
Kung Faux Pandas
Simplifying privacy protection

James King, Seth Russell, Tellen D. Bennett, Debashis Ghosh
Data Science to Patient Value (D2V)

School of Medicine
University of Colorado Anschutz Medical Campus

Aurora, CO
{james.king, seth.russell, tell.bennett, debashis.ghosh}@ucdenver.edu

Abstract

There are many barriers to data access and data sharing, especially in the domain
of machine learning on health care data. Legal constraints, such as HIPAA, protect
patient privacy but slow access to data and limit reproducibility. We provide a
description of an end-to-end system called Kung Faux Pandas for easily generating
de-identified or synthetic data which is statistically similar to real data but lacks
sensitive information. This system focuses on data synthesis and de-identification
narrowed to a specific research question to allow for self-service data access
without the complexities required to generate an entire population of data that
is not needed for a given research project. Kung Faux Pandas is an open source
publicly available1 system that lowers barriers to HIPAA- and GDPR-compliant
data sharing for enabling reproducibility and other purposes.

1 Introduction

Independent reproduction and replication of results are critical components of scientific inquiry.
Barriers to data access and sharing are the most important impediments to reproducibility in machine
learning (ML) research. Health care research has unique challenges because of necessary personal
data privacy protections.

Several methods exist to de-identify (remove key identifiers, group individuals, and related anonymiza-
tion techniques [1]) and synthesize data (create data through algorithmic means, population level
statistics, randomization, ideally with preservation of multivariable relationships between records
[2, 3, 4]). However, no pipeline currently exists with which ML investigators can routinely anonymize
or synthesize data to facilitate access and sharing. This work addresses that gap.

We have created an open source software library called Kung Faux Pandas (KFP) which allows for
the modular combination of established privacy protection methods with the popular Python Pandas
data science library[5]. KFP also provides a Structured Query Language (SQL) interface which
enables users to query a database and receive a data set without personal information through either
anonymization or synthetic data generation.

2 Background

Recent work has clarified the definition and importance of reproducibility and a closely related
concept, replicability. Leek and Peng have defined reproducibility as the "ability to recompute
data analytic results given an observed dataset and knowledge of the data analysis pipeline," and

1https://github.com/CUD2V/kungfauxpandas

Preprint. Work in progress.

https://github.com/CUD2V/kungfauxpandas


replicability as "the chance that an independent experiment targeting the same scientific question will
produce a consistent result."[6, 7] Others have used the terms in a reverse fashion[8]. Despite the
semantic differences, there is broad agreement that an independent experiment with confirmatory
results is the strongest support of any experiment. One early influential paper on the topic of
reproducibility in scientific computing lists the key factors in reproducibility as: available data, input
parameters, documentation, software code, and an environment capable of running the provided
software code. These items are difficult to completely convey in a traditional research paper [9].

In the context of ML, sufficient detail is required such that an independent investigator could create the
same hardware and software configuration, data used for all experiments, source code, documentation
on data and how to run/configure software, and tests that verify the software runs correctly. Once
a result can be reproduced, new researchers can then build upon the methods, gather new data for
testing/validation, or discover alternative methods to replicate a result.

Many domains in which ML investigators work have legal barriers that make it difficult to enable
independent verification of ML models which frequently require enormous amounts of training data.
As an example, in the health care domain in the United States, a key law governing health data is the
Health Insurance Portability and Accountability Act (HIPAA). HIPAA is backed by significant civil
penalties as well as specifics about data security and what can and cannot be done with protected
health information [10]. While there are other domain specific data privacy laws, there are also
some broad rules that affect entire countries such as the European Union’s General Data Protection
Regulation (GDPR). The GDPR puts in place new rules about data ownership and control in an
attempt to give individuals more control over their information.

The current legal environment creates a difficult situation for scientists in the health care domain. Early
examples of re-identification attacks [11] have have created apprehension on the part of businesses
and legal experts in data sharing [12]. Getting access to source health care data is slow and isn’t
always granted [13, 14]. More recently, research in the data sharing/privacy protection space has
focused more on synthesis techniques such as in the case of the Synthea system, a tool to generate
an entire outpatient Electronic Health Record (EHR) based on population statistics [2]. Current
solutions are not without their drawbacks however as they frequently require significant configuration
of metadata before they can generate data or they attempt to solve the entire solution space and
consequently are very slow to run.

3 System Details

One way around the difficulties of source data access is to separate the dependency between data
and analysis in such a way that analysis can be performed without the analyst having access to the
source data. Such a process can be possible if a sufficiently detailed description of the sensitive data
is provided. Appropriate models can be developed and initially validated before either being handed
off to a data custodian who then runs the processes on protected data and returns the results to the
researcher or access to the protected data has been granted directly to the researcher. Solutions of this
form have been possible for some time, but are awkward in practice because activities such as data
cleaning, exploration, and model building are interactive and iterative processes that require more
than just descriptions of data.

KFP addresses the issue of data access by generating data that is “statistically similar” to the real data
but does not itself contain any sensitive data. We collectively refer to de-identified data and synthetic
data as faux-data. We use the term faux as it is used in the fashion sense of the word: the use of man
made materials that look and feel like real leather, fur, etc., but without the problematic derivation
from live animals and reliance upon limited resources. This faux-data can be analyzed, cleaned,
feature-engineered, etc. as if it were the actual source data. KFP provides a standard mechanism for
wrapping a privacy protection method into a plug-in which integrates the method with the Pandas
DataFrame model. Two of these plug-ins are provided with full documentation for creating other
plug-ins.

As the data generated through KFP has no protected component, it can be shared along with code or
methods to improve reproducibility as well as aid in replicability. To further the aim of reproducibility
we have provided our code and a sample of a randomly generated dataset for testing purposes through
our GitHub repository in a range of formats: Python environment files (conda and pip) to allow others
to start with the same software libraries and specific versions that we used, a Docker container with

2



code and sample data installed and already configured, and all source code along with version history
so others can follow our development process.

KFP focuses on generating faux-data narrowed to a specific subset that a researcher is interested in
rather than attempting to generate an entire population of data such as an entire EHR or longitudinal
patient record. By focusing on just the data needed, performance is improved, the need for extensive
modeling or metadata configuration is reduced, and the amount of faux-data generated and stored is
minimized. Although the plugable methods included for faux-data generation have been shown to
effectively replace source data for analysis, KFP facilitates a more through process that includes an
initial exploration with faux-data followed by a repetition of methods on original source data through
query logging and thereby aiding in replication.

3.1 System Architecture

Ideally a ML investigator should develop, test, and validate models using all available data. This is
most easily accomplished when they have unfettered access to all data in the problem domain they
are working in. Figure 1 shows the novel architecture of KFP: data access through an intermediary
that can synthesize data on-demand.

Figure 1: System Architecture.

Figure 2: Data synthesis process.

Figure 2 shows the automated faux-data request/response process. All queries submitted to the
system are first pre-processed to remove clauses such as "ORDER BY" which are made ineffective
by the synthesis process. All queries are logged for later analysis and results cached to optionally
improve synthesis performance for repeated queries. Next the processed query is executed against
the protected data set and results are passed into the modular synthesis process. While the current
implementation only utilizes a couple of synthesis methods, ML developers or data warehouse owners
can insert their own custom method or modify existing methods. Previously removed "ORDER BY"
clauses are re-applied to the faux-data before results are returned to the user. Finally, although not
implemented in this version of KFP, synthetic results could be held back until reviewed and approved
for release by the data owner.

KFP provides multiple methods by which a ML developer can access on-demand faux-data. As
shown in Figure 3, a single page web application (SPA) allows for users to directly enter SQL queries,
submit them to the connected database, and receive faux-data according to the selected generation
method. Data can either be viewed directly in browser or downloaded in csv format for use in a ML
process. Alternatively, a Hypertext Transfer Protocol (HTTP) Representational State Transfer (REST)
service [15], utilized by the SPA, allows for cross language compatible requesting and receiving of
faux-data, again via SQL query. In order to facilitate querying and understanding of the data model,

3



the database metadata is presented to the user in a collapsible section. Lastly, for Python based
software or languages with an interface to Python, the kungfauxpandas.py file and associated classes
can be imported and called natively.

Figure 3: User Interface.

3.2 Included Synthesis Methods

KFP provides a framework by which any number of methods for data privacy can be carried out.
For demonstration purposes we have implemented two plugins that use different techniques for data
synthesis. The kernel density estimator from scipy.stats.gaussian_kde uses the method developed
by Silverman [16] which handles inter-related ordinal and ratio data yet runs quickly on standard
consumer level hardware. The DataSynthesizer method, created by Ping et al. [17] is built on
differential privacy mechanisms and has multiple internal methods for data generation ranging from
random generation based on data type to Bayesian modeling of inter-relationships among columns of
data. As a result of their methods, the DataSynthezier offers a unique contribution to the space: it can
work with no configuration other than input data, or can be configured to provide more custom results.
In DataSynthesizer, the authors show that the synthetic data generated preserves privacy while still
being useful enough for actual data analysis (see also [18]).

4 Experiments

In this section we evaluate the performance of the KFP plugins to see how closely the methods meet
the stated goals of ease of use, similarity to input data, and total time to run. Hardware for these
performance and evaluation tests was a 2017 MacBook Pro, 3.1 GHz Intel Core i7, 16GB 2133 MHz
LPDDR3 with macOS 10.12.6. KFP software is written in Python 3.6; all packages and dependencies
can be installed with identical versions using the provided requirements.txt, environment.yml file,
or Docker container. Database queries were run against the relational database PostgreSQL version
9.6.9. Data was generated using the notebook test_data_generator.ipynb available in our GitHub
repository. The sample data population is composed of 100,000 patient encounters with various
dimensions spread across several tables, the largest of which contains 10,539,549 rows of data. The
sample query generating the "real" input data is composed of 8 total columns composed of IDs,
categorical variables, and floating point numbers.

4



Table 1: Kung Faux Pandas data synthesis plugin timings (mean seconds)

Method 10 rows 100 rows 1000 rows 10000 rows 100000 rows

Trivial 2.5e-06 2.3e-06 2.3e-06 2.2e-06 2.2e-06
KDE 0.086 0.079 0.074 0.074 0.122
DS Independent 0.044 0.050 0.103 0.268 2.608
DS Independent w/Config 0.045 0.040 0.064 0.120 0.799
DS Correlated 0.188 1.419 3.460 16.66 159.9
DS Correlated w/Config 0.172 0.627 1.393 342.7 2124

4.1 Timing Method

Table 1 documents results obtained from running the various plugins. Source code for running
these performance tests are available in the Jupyter notebook performance_tests.ipynb. The "Trivial"
method provides a baseline comparison for evaluating the overhead of Pandas and correct input/output
of the plugin class and function overloading mechanism; it returns the input data frame unmodified.
The KDE method is the custom method that acts as an example of how to create plugins. A couple of
DataSynthesizer (abbreviated DS in the table) modes are used to demonstrate performance differences
as well as generated synthetic data differences. "Independent" mode generates synthetic data with
each attribute being modeled independently from the others. "Correlated" attribute mode finds
inter-column relationships to more accurately generate synthetic data. Both DataSynthesizer modes
are run with no configuration and again "w/Config" by passing in some column-wise dataset specific
configuration.

Figure 4: Sample of source data

Figure 5: Sample of synthetic data

4.2 Insights

Figure 4 provides a few rows of the source data for the synthetic plugins. Figure 5 provides a few
rows of the synthetic data generated by DataSynthesizer in "Independent" mode.

Fast generation of synthetic data is important in a self-service setting where researchers can generate
their own data as needed. As shown in the results, some methods are significantly faster than others
as dataset size increases. Additionally, the other key constraint is having synthetic data be as close
as possible to real data without reducing privacy. While the KDE plugin is a simple method, it
quickly generates data that looks similar to the input data and works well for the range of data
types used. DataSynthesizer in "Independent" mode is quick for the tested range of dataset sizes,
but without additional configuration, it doesn’t generate results that closely match the input dataset.
As an example the "Code" column should contain valid International Statistical Classification of
Diseases and Related Health Problems, Tenth Revision (ICD-10) codes, but instead has random
strings that are similar in length to actual ICD-10 codes that do not line up with values in other
columns. The DataSynthesizer "Correlated" attribute mode generates very realistic synthetic data,
but has a significant computational burden when generating synthetic data from larger dataset sizes.

5



In all cases, synthetic data generation is a CPU intensive task; no parallelization has been implemented
by either KFP nor the plugins used. While memory usage does increase as data size increases, at the
100000 rows seen here, memory usage peaked at around 2GB for the Python process.

5 Discussion

KFP provides a unique contribution to the space of reproducible ML. Through providing ad-hoc
faux-data, ML researchers can have lower barriers to accessing private data as well as reduced barriers
to sharing faux-data derived from private data. Although one clear area for further research would
be to develop plugins for additional faux-data methods, there are several areas that go beyond this
simple step that could be researched further: improved code sharing of KFP, addressing institutional
specific privacy issues, and evaluation of this system in a ML workflow.

While we have provided software code and a description of our methods, we believe that ML
reproducibility should go beyond just making source code available. Peng recommends making
code available in any form as an excellent first step towards reproducible research; the next step is
to make code available "in a durable non-proprietary format" [19]. This is a level of code sharing
rarely achieved in ML research. Currently there is no standard long term format that works for all
computational environments. For the Python ecosystem however, the standard for sharing code is
via a package on Python Package Index (PyPI). We intend to continue this research to make KFP
available as a Python package.

Another area that is open for further research is that of domain and institution specific data privacy
needs. In the field of education, statistical methods for calculating sample size based on probability
of detecting a specific effect size are commonly used [20] as the key method for privacy protection.
However, it is not clear that these methods are appropriate for use in ML in general or domains
other than education. Thus, in this work, no attempt has been made to constrain data set sizes nor
provide additional proofs of data protection. KFP could be modified to return no results if a minimum
threshold is not met or, alternatively, data boosting techniques in combination with data synthesis
could be used based on the risk profile of the data owner(s).

The last area recommended for further research is to deploy and observe the use of KFP in an active
ML environment where researchers are working with sensitive datasets. A key limitation that may be
identified is that of performance characteristics, particularly in a multi-user setting against a large
relational database store. Additionally, