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ABSTRACT

Program synthesis from natural language (NL) is practical for humans and, once
technically feasible, would significantly facilitate software development and revo-
lutionize end-user programming. We present SAPS, an end-to-end neural network
capable of mapping relatively complex, multi-sentence NL specifications to snip-
pets of executable code. The proposed architecture relies exclusively on neural
components, and is trained on abstract syntax trees, combined with a pretrained
word embedding and a bi-directional multi-layer LSTM for processing of word
sequences. The decoder features a doubly-recurrent LSTM, for which we propose
novel signal propagation schemes and soft attention mechanism. When applied to
a large dataset of problems proposed in a previous study, SAPS performs on par
with or better than the method proposed there, producing correct programs in over
92% of cases. In contrast to other methods, it does not require post-processing of
the resulting programs, and uses a fixed-dimensional latent representation as the
only interface between the NL analyzer and the source code generator.
Keywords: Program synthesis, tree2tree autoencoders, soft attention, doubly-
recurrent neural networks, LSTM.

1 INTRODUCTION

Program synthesis consists in automatic or semi-automatic (e.g., interactive) generation of programs
from specifications, and as such can be posed in several ways. It is most common to assume that
specification has the form of input-output pairs (tests), resembling learning from examples, which
is by definition limited by its inductive nature: even if a program passes all provided tests, little can
be said about generalization for other inputs. This is one of the rationales for synthesis from formal
specifications, which are typically expressed as a pair of logical clauses (a contract), a precondition
and a postcondition. Programs so synthesized are correct by construction, but the task is NP-hard, so
producing programs longer than a few dozen of instructions becomes computationally challenging.
Synthesis from formal specifications is also difficult for programmers, because writing a correct and
complete specification of a nontrivial program can be actually harder than its implementation.

From the practical perspective, the most intuitive and convenient way of specifying programs is
natural language (NL). This way of formulating synthesis tasks has been rarely studied in the past,
but the recent progress in NLP and deep neural networks made it more realistic, as confirmed by a
few studies we review in Section 5. Here, we propose Structure-Aware Program Synthesis (SAPS1),
an end-to-end approach to program synthesis from natural language. SAPS receives a short NL
description of requested functionality and produces a snippet of code in response. To that aim, we
combine generic word and sequence embeddings with doubly-recurrent decoders trained on abstract
syntax trees (ASTs), with the following original contributions: (i) folding the entire NL specification
into a single point in a fixed-dimensional latent space, which is then mapped by decoder onto the
AST of a code snippet; (ii) modular architecture that facilitates usage of pretrained components,
which we illustrate by pretraining the decoder witihn an autoencoder architecture; (iii) new signal
propagation strategies in the decoder; and (iv) a ‘soft attention’ mechanism over the points in latent
space. Last but not least, the implementation engages a form of dynamic batching for efficient
processing of tree structures.

1Pun intended.
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Figure 1: Overall architecture of SAPS. Rectangles mark data entities, rounded boxes are operations.
The dashed components are used only in the variants of the method that involve autoassociative
pretraining of the decoder.

2 SAPS ARCHITECTURE

Once trained, SAPS accepts a short NL specification as input and produces in response an AST of a
snippet of code (program). It comprises of three main components (Fig. 1): (i) a word embedding for
preprocessing of the specification, (ii) mapping of the embedded word sequence tokens to a fixed-
size latent representation h(latent), and (iii) a decoder that unfolds h(latent) into an AST. Depending
on the variant of the methods, the decoder may be trained from scratch or be pretrained within a
tree2tree autoencoder (the dashed blocks in the figure).

2.1 WORD EMBEDDING

The NL specifications proposed in Polosukhin & Skidanov (2018), which we use in the experimental
part, include only standard English vocabulary. Given that, we rely on the smallest pretrained GloVe
embedding that covers all terms occurring in the considered dataset, more specifically the Common
Crawl, which has been trained on generic NL database comprising 42B tokens by Pennington et al.
(2014), has vocabulary size of 1.9M tokens, and embeds the words in a 300-dimensional space.
Given an input NL query phrase of n tokens, this module produces a sequence of n 300-dimensional
vectors (q1, . . . , qn). In order to be able to train the network with mini-batches of data, we pad each
sequence in the mini-batch with a special out-of-vocabulary value.

2.2 SEQUENCE EMBEDDING

To map the sequences of word embeddings of the NL specification (300-dimensional vectors
(q1, . . . , qn)) to the latent space h(latent), we employ a multilayer bidirectional LSTM (Schuster
& Paliwal, 1997; Graves et al., 2005). Because some variants of SAPS engage pretraining, the con-
cateneted outputs of the both vertical and horizontal LSTMs is passed through a tanh layer in order
to match the h(latent) dimensionality and the (−1, 1) range of values produced by the tree encoder.

Internally, our sequence embedding is a 4-layer LSTM: there are four forward cells stacked upon
each other, i.e. each consecutive cell receives the output of the previous cell as input, and analo-
gously a stack of four backward cells. The final state of the topmost forward cell (reached after the
forward pass over the input sequence) and the final state of the topmost backward cell (reached after
the backward pass over the input sequence) are concatenated to form the final output.
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2.3 TREE DECODER

As signaled earlier, the decoder can be trained from scratch or pretrained within an autoencoder
(dashed part of Fig. 1), and its internal architecture is the same in both scenarios. We proceed
with presenting it as a part of the autoenceoder, as we find it more convenient to the reader. Our
tree2tree autoencoder architecture, which we originally introduced in (Anonymous, 1999), is based
on TreeLSTM Tai et al. (2015) for encoding and Doubly-Recurrent NN (DRNN) Alvarez-Melis &
Jaakkola (2017) for decoding. However it diverges from the latter work in (i) using only the latent
vector for passing the information between encoder and decoder, and (ii) in new ways in which
decoder’s state is being maintained when generating trees.

Encoder. A single training example is (x, x) ∈ XAST × XAST , where x is an AST of a snippet
of code. Given (x, x), the encoder starts by encoding the label of every node xj in x using one-
hot encoding vj = V (xj); for the experiments presented in Section 4, there are 72 node labels, so
|vj | = 72. Then, following Mikolov et al. (2013), we map vjs, for each node in x independently, to
a lower-dimensional space, using a learnable embedding matrix W : yj = Wvj . The result is a tree
y of node label embeddings yj , isomorphic to x.

The encoder network folds the tree bottom-up, starting from the tree leaves, aggregating the hidden
states hj , and ending up at the root node. Contrary to some other use cases, where node arity
(the number of children) is the same for all internal nodes within a tree, in ASTs nodes can have
arbitrary arity. For this reason, we apply the recurrent TreeLSTM Tai et al. (2015) that can merge
the information from any number of children.

The hidden states and cell states are initialized with zeroes. For each node, we first compute the sum
of the hidden states of its children C(j):

h̃j =
∑

k∈C(j)

hk (1)

For leaf nodes, h̃j = 0. Then we compute the values of input, forget and output gates:

ij = σ(Wiyj + Uih̃j + bi) (2)

fjk = σ(Wfyj + Ufhk + bf ) (3)

oj = σ(Woyj + Uoh̃j + bo) (4)

uj = tanh(Wuyj + Uuh̃j + bu) (5)

where σ is the sigmoid function, and Wi,Wf ,Wo and Wu and bi, bf , bo and bu are, respectively,
learnable weights and biases. Note that the values of ij , oj and uj depend on the aggregated chil-
dren’s states (h̃j), whereas fjk is computed child-wise, yielding a separate output fjk of forgetting
gate for each child of the current node.

We then update the state cj of the memory cell of the current node:

cj = ij � uj +
∑

k∈C(j)

fjk � ck (6)

where � stands for elementwise multiplication, and where we assume that the initial states of cjs of
non-existent children of leaves are zero. Next, we compute the hidden state of the current node:

hj = oj � tanh cj , (7)

which is then recursively aggregated by the above procedure. Once this process reaches the root
node, the obtained state hj becomes the latent vector, i.e. h(latent)(x). Additionally, we have
applied layer normalization (Ba et al., 2016) in the same manner as to traditional LSTM.

Decoder. Our decoder is a doubly recurrent neural network (DRNN) proposed in Alvarez-Melis &
Jaakkola (2017). It comprises two LSTM cells, which separately capture the vertical and horizontal
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Figure 2: The modified DRNN cell consists of two LSTM blocks, each comprising embedding, input
projection layer to adapt the input size to LSTM size, layer normalization LSTM cell, and residual
skip connection between the projection and the output layers. DRNN cell uses the latent vector to
enrich the prediction hidden state by the information that might have been lost during hierarchical
processing.

traversal of the resulting AST tree. The state of the former (hai ) is passed vertically downwards from
parents to children, and of the latter (hfi ) horizontally left-to-right to consecutive siblings.

Importantly, we propose to augment the DRNN with modified schemes of state propagation and
novel attention mechanism applied to the latent vector (see Fig. 2). In the original DRNN, the state
of the horizontal LSTM was reset before processing the children of each node. However, preliminary
experiments with Python ASTs we conducted in (Anonymous, 1999) have shown that discarding this
resetting step, i.e. allowing the state to propagate between children of different parent nodes, may
bring significant improvements. Our working explanation for this observation is that ASTs capture
only program syntax, while pieces of code can be semantically related even if they do not reside in a
common part of an AST. By not resetting the state of the horizontal LSTM, we provide it with more
context that would be otherwise unavailable.

This observation inclined us to consider three variants of DRNN, denoted in the following as (Fig.
3): (i) H, in which only the state of the horizontal LSTM is propagated (alongside the entire depth

Figure 3: Propagation of the hidden states and the latent vector during decoding. The dashed line
illustrates the traversal of the horizontal state, the solid line propagation of the vertical state. The
latent vector is used to initialize both states, but has also impact on subsequent decoding steps via
an attention mechanism.
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level of a tree), (ii) V, in which only the state of the vertical LSTM is propagated, (iii) VH, in which
states of both LSTMs are propagated.

These three DRNN variants vary only in the above aspect of propagation (or, conversely, state re-
setting), while all remaining processing stages remain the same. We start by initializing both states
of the vertical and the horizontal LSTM cells hai , h

f
i with h(latent)(x). Alvarez-Melis & Jaakkola

(2017) suggest to initialize only vertical hidden state with latent vector, however, our modification
concerning the transfer of horizontal states in breadth-first order implies the same initialization ap-
proach also to the horizontal state. The DRNN merges both states of LSTMs in a prediction state:

h
(pred)
i = tanh(Ufhfi + Uahai ), (8)

where Uf and Ua are learnable parameters. h(pred)i is then mapped to the probability distribution of
node’s label

li = softmax(Wh
(pred)
i + αiv

a + ϕiv
f ), (9)

where |li| = |vi| (see the description of the encoder), and va and vf are learnable parameters applied
to is-parent flag (αi) and is-last-child flag (ϕi). In training, these are used for teacher forcing,
i.e. replaced with ground truth data according to the shape of the input tree x; in inference mode, the
flags are calculated as:

α
(pred)
i = σ(uah

(pred)
i ) (10)

ϕ
(pred)
i = σ(ufh

(pred)
i ) (11)

where ua and uf are learnable parameters.

In training, we minimize the sum of label loss and topological loss:

L(x) =
∑
i

Lxent(li, V (xi)) + Lbxent(α
(pred)
i , αi) + Lbxent(ϕ

(pred)
i , ϕi) (12)

where Lxent(li, V (xi)) is the categorical cross-entropy loss between the ground truth label V (xi)
and the label li produced by the DRNN, and Lbxent is the binary cross-entropy, applied separately to
the is-parent flag and is-last-child flag. Teacher forcing makes the result tree structure always equal
to the target one allowing us to calculate the loss function for each node.

Soft attention mechanism. Because successive iterations of the DRNN may arbitrarily modify its
prediction state h(pred)i , the information from the encoder may fade away with time, making it harder
to reproduce the input tree x. A range of works, most relevantly Chen et al. (2018), have shown that
this loss of information can be supplemented with an attention mechanism. However, the specific
attention architecture proposed there assumes that the window of attention scans the corresponding
nodes of the input tree x, which implies that x has to be available also during decoding. We cannot
assume this in our setting, where the decoder is intended to be ultimately detached from the encoder
and receive only the latent vector hlatent as input (Fig. 1). Therefore, we come up with an alternative
attention mechanism that relies only on hlatent. We define a soft attention window as

A = σ((h(latent)U (A) � h(pred)i )W (A)) (13)

and then use it to update the prediction state as follows (compare to the attention-less update formula
(8)):

h
(pred)
i = tanh((A� h(latent))C(A) + h

(pred)
i C(pred)) (14)

where U (A), W (A), C(A) and C(pred) are learnable parameters. We expect this mechanism to learn
focusing on the parts of h(latent) that carry the information that is relevant for reproduction of tree
structure, particularly at the deeper levels. Let us emphasize that this mechanism scales the original
tensor, rather than explicitly selecting some of its elements, and as such can be likened to a gating
function; nevertheless, we refer to it as ‘soft attention’ by analogy to certain models used in visual
information processing.
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program ::= symbol
symbol ::= constant | argument | function_call | function | lambda
constant ::= number | string | True | False
function_call ::= (function_name arguments)
function ::= function_name
arguments ::= symbol | arguments , symbol
function_name ::= Reduce | Filter | Hap | Head | + | - | ...
lambda ::= lambda function_call

Figure 4: The grammar of the AlgoLisp DSL from (Polosukhin & Skidanov, 2018).

3 PROGRAM SYNTHESIS TASKS

We assess the performance of SAPS on the set of NL-based program synthesis tasks proposed in
(Polosukhin & Skidanov, 2018). The domain-specific language (DSL) used in this suite is Lisp-
based AlgoLisp, defined by the grammar in Fig. 4. A single program is composed as a nested list
of instructions and operands of three types: string, Boolean and function. The language
features a number of standard functions (cf. the last-but-one production in the grammar). The moti-
vation for choosing this dataset was the large number of examples and brevity of NL specifications
(in contrast to the programming contest data we used in (Anonymous, 1999)). Moreover, the sim-
plicity of syntax causes AlgoLisp programs to be almost equivalent to their AST trees (in contrast
to, e.g., Python we used in previous studies, where even a minimal program may translate into an
AST of a dozen or two nodes).

The dataset comprises 99506 examples, each being a pair of NL specification and the corresponding
AlgoLisp program. To handle variables, like a in the example shown in Table 1, we use the same
approach as Polosukhin & Skidanov (2018), i.e., each occurrence of a new variable allocates a
new placeholder, and the placeholders extent the vocabulary of tokens used in the NL embedding.
Placeholders are common for all examples, i.e., the first occurrences of variables in all programs are
mapped to the same, first placeholder.

For conformance with the cited work, we split the data into training set of 79214 examples, vali-
dation set (9352 examples) and test set (10940 examples). The average lengths of NL specification
and associated code are, respectively, 38 and 24 tokens. The shortest and longest NL description
comprise 8 and 164 tokens respectively (2 and 217 for code snippets).

It may be worth noting that, in contrast to the relatively large number of examples available, the
vocabularies of terms are rather humble: there are only 281 unique terms/tokens in the NL specifi-
cations, and only 72 unique terms in the AlgoLisp programs. The NL vocabulary used in specifi-
cations is strongly related to programming, containing words rarely used in everyday language, lie
prime, inclusive, incremented etc. Nevertheless, they are all present in the Common Crawl GloVe
embedding described in Section (Sect. 2.1).

Dataset inconsistency. After closer examination, we identified inconsistency in the dataset: for a
about 10% of tasks (in the test set), some tests are not passed even by the ground truth program
(we verified that using the AlgoLisp interpreted published in (Polosukhin & Skidanov, 2018)). To
address this issue, we decided to use two performance measures: one based on the unmodified test
and validation sets, in order to maintain comparability to results presented in that study, and another
one using a filtered test set, containing only the tasks that were free from the above problem. Note
however that this issue does not affect the training of SAPS, as it does not involve tests.

Table 1: An example AlgoLisp program (bottom) and its NL specification (left).

You are given an array a. Find the smallest element in a, which is strictly greater
than the minimum element in a
(reduce (filter a (partial0 (reduce a inf) <)) inf min)
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Table 2: Percentage of perfectly synthesized programs (i.e., syntactically identical to the target
ones) for SAPS configurations trained from scratch and latent vector of length 256. Total number
of trained parameters, in millions, used in each configuration is shown in the most right column.

Model Validation Test Number of parameters [M]

SAPS V 0% 0% 5.06
SAPS V Att 0% 0% 5.17
SAPS H 84.31% 78.92% 5.06
SAPS H Att 89.54% 86.20% 5.17
SAPS VH 93.65% 89.10% 5.62
SAPS VH Att 93.73% 92.36% 5.73

4 EXPERIMENT

We examine a range of SAPS configurations that vary along the dimensions mentioned earlier: (i)
decoder state propagation schemes: vertical (V), horizontal (H), and both (VH), (ii) presence/ab-
sence of the soft attention mechanism (Att), (iii) pretraining the decoder (pre) or training it from
scratch (pre). Atop of that, we consider also a range of sizes of h(latent) (64, 128, and 256). We
train all components using Adam optimizer (Kingma & Ba, 2014) with initial learning rate set to
5 × 10−4 and then reduced exponentially at rate 0.975 per every two epochs. To lessen the risk of
overfitting, we appliedL2 regularization to all trainable parameters, except for biases and parameters
from layer normalization.

Training SAPS from scratch. In Table 2, we present the predictive accuracy of synthesis of SAPS
trained end-to-end from scratch in six configurations that vary on the first two of above-mentioned
dimensions, i.e. propagation scheme and presence of attention mechanisms. Model’s output is
considered correct if the produced AST tree represents exactly the syntax of the target program.
All these models use the latent vector of size 256. The synergy between the vertical and horizontal
propagation schemes is quite evident: using them simultaneously boosts the accuracy by a few
percent points compared to the configurations where just one of them is engaged. The effect of
the attention mechanism is also overwhelmingly positive, particularly on the test set. Absence of
propagation of the horizontal state substantially cripples SAPS, which was expected due to the fact
that from the same vertically propagated state the network tries to produce different nodes.

Pretraining of decoder. In the second experiment, we ask whether the best SAPS configuration
identified above (SAPS VH Att with latent representation of size 256) can benefit from pretraining
of the DRNN decoder in the autoencoder architecture (Fig. 1). To this aim, we first train the autoen-
coder to reproduce AST trees on all programs from the training set until saturation, then combine the
trained DRNN decoder obtained in this way with the remaining modules to form the SAPS pipeline,
which is then trained end-to-end on the (NL specification, program) pairs. Comparing the first row
of Table 3 with Table 2 suggests that pretraining may be indeed helpful: although the pretrained
model attains marginally worse accuracy on the test set, it beats the trained from scratch on the vali-
dation set by almost one percent point. The answer to the above question is not therefore definitive,
nevertheless we consider this result as a strong case in favor of pretraining.

We examined also the capabilities of pretrained models with smaller latent size (128 and 64). Their
performances (Table 3) were significantly worse, which indicates that the latent size in the first ex-
periment was set adequately. Though this may suggests that further improvements could be achieved
by increasing the latent size beyond 256, we keep this setting for the rest of this study for the sake
of comparability.

In the above configurations, the decoder (taken from the trained autoencoder) learns alongside with
the sequence embedding LSTM. For comparison, we consider also a variant dubbed SAPSpre VH
Att (256) Fixed, where the latent vectors from the pretrained autoencoder model serve as (fixed)
target (desired output) for the sequence embedding LSTM. Crucially then, in this configuration
the pretrained decoder remains fixed during the latter phase of training. As expected, the obtained
accuracy is inferior to other configurations, which clearly indicates that mutual co-adaptation of
sequence embedding and pretrained decoder is essential. Nevertheless, SAPSpre VH Att (256)
Fixed still outperforms the approach based only on input-output pairs from (Polosukhin & Skidanov,
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Table 3: Percentage of perfectly synthesized programs (i.e., syntactically identical to the target
ones) for pretrained SAPS configurations. Size of the latent vector given in parentheses. The
rightmost two columns show the percentage of programs perfectly reproduced by the corresponding
autoencoder (AC) used for pretraining.

Model Validation Test AC-Validation AC-Test

SAPSpre VH Att (256) 94.59% 92.14% 72.98% 68.42%
SAPSpre VH Att (128) 82.59% 77.07% 67.06% 60.18%
SAPSpre VH Att (64) 58.65% 52.22% 50.24% 39.36%

SAPSpre VH Att (256) Fixed 14.91% 14.39%

Table 4: Percentage of programs passing all tests. Results for methods other than SAPS cited from
Polosukhin & Skidanov (2018).

Model Validation Test

Attentional Seq2Seq 54.4% 54.1%
Seq2Tree 61.2% 61.0%
SAPSpre VH Att (256) 86.67% 83.80%
Seq2Tree + Search 86.1% 85.8%

Table 5: Percentage of programs passing all tests, using all examples provided in the AlgoLisp
database (All tests), and using only the tests that are consistent with the target program (Only pass-
able tests). See the main text for detailed explanation.

Model
All tests Only passable tests

Validation Test Validation Test

Accuracy 50-Accuracy Accuracy 50-Accuracy Accuracy 50-Accuracy Accuracy 50-Accuracy

SAPSpre VH Att (256) 86.67% 89.64% 83.80% 87.45% 95.02% 95.81% 92.98% 94.15%
SAPSpre VH Att (128) 76.62% 80.92% 70.91% 75.89% 83.90% 86.41% 78.56% 81.54%
SAPSpre VH Att (64) 55.08% 60.35% 49.80% 56.31% 60.19% 64.31% 55.17% 60.56%

2018), which achieved 13.3% of accuracy in the best case, despite relying on an external search
mechanism.

Behavior of synthesized programs on input-output tests. In Table 4 we juxtapose our best config-
uration, SAPSpre VH Att (256), with the results reported by Polosukhin & Skidanov (2018). This
time the comparison metric is the percentage of programs that pass all tests provided (alongside
with NL specifications and target programs) in the AlgoLips database prepared by the authors of
that study, using their implementation of evaluation metric. Due to the inconsistencies in of tests in
about 10% of examples in that dataset (Section 3), the numbers for our best SAPS configuration are
smaller than those in Table 3, which normally would not be possible. Nevertheless, the comparison
is fair, as all methods are tested on the same (faulty) tests and thus can be expected to be affected
to the same extent. SAPS clearly outperforms the models based on Seq2Seq and Seq2Tree archi-
tectures. More importantly however, it performs on par with the Seq2Tree combined with external
search algorithm, which was the best approach reported in the cited work (last row of the table).
Though SAPS does not match its test-set performance, i.e. 85.8%, it is worse only by 2 percent
point (and slightly better on the validation set), while being trained end-to-end using gradient, rather
than with the help of a sophisticated search mechanism and input-output tests (recall that SAPS does
not use tests at all).

To address the above-mentioned issue of dataset inconsistency (Section 3), we prepare a modified
version of the AlgoList database, where all examples containing faulty, non-passable tests have been
removed. In Table 5 we compare the results of the best configurations of SAPS applied to this dataset
(right columns) to their performance on the original, unmodified AlgoLisp (left columns). For better
insight, we report not only the percentage of programs that pass all tests (Accuracy), but also an
analogous number for programs that pass at least 50% of tests (50-Accuracy). Expectedly, networks
obtained higher scores when evaluated only on the tests that are free from the abovementioned issue,
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and those scores are also higher than the percentages of programs that were syntactically identical
to the target (Table 3). The latter fact should not be surprising, as a syntactically correct program
has to pass all tests.

It may be worth mentioning that none of the considered trained configurations of SAPS produced
any syntactically incorrect programs.

Illustration of SAPS response to modifications of specification. In Table 6 we present programs
synthesized by SAPS for exemplary NL specifications and its response to various input modifica-
tions. The first part of the table illustrates how the generated source code changes as the specification
is being simplified. Remarkably, the network produces correct output even when the input is very
simplified and laconic. We evaluated also generalization by replacing operations (multiplied→min-
imum), applying different ranges of arrays, and complex modifications affecting multiple parts of
NL specification simultaneously.

5 RELATED WORK

With the recent advent of powerful hardware and new methodological developments, the problem
of program synthesis received increasing attention. Apart from the fundamental research directions
mentioned in the Introduction, a few main approaches can be identified.

Program synthesis from examples. In addition to a large body of literature on heuristic synthesis of
programs from examples (usually with genetic programming, a variant of evolutionary algorithm),
recently a handful of analogous neural methods were introduced. Balog et al. (2016) used a neural
network as a guide for a search algorithm, in order to predict the most probable code tokens, which
greatly reduced the number of solutions that needed to be evaluated during search. Krawiec et al.
(2017) used genetic programming to find a set of programs that match the formal specification,
which ensures the correctness of generated programs for all possible inputs from specification. The

Table 6: The effects of modifications of NL specification. The first specification in each group is an
original task from the validation set, and those that follow are its modified variants (modifications
marked in bold). Row 1: Dropping words from the specification until the output program is not cor-
rect anymore. Row 2: Modifying a single keyword in the output program. Row 3: Change of entire
subexpression in the output program. Row 4: multiple co-occurring modifications of specification.
Except for the specification a b, a + b, all synthesized programs are consistent with specification.

Specification Synthesized program

you are given numbers a and b, your task is to find a + b (+, a, b)
you given numbers a b, your is find a + b (+, a, b)

given a numbers b, find a + b (+, a, b)
given a numbers b, a + b (+, a, b)

a b, a + b (+, (+, a, b), c)

you are given numbers a and b, your task is to find a
multiplied by b (*, a, b)

you are given numbers a and b, your task is to find
minimum a and b (min, a, b)

given a number a and an array of numbers b, find the
length of the longest subsequence of range from 0 to a

inclusive that is a prefix of b

(reduce, (range, 0, (+, a, 1)), 0,
(lambda2, (if, (==, arg2, (if, (<,
arg1, (len, b)), (deref, b, arg1),

0)), (+, arg1, 1), arg1)))

given a number a and an array of numbers b, find the
length of the longest subsequence of range from 1 to a

exclusive that is a prefix of b

(reduce, (range, 1, a), 0, (lambda2,
(if, (==, arg2, (if, (<, arg1, (len,
b)), (deref, b, arg1), 0)), (+, arg1,

1), arg1)))

given an array of numbers a, find median of values in a
after only keeping first half

(deref, (sort, (slice, a, 0, (/,
(len, a), 2))), (/, (len, (slice, a,

0, (/, (len, a), 2))), 2))

given an array of numbers a, find mean of values in a
after only keeping second half

(/, (reduce, (slice, a, (/, (len, a),
2), (len, a)), 0, +), (len, (slice,
a, (/, (len, a), 2), (len, a))))
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method supplied itself with examples by collecting counterexamples resulting from iterative formal
verification process. Devlin et al. (2017) create programs using noisy input-output pairs.

Differentiable compilers. Another approach is to, rather than synthesizing human readable code,
embed the whole process implicitly in the neural substrate. These methods often utilize neural
networks and could be seen as differentiable compilers. Graves et al. (2014) implement a Turing
machine using neural network, endowing it with differentiable memory. A similar approach was
proposed by Sukhbaatar et al. (2015), where a memory was also used.

Synthesis from NL. With the recent advances in NL understanding, a number of approaches utiliz-
ing NL descriptions for code synthesis were introduced. Rabinovich et al. (2017) and Yin & Neubig
(2017) generate ASTs rather than plain source code, using recursive neural decoders specialized for
AST generation. An interesting approach is presented by Ling et al. (2016), where the authors use a
set of neural modules to generate source code from multimodal inputs (text and quantitative features)
and apply their framework to a trading card game. Another related topic is semantic parsing (see,
e.g., (?)), which puts particular emphasis on synthesis from NL and other informal specifications.

Last but not least, the main reference approach for this work is the neuro-guided approach proposed
by Polosukhin & Skidanov (2018). The authors used a neural network to guide a Tree-Beam search
algorithm and so prioritize the conducted search process. In the approach proposed there, a sequen-
tial encoder folds a short description in natural language, followed by a tree decoder that generates
a set of most possible nodes in the AST. For each node, the proposed labels are evaluated by the
search algorithm on a set of input-output tests. The process is repeated recursively for consecutive
nodes of the AST tree. The authors used an attention mechanism (Bahdanau et al., 2014) on the
entire input sequence – contrary to our approach, where attention concerns only the latent vector.

6 DISCUSSION

SAPS manages to achieve state-of-the-art test-set accuracy, on par with that of Polosukhin & Ski-
danov (2018), and does so with a bare neural model, without any search, additional postprocessing
or other forms of guidance. This remains in stark contrast to that study, where network was queried
repeatedly in a Tree-Beam search heuristics to produce the target program step by step, testing the
candidate programs on provided tests (see Fig. 2 in that work). There are also many differences
with respect to (Balog et al., 2016), where a network was used to prioritize search conducted by an
external algorithm. SAPS’s architecture can provide a similar level of quality with purely neural
mechanisms. This seems conceptually interesting in itself; in particular, it is worth realizing that the
fixed-dimensionality latent layer h(latent) implements a complete embedding for a large number of
programs – those present in our training, validation and testing set, but possibly also others.

The fact that none of SAPS configurations ever produced a syntactically incorrect program (includ-
ing the testing phase) suggests that SAPS captured well the syntax of AutoLisp and is likely to
produce well-formed programs for other NL specifications – which was also corroborated by the
effects of manipulations shown in Table 6. Moreover, it is also likely that SAPS has rather good
insight into program semantics, which can be concluded from its behavior on the passable tests,
summarized in the right part of Table 5. Even when a synthesized program is not identical to the
target one, there is still a chance for it to be correct. For instance, for the test set, SAPSpre VH Att
(256) produces a perfect copy of the target program in 92.14% of test examples (Table 3), while in
total 92.98% all programs it synthesizes pass all passable tests (Table 5). Therefore, 0.84% of pro-
grams pass all tests despite being syntactically different from the target program (which translates
into roughly one in 9 of such programs). It seems likely that in those cases the network came up with
an alternative implementation of the target concept expressed by the NL specification. One should
keep in mind, however, that passing the tests does not prove semantic equivalence. This could be
achieved with formal verification, which we leave out for future work.

In relation to that, let us also note that a substantial fraction of programs that do not pass all tests,
pass at least 50% of them (see the 50-Accuracy in Table 5). Since the a priori probability of passing
a test by a program is miniscule, this suggests that even the imperfect programs feature useful code
snippets that make them respond correctly to some tests.

On the other hand, it would be naive to expect SAPS to scale well for much longer NL specifi-
cations and/or target programs (the median length of the former was 36 words, and of the latter
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20 tokens). That would arguably require augmenting the method with additional modules, for in-
stance an attention mechanism for interpretation of the NL specification, as used by Polosukhin &
Skidanov (2018). Such functionality seems particularly desirable for tasks that involve complex,
multi-sentence NL specifications. Note however that any additional mechanisms that circumvents
the latent layer makes this architecture less modular, which may be undesirable, particularly for
pretraining. For instance, our autoencoder can be now potentially pretrained on a (possibly large)
collection of programs without NL specifications. Introducing direct attention from the DRNN to
the NL layers would break that independence.

We attribute the high performance of SAPS mainly to the quite sophisticated design of our decoder,
and in particular to its susceptibility to learning. This claim is supported by the comparison of
SAPSpre VH Att (256) to SAPSpre VH Att (256) Fixed (Table 3), where the latter used a fixed
decoder, pretrained in the autoassociative mode (Section 2.3). The huge gap between the perfor-
mances of these architectures clearly indicates that it was essential to allow the decoder to adapt
in the end-to-end learning spanning from NL to AST trees. The experiment with different sig-
nal propagation schemes (Table 2) suggests that the decoder owes its malleability in great part to
the proposed ‘liberal’ state propagation techniques, in particular allowing the horizontal LSTM in
DRNN to propagate its state both horizontally and vertically. Last but not least, the proposed soft
attention mechanism also contributes significantly to the performance of SAPS, even though it has
no access to the original NL specification, but only to the latent vector. This again points to high
informativeness of the latent representation that emerged there during learning.

7 CONCLUSION

We have shown that reliable end-to-end synthesis of nontrivial programs from NL is plausible with
exclusively neural means and gradient descent as the learning mechanism. Given that (i) capturing
the semantics of the NL is in general difficult, (ii) there are deep differences between NL and AST
trees on both syntactic and semantic level, and (iii) the correspondence between the parts of the
former and the latter is far from trivial, we find this result a promising demonstration of the power
dwelling in the neural paradigm. We find it likely that methods like SAPS may be successfully
applied for practical synthesis of short code snippets, for instance in end-user programming. In
future works, we plan to devise means to address the composite character of both specifications and
program code.
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