1 4 4 4 4 4 4
Iteration 0 40 80 120 142 200 240 279 320 360

ZO-M-signSGD

Classi�ed as 1 1 1 1 4 4 4 4 4 4
Iteration 0 40 80 120 160 200 258 287 321 359

ZO-NES

Classi�ed as 1 1 1 1 1 1 4 4 4 4

descent step. We call the resulting black-box attack generation method `ZO-NES'. Similar to (10),
NES computes the ZO gradient estimate using the central difference of two function values. Thus,
one iteration of ZO-NES requires2q function queries and thus we setq = 5 to align with the number
of function queries used in other ZO methods. All methods use the the same natural image as the
initial point for �nding adversarial examples.

Fig. 3 shows the plots of black-box attacking loss versus iterations (more results are shown in
Appendix 8.3). We �nd that ZO-signSGD usually takes signi�cantly less iterations than other
methods to �nd the �rst successful adversarial example with a similar attacking loss. For MNIST, the
average iteration over all attacked images in Table A1 to �nd the �rst successful adversarial example
is 184 for ZO-SGD,103 for ZO-signSGD,151 for ZO-M-signSGD, and227 for ZO-NES. Their
corresponding average`2 distortion is2:345for ZO-SGD,2:381for ZO-signSGD,2:418for ZO-M-
signSGD, and2:488for ZO-NES. For CIFAR-10, the average iteration over all attacked images in
Table A2 to �nd the �rst successful adversarial example is302for ZO-SGD,250for ZO-signSGD,
389for ZO-M-signSGD, and363for ZO-NES. Their corresponding average`2 distortion is0:177
for ZO-SGD,0:208for ZO-signSGD,0:219for ZO-M-signSGD, and0:235for ZO-NES. As a visual
illustration, we compare the adversarial examples of a hand-written digit “1” of each attacking
method at different iterations in Table 1, corresponding to Fig. 3-(a). As we can see, ZO-signSGD and
ZO-M-signSGD can reduce roughly54%of iterations (around600less model queries) than ZO-SGD
to �nd the �rst successful adversarial example. Given the �rst successful adversarial example, we
observe that ZO-signSGD yields slightly higher`2 distortion than ZO-SGD. This is not surprising
since Theorem 1 suggests that ZO-signSGD might not converge to a solution of very high accuracy
but it can converge to moderate accuracy suf�cient for black-box attacks at a very fast speed. Note
that the �rst successful adversarial examples generated by different ZO methods are all visually
similar to the original ones but lead to different top-1 predictions; see more results in Appendix 8.3.
In addition, we observe that ZO-NES is not as effective as ZO-signSGD in either query ef�ciency
(given by the number of iterations to achieve the �rst successful attack) or attack distortion. Thus,
compared to ZO-NES, ZO-signSGD offers a provable and an ef�cient black-box adversarial attacking
method.

7 CONCLUSION

Motivated by the impressive convergence behavior of (�rst-order) signSGD and the empirical success
in crafting adversarial examples from black-box ML models, in this paper we rigorously prove the
O(

p
d=

p
T) convergence rate of ZO-signSGD and its variants under mild conditions. Compared to

signSGD, ZO-signSGD suffers a slowdown (proportional to the problem sized) in convergence rate,
however, it enjoys the gradient-free advantages. Compared to other ZO algorithms, we corroborate
the superior performance of ZO-signSGD on both synthetic and real-word datasets, particularly for
its application to black-box adversarial attacks. In the future, we would like to generalize our analysis
to nonsmooth and nonconvex constrained optimization problems.
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APPENDIX

