
Proceedings of Machine Learning Research – Under Review:1–5, 2019 Extended Abstract – MIDL 2019 submission

Transfer learning from synthetic data reduces need for labels
to segment brain vasculature and neural pathways in 3D
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Abstract

Novel microscopic techniques yield high-resolution volumetric scans of complex anatomical
structures such as the blood vasculature or the nervous system. Here, we show how transfer
learning and synthetic data generation can be used to train deep neural networks to segment
these structures successfully in the absence of or with very limited training data.
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1. Introduction

Recent advances in tissue-clearing (Ertürk et al., 2012; Chung and Deisseroth, 2013) com-
bined with 3D light-sheet microscopy (3D LSM ) overcome previous imaging limitations:
they enable volumetric acquisition at cellular resolution of entire organisms (Cai et al.,
2018; Pan et al., 2019; Stefaniuk et al., 2016; Mano et al., 2018). This yields unprece-
dented insight into the micro-anatomy at the macro-scale, e.g., to study highly connected
structures like the brain vasculature or the peripheral nervous system. Differences in these
structures have been associated with a wide range of disorders (Joutel et al., 2010; Li et al.,
2010). Thus, segmentation and characterization of these anatomical structures is crucial
to study causes and effects of such pathologies. However, manual segmentation of complex
structures is very time-consuming, especially in high-resolution volumetric scans. While
this motivates the need for deep learning it also implies a high cost of labeling. Here, we
substantially reduce the need for manually labeled training data using transfer learning,
an approach gaining attention (Van Opbroek et al., 2015; Khan et al., 2019). In short, we
show that training deep networks on synthetic data is already sufficient to learn the basic
underlying task across different anatomical structures, species, and imaging modalities.

2. Methods

Here, we present results from three widely different applications: human brain vessels
(MRI), mouse brain vessels and the mouse peripheral nervous system (both 3D LSM ).
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The same network was trained either on a small labeled set from the respective application
(”real data”), on synthetically generated data, or on a combination of both. The synthetic
data used is identical for all three applications. We chose DeepVesselNet as our architec-
ture; the schedule for pre-training on synthetic data and refinement on real data match the
methods of (Tetteh et al., 2018). The methods for generation of synthetic training data is
described in (Schneider et al., 2012). MRI scans from human brain vasculature are taken
from (Tetteh et al., 2018) (voxel size: 300µm x 300µm x 600µm). Volumetric scans of
the brain vasculature (voxel size: (3µm)3) and the peripheral nervous system (voxel size:
(10µm)3) were obtained using DISCO tissue clearing and fluorescent light-sheet microscopy
as described in (Cai et al., 2018). Representative 2D cross-sections of the synthetic data
and segmentations of all three applications are shown in Figure 1.

3. Results

Transfer learning from synthetic data (Table 1, Part 1). For segmenting the human
vasculature from MRI scans, training the net on the synthetic data alone yields very good
results, 81% in F1-score (note: the synthetic data set had been designed for this application).
Training on the real data for this application yields a higher F1-score of 86%. The best
result (87%), however, is achieved by a combination of both: pre-training on synthetic data
and fine-tuning on real data. Interestingly, the network also converges about 50% faster in
this case (data not shown). Motivated by this observation, we repeated this experiment for
3D LSM scans of the mouse brain vasculature. Again, the same pattern can be observed
and the combination of synthetic with real data (F1-score of 76%) outperforms synthetic
data (71%) or real data alone (73%). Taking the approach yet further, we applied the
approach to 3D LSM full body scans of the peripheral nervous system of a mouse. While
training on synthetic data alone was not very successful (16%) as compared to real data
(49%), the gain from combining both was almost completely additive (64%).

Figure 1: A) Synthetic training data was designed to resemble vasculature of human brain
in MRI scans. B-D) Predicted segmentations of 3 different applications: MRI
scans of human brain vasculature (B), 3D LSM of mouse brain vasculature (C),
and peripheral nervous system (D; shown here: innervated muscle fibres)

Transfer learning across domains (Table 1, Part 2). Here, we trained the network
on a combination of synthetic data and the real data from a given application and then
predicted on data from another application. When predicting on human vasculatures from
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MRI scans, the refinement step on real data from another application after pre-training on
synthetic data leads to worse results (left column: 43% and 36%) compared to training on
synthetic data alone (81%, see Part 1). However, when training the model on synthetic
data and real data of human vessels in MRI scans (first row of Part 2), the performance
on 3D LSM scans of mouse brain vessels (72%) or the mouse peripheral nervous system
(49%) is about as good as when trained on the respective real data alone. Also, while
the domain transfer from mouse vasculature to mouse nervous system only yields mediocre
results (35%), it works well the other way around: refining a model trained on synthetic
data with real data from the nervous system to segment brain vessels almost works as well
(75%) as if it had been refined on data within the same domain (76%, see Part 1).

Table 1: Quality of predicted segmentations (F1-score) for 3 different applications

4. Discussion

Our results demonstrate how pre-training on synthetically generated data can accelerate
model convergence and boost the overall segmentation performance. For a given desired
performance, this thus means a reduced need for manually labeled training data, which is
very expensive for complex structures in 3D scans. Importantly, a single synthetic data
set that was originally designed to represent human vessels also works well for applications
from different species, anatomical structures, and imaging modalities. This suggests that
the features learned from the synthetic data are of general use for the abstract segmentation
tasks, highlighting the generalizability of the approach. Thus, the expensively labeled data
for a given application does not have to be used to learn a basic task but rather can be
preserved for refining the pre-trained model to the specifics of the application (such as
contrast, noise, background structures). Interestingly, this approach may also be of use in
cases where no training data is available at all. For instance, we could show that a model
trained on synthetic data and real data from another application can match the performance
of a model trained from scratch on real data from the application of interest. Together,
these results highlight the importance of transfer learning towards the goal of resolving a
key bottleneck in adoption of deep learning: the high cost of data annotation.
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