1 MOTIVATING EXAMPLES OF FAST CONVERGENCE OFZO-SIGNSGD

1.1 EXAMPLE OF SPARSE NOISE PERTURBATION

We consider to minimize the functionf (x ) = 1
2 kxk2

2 . Similar to (Bernstein et al., 2018, Figure A.1), we assume
that the ZO gradient estimate off (x ) and its �rst-order gradientr f (x ) = x suffer from a sparse noise vectorv ,
wherev1 2 N (0; 1002), andvi = 0 for i � 2. As a result, the used descent direction at iterationt is given by
r̂ f (x t ) + v or r f (x t ) + v . Fig. A1 presents the convergence performance of5 algorithms: SGD, signSGD,
ZO-SGD, ZO-signSGD and its variant using the central difference based gradient estimator (10). Here we
tune a constant learning rate �nding0:001best for SGD and ZO-SGD and0:01 best for signSGD and its ZO
variants. As we can see, sign-based �rst-order and ZO algorithms converge much faster than the stochastic
gradient-based descent algorithms. This is not surprising since the presence of extremely noisy componentv1

leads to an inaccurate gradient value, and thus degrades the convergence of SGD and ZO-SGD. By contrast,
the sign information is more robust to outliers and thus leads to better convergence performance of sign SGD
and its variants. We also note that the convergence trajectory of ZO-signSGD using the gradient estimator (10)
coincides with that using the gradient estimator (3) given by the forward difference of two function values.

Figure A1: Comparison of different gradient-based and gradient sign-based �rst-order and ZO algorithms
in the example of sparse noise perturbation. The solid line represents the loss averaged over 10 independent
trials with random initialization, and the shaded region indicates the standard deviation of results over random
trials. Left: Loss value against iterations for SGD, signSGD, ZO-SGD, ZO-signSGD and ZO-signSGD using
the central difference based gradient estimator (10). Right: Local regions to highlight the effect of the gradient
estimators (3) and (10) on the convergence of ZO-signSGD.

1.2 STATISTICS OF GRADIENT ESTIMATES

The intuition behind why ZO-signSGD could outperform ZO-SGD is that the sign operation can mitigate the
negative effect of (coordinate-wise) gradient noise of large variance. To con�rm this point, we examine the
coordinate-wise variance of gradient noises during an entire training run of the binary classi�er provided in the
�rst experiment of Sec. 6. At each iteration, we perform an additional100random trials to obtain the statistics
of gradient estimates. In Fig. A2-(a), we present the`1 norm of the mean of gradient estimates (over100 trials)
versus the number of iterations. As we can see, both signSGD and ZO-signSGD outperform SGD and ZO-SGD,
evidenced by a fast decrease of the`1 norm of gradient estimate. In Fig. A2-(b), we present the coordinate-wise
gradient noise variance (over100 trails at each coordinate) against the number of iterations. It is not surprising
that compared to �rst-order methods, ZO methods suffer gradient noise of larger variance. In this scenario, we
could bene�t from ZO-signSGD since taking the sign of gradient estimates might scale down extremely noisy
components. Indeed, we observe a signi�cant decrease of the noise variance while performing ZO-signSGD
compared to ZO-SGD.
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(a) (b)

Figure A2: Statistics of gradient estimates during an entire training run of the binary classi�er provided in the
�rst experiment of Sec. 6. a) Thè1 norm of the mean of gradient estimates versus iteration. b) Coordinate-wise
gradient noise variance versus iteration. The solid line represents the variance averaged over all coordinates, and
the shaded region indicates the corresponding standard deviation with respect to all coordinates at each iteration.

2 PROOF OFPROPOSITION1

Based on the de�nition of the smoothing functionf � , for anyx andy we have

kr f � (x) � r f � (y)k2 = kEv [r x f (x + � v ) � r y f (y + � v )]k2

� E[kr x f (x + � v ) � r y f (y + � v )k2 ] � L kx � y k2 ; (15)

where the �rst inequality holds due to Jensen's inequality, and the second inequality holds due to A1. It is known
from (15) thatf � hasL -Lipschitz continuous gradient.

By theL -smoothness off � , we obtain that

f � (x k +1 ) � f � (x k ) + hr f � (x k ); x k +1 � x k i +
L
2

kx k +1 � x k k2
2

(2)
= f � (x k ) � � k hr f � (x k ); sign(ĝk )i +

L
2

� 2
k ksign(ĝk )k2

2

= f � (x k ) � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

dX

i =1

j(r f � (x k )) i jI [sign(ĝk;i ) 6= sign(( r f � (x k )) i )] ; (16)

where(r f � (x )) i denotes thei th element ofr f � (x ).

Taking expectation for both sides of (16), we obtain that

E[f � (x k +1 ) � f � (x k )] � � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

dX

i =1

j(r f � (x k )) i jProb [sign(ĝk;i ) 6= sign(( r f � (x k )) i )] : (17)

Similar to (Bernstein et al., 2018, Theorem 1), we relaxProb [sign(ĝk;i ) 6= sign(( r f � (x k )) i )] by Markov's
inequality,

Prob [sign(ĝk;i ) 6= sign(( r f � (x k )) i )] � Prob[jĝk;i � (r f � (x k )) i j � j (r f � (x k )) i j]

�
E[jĝk;i � (r f � (x k )) i j]

j(r f � (x k )) i j
: (18)

14



Published as a conference paper at ICLR 2019

Substituting (18) into (17), we obtain

E[f � (x k +1 ) � f � (x k )] � � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

dX

i =1

E[jĝk;i � (r f � (x k )) i j]

= � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k E[kĝk � r f � (x k )k1 ]

� � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

p
dE[kĝk � r f � (x k )k2 ]

� � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

p
d
q

E[kĝk � r f � (x k )k2
2 ]; (19)

where the second inequality holds due tokxk1 �
p

dkxk2 , and the last inequality holds by applying Jensen's
inequality to the concave function

p
�, i.e.,E[kĝk � r f � (x k )k2 ] �

p
E[kĝk � r f � (x k )k2

2 ].

Taking sum of both sides of (19), we then obtain (5). �

3 PROOF OFPROPOSITION2

We recall from (3) that

ĝk =
1
b

X

i 2I k

r̂ f i (x k ); r̂ f i (x k ) =
1
q

qX

j =1

r̂ f i (x k ; u i;j ): (20)

Let zi := r̂ f i (x k ) � r f � (x k ) andzi;j = r̂ f i (x k ; u i;j ) � r f � (x k ). Thus,

ĝk � r f � (x k ) =
1
b

X

i 2I k

zi =
1
bq

X

i 2I k

qX

j =1

zi;j (21)

where there are two sources of randomness: a) minibatch samplingi 2 I k , and b) the random direction sampling
u = u i;j . Note that these two sources of randomness are independent, and the random direction samplesf u i;j g
are i.i.d..

Next, we discuss two types of mini-batch sampling: a) mini-batch samples without replacement, and b) mini-
batch samples with replacement.

Suppose thatI k is a uniform random subset of[n] (no replacement), motivated by (Lei et al., 2017, Lemma A.1)
we introduce a new variableWi = I (i 2 I k ), whereI is an indicator function, andI (i 2 I k ) = 1 if i 2 I k ,
and0 otherwise. As a result, we have

E[W 2
i ] = E[Wi ] =

b
n

; E[Wi Wj ] =
b(b � 1)
n(n � 1)

; i 6= j: (22)

From (21), the variance of̂gk is given by

E

2

4














1
b

X

i 2I k

zi














2

2

3

5 =
1
b2

0

@
nX

i =1

�
Ei 2I k [W 2

i ]Eu [kzi k
2
2 ]

�
+

X

i 6= j

Ei;j 2I k [Wi Wj ]hEu [zi ]; Eu [zj ]i

1

A

=
1
b2

 
b
n

nX

i =1

Eu [kzi k
2
2 ] +

b(b � 1)
n(n � 1)












nX

i =1

Eu [zi ]












2

2

�
b(b � 1)
n(n � 1)

nX

i =1

kEu [zi ]k
2
2

!

( a )
=

1
bn

nX

i =1

Eu [kzi k
2
2 ] �

b � 1
b(n � 1)n

nX

i =1

kEu [zi ]k
2
2

=
1
bn

nX

i =1

Eu [kzi k
2
2 ] �

b � 1
b(n � 1)n

nX

i =1

Eu [kzi k
2
2 ] +

b � 1
b(n � 1)n

nX

i =1

�
Eu [kzi k

2
2 ] � k Eu [zi ]k

2
2

�

( b)
=

n � b
(n � 1)

1
bn

nX

i =1

Eu [kzi k
2
2 ] +

b � 1
b(n � 1)n

nX

i =1

Eu [kr̂ f i (x k ) � r f i;� (x k )k2
2 ]: (23)

In (23), the equality (a) holds sinceEu [zi ] = r f i;� (x k ) � r f � (x k ) andf � (x ) = 1
n

P n
i =1 f i;� (x ) from (4),

where we have used the fact thatEu [r̂ f i (x k )] = r̂ f i;� (x k ) (Liu et al., 2018c, Lemma. 1), and recall thatf i;�

denotes the smoothing function off i . The above implies that
P n

i =1 Eu [zi ] =
P

i r f i;� (x k ) � nr f � (x k ) = 0.
And the equality (b) holds due toEu [kzi k2

2 ] � k Eu [zi ]k2
2 = Eu kzi � Eu [zi ]k2

2 .
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On the other hand, suppose that the mini-batchI k contains i.i.d. samples (namely, with replacement), the vectors
f zi g are then i.i.d. under both mini-batch sampling and random direction sampling. Therefore, we obtain that

E

2

4














1
b

X

i 2I k

zi














2

2

3

5 =
1
b2

2

4E

2

4
X

i 2I k

kzi k
2
2

3

5 + E

2

4
X

i 6= j;i;j 2I k

hzi ; zj i

3

5

3

5

=
1
b

Eu [Ei 2I k [kzi k
2
2 ]] =

1
bn

nX

i =1

Eu [kzi k
2
2 ]; (24)

where the second equality holds sinceEi 2I k ;u [zi ] = 1
n

P n
i =1 Eu [zi ] = 1

n

P n
i =1 r f i;� (x k ) � r f � (x k ) = 0.

Combining both (23) and (24), we obtain that

E

2

4














1
b

X

i 2I k

zi














2

2

3

5 �
� b

bn

nX

i =1

Eu [kzi k
2
2 ] +

� b

bn

nX

i =1

Eu [kr̂ f i (x k ) � r f i;� (x k )k2
2 ]: (25)

In (25), � b = 1 and � b = 0 if the mini-batch contains i.i.d. samples from[n] with replacement, and
� b = I (b < n ) and� b = I (b > 1) if samples are randomly selected without replacement.

In (25), we next bound1n
P

i Eu [kzi k2
2 ],

1
n

nX

i =1

Eu [kzi k
2
2 ]

(21)
=

1
n

nX

i =1

Eu












1
q

qX

j =1

zi;j












2

2

=
1

nq2

X

i

2

4
X

j

Eu [kzi;j k2
2 ] +

X

j 6= k

hEu [zi;j ]; Eu [zi;k ]i

3

5

=
1

nq2

X

i

�
qEu [kzi; 1k2

2 ] + ( q2 � q)kEu [zi; 1 ]k2
2

�

=
1

qn

X

i

Eu [kzi; 1k2
2 ] +

q � 1
qn

X

i

kEu [zi; 1 ]k2
2 ; (26)

where we have used the facts thatEu [zi;j ] = Eu [zi; 1 ] andEu [kzi;j k2
2 ] = Eu [kzi; 1k2

2 ] for anyj since random
direction vectorsf u i;j gq

j =1 are i.i.d. samples.

In (26), we further bound
P

i Eu [kzi; 1k2
2 ],

1
n

X

i

Eu [kzi; 1k2
2 ] =

1
n

X

i

Eu kr̂ f i (x k ; u i; 1) � r f � (x k )k2
2

=
1
n

X

i

Eu [kr̂ f i � r f i;� + r f i;� � r f � k2
2 ]

�
2
n

X

i

Eu [kr̂ f i � r f i;� k2
2 ] +

2
n

X

i

kr f i;� � r f � k2
2 ; (27)

where for ease of notation, let̂r f i := r̂ f i (x k ; u i; 1), r̂ f i;� := r̂ f i;� (x k ) andr f � := r f � (x k ). According
to (Liu et al., 2018c, Lemma 1), the �rst term at RHS of (27) yields

Eu [kr̂ f i � r f i;� k2
2 ] � 2dkr f i k

2
2 +

� 2L 2d2

2
� 2d� 2 +

� 2L 2d2

2
:= C(d; � ); (28)

where the last inequality holds due to A2. Based on the de�nition off � , the second term at RHS of (27) yields

1
n

X

i

kr f i;� � r f � k2
2 =

1
n

X

i

kEv [r f i (x k + � v ) � r f (x k + � v )]k2
2

�
1
n

X

i

Ev [kr f i (x k + � v ) � r f (x k + � v )k2
2 ] � 4� 2 ; (29)

where we have used the Jensen's inequality and1
n

P n
i =1 kr f i (x ) � r f (x )k2

2 � 4� 2 under A2.

Substituting (28) and (29) into (27), we have

1
n

X

i

Eu [kzi; 1k2
2 ] =

1
n

X

i

Eu [kr̂ f i � r f � k2
2 ] � 4d� 2 + � 2L 2d2 + 8 � 2 = 2 C(d; � ) + 8 � 2 ; (30)

whereC(d; � ) was de�ned in (28).
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We are now ready to bound (26). Based on1
n

P
i kEu [zi; 1 ]k2

2 = 1
n

P
i kr f i;� � r f � k2

2 � 4� 2 from (29), and
substituting (30) into (26), we obtain that

1
n

X

i

Eu [kzi k
2
2 ] �

2C(d; � ) + 8 � 2

q
+

4(q � 1)� 2

q
: (31)

In (25), we also need to boundEu [kr̂ f i (x k ) � r f i;� (x k )k2
2 ]

Eu

� 




 r̂ f i (x k ) � r f i;� (x k )








2

2

�
(20)
= Eu

2

4












1
q

qX

j =1

�
r̂ f i (x ; u i;j ) � r f i;� (x )

�











2

2

3

5

( a )
=

1
q

Eu

� 




 r̂ f i (x ; u i; 1) � r f i;� (x )








2

2

�
(28)
�

1
q

�
2d� 2 +

� 2L 2d2

2

�
=

C(d; � )
q

; (32)

where the equality (a) holds sinceEu [r̂ f i (x ; u i;j )] = r f i;� (x ) for any j , given by (Liu et al., 2018c,
Lemma 1).

Substituting (31) and (32) into (25)

E
�
kĝk � r f � (x k )k2

2

�
= E

2

4














1
b

X

i 2I k

zi














2

2

3

5 �
� b

b
2C(d; � ) + 4 � 2 + 4 � 2q

q
+

� bC(d; � )
bq

=
4� b(q + 1)

bq
� 2 +

C(d; � )
bq

(2� b + � b): (33)

�

4 PROOF OFTHEOREM1

Substituting (6) into (5), we obtain

E

"
T � 1X

k =0

� k kr f � (x k )k1

#

� E[f � (x 0) � f � (x T )] +
T � 1X

k =0

"

2� k

p
d

p
bq

p
4� b(q + 1) � 2 + C(d; � )(2� b + � b)

#

+
dL
2

T � 1X

k =0

� 2
k : (34)

It is known from (Liu et al., 2018c, Lemma 1) that

kr f (x )k2
2 � 2kr f � (x )k2

2 +
� 2L 2d2

2
; jf � (x ) � f (x )j �

� 2L
2

: (35)

From (35) we havef � (x 0) � f (x 0) � � 2 L
2 andf � � f �

� � � 2 L
2 , wheref �

� = min x f � (x ) andf � = min x f (x ).
This yieldsf � (x 0) � f (x 0) + f � � f �

� � � 2L , and thus

f � (x 0) � f � (x T ) � f � (x 0) � f �
� � (f (x 0) � f � ) + � 2L: (36)

Substituting (36) into (34), we obtain

E

"
T � 1X

k =0

� k kr f � (x k )k1

#

� E[f (x 0) � f � )] + � 2L

+
T � 1X

k =0

"

2� k

p
d

p
bq

p
4� b(q + 1) � 2 + C(d; � )(2� b + � b)

#

+
dL
2

T � 1X

k =0

� 2
k : (37)

Due tokr f � (x k )k2 � kr f � (x k )k1 and dividing
P T � 1

k =0 � k for both sides of (37), we obtain that

E

"
T � 1X

k =0

� k
P T � 1

k =0 � k
kr f � (x k )k2

#

�
f (x 0) � f � + � 2L

P T � 1
k =0 � k

+
2
p

d
p

bq

p
4� b(q + 1) � 2 + C(d; � )(2� b + � b)

+
dL
2

P T � 1
k =0 � 2

kP T � 1
k =0 � k

: (38)
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By introducing the random variableR with probabilityP (R = k) = � kP T � 1
k =0 � k

, we then obtain that

E [kr f � (x R )k2 ] = E [ER [kr f � (x R )k2 ]] = E

"
T � 1X

k =0

P(R = k)kr f � (x k )k2

#

: (39)

Based on (35), we further have

E [kr f (x R )k2 ] � E

" r

2kr f � (x R )k2
2 +

� 2L 2d2

2

#

�
p

2E[kr f � (x R )k2 ] +
�Ld
p

2
; (40)

where we have used the fact that
p

a2 + b2 � (a + b) for a; b � 0.

Substituting (38) and (39) into (40), we �nally obtain (8). �

5 PROOF OFCOROLLARY 1

Upon de�ning ~r f i (x ; u) = d[f i ( x + � u ) � f i ( x � � u )] u
2� (againstr̂ f i (x ; u) in (3)), our major task is to derive the

�rst- and second-order moments of~r f i (x ; u).

Givenx , we �rst study the mean of~r f i (x ; u),

Eu

h
~r f i (x ; u)

i
= Eu

�
d

2�
(f i (x + � u) � f i (x � � u))u

�

= Eu

�
d

2�
f i (x + � u)u

�
+ Eu

�
d

2�
f i (x � � u)( � u)

�
( a )
= Eu

�
d
�

f i (x + � u)u
�

( b)
= Eu

�
d
�

(f i (x + � u) � f i (x )) u
�

= Eu

h
r̂ f i (x ; u)

i
( c)
= r f i;� (x ); (41)

where (a) holds since the distribution ofu is symmetric around the origin, (b) holds sinceE[u] = 0, and (c)

holds sincer f i;� (x ) = Eu

h
d
� f i (x + � u)u

i
obtained from (Gao et al., 2014, Lemma 4.1). It is clear from

(41) thatEu

h
~r f i (x ; u)

i
= Eu

h
r̂ f i (x ; u)

i
.

We next study the second-order moment of~r f i (x ; u),

Eu

h
k ~r f i (x ; u)k2

i
=

d2

4� 2
Eu

�
(f i (x + � u) � f i (x � � u)) 2kuk2 �

�
d2

2� 2
Eu

�
(f i (x + � u) � f i (x )) 2 + ( f i (x ) � f i (x � � u)) 2 �

= Eu

" 








d
�

(f i (x + � u) � f i (x ))u










2
#

= Eu

h
kr̂ f i (x ; u)k2

i
; (42)

where we have used the fact thatkuk2 = 1 .

Based on (41) and (42), we can conclude that both (3) and (10) maintain the same statistical properties. Following
the proofs of Proposition 2 and Theorem 1, it is not dif�cult to reach the convergence rate in (8). �

6 PROOF OFCOROLLARY 2

Let ĝ i;j
k := r̂ f i (x k ; u i;j ). If we replacêgk with ĝ i;j

k in (18), we then have

j(r f � (x k )) l j Prob
h
sign(ĝi;j

k;l ) 6= sign(( r f � (x k )) l )
i

� E[jĝi;j
k;l � (r f � (x k )) l j]; (43)

whereĝi;j
k;l is thel th coordinate of̂g i;j

k .

By lettingb = 1 andq = 1 in Proposition 2, we know thatE
�
kĝ i;j

k � r f � (x k )k2
2

�
is upper bounded. Moreover,

by Jensen's inequality we have

E[jĝi;j
k;l � (r f � (x k )) l j] �

q
E[(ĝi;j

k;l � (r f � (x k )) l )2 ] := � l ; (44)
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where� l is �nite sinceE
�
kĝ i;j

k � r f � (x k )k2
2

�
is upper bounded.

Substituting (44) into (43), we have

j(r f � (x k )) l j Prob
h
sign(ĝi;j

k;l ) 6= sign(( r f � (x k )) l )
i

� � l : (45)

With the new gradient estimate�gk =
P

i 2I k

P q
j =1 sign(ĝ i;j

k ) in (11), we require to bound

Prob [sign(�gk;l ) 6= sign(( r f � (x k )) l )] ; (46)

where�gk;l is thel th coordinate of�gk .

We recall that̂gi;j
k;l is an unbiased stochastic approximation to gradient component(r f � (x k )) l with variance� 2

l .
Under the assumption that the noise distribution is unimodal and symmetric, we know from (Bernstein et al.,
2018, Lemma D1) that

Prob
h
sign(ĝi;j

k;l ) 6= sign(( r f � (x k )) l

i
:= Q �

(
2
9

1
S 2 S > 2p

3
1
2 � S

2
p

3
otherwise

<
1
2

; (47)

whereS := j(r f � (x k )) l j=� l .

Let Z count the number of estimatesf ĝi;j
k;l g yielding the correct sign of(( r f � (x k )) l . Thus, the probability of

error in (46) is equal to

Prob [sign(�gk;l ) 6= sign(( r f � (x k )) l )] = Prob
�
Z �

bq
2

�
: (48)

Following the proof of (Bernstein et al., 2018, Theorem 2b) under (47), it is not dif�cult to obtain that

Prob
�
Z �

bq
2

�
�

1
p

bqS
: (49)

That is,

j(r f � (x k )) l j Prob [sign(�gk;l ) 6= sign(( r f � (x k )) l )] �
� lp
bq

: (50)

Replacêgk with �gk in (17), we obtain that

E[f � (x k +1 ) � f � (x k )] � � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

dX

l =1

j(r f � (x k )) l jProb [sign(�gk;l ) 6= sign(( r f � (x k )) l )]

(50)
� � � k kr f � (x k )k1 +

� 2
k dL
2

+ 2 � k
1

p
bq

k� k1

� � � k kr f � (x k )k1 +
� 2

k dL
2

+ 2 � k

p
d

p
bq

q
k� k2

2

(44)
= � � k kr f � (x k )k1 +

� 2
k dL
2

+ 2 � k

p
d

p
bq

q
E[kĝ i;j

k � r f � (x k )k2
2 ]: (51)

Compared (51) with (19), the standard deviation
q

E[kĝ i;j
k � r f � (x k )k2

2 ] is reduced by the factor1=
p

bq.
According to Proposition 2, letb = q = 1 , we obtain

E
h
kĝ i;j

k � r f � (x k )k2
2

i
� 8� b� 2 + (2 � b + � b)C(d; � ): (52)

Based on (51)-(52) and following the proof of Theorem 1, we have

E [kr f (x R )k2 ] �
p

2
f (x 0) � f � + � 2L

P T � 1
k =0 � k

+
2
p

2
p

d
p

bq

p
8� b� 2 + C(d; � )(2� b + � b) +

dL
p

2

P T � 1
k =0 � 2

kP T � 1
k =0 � k

+
�Ld
p

2
; (53)

whereC(d; � ) := 2 d� 2 + � 2L 2d2=2.

If � = O( 1p
dT

) and� k = O( 1p
dT

), then the convergence rate simpli�es toO(
p

dp
T

+ dp
bq

). �
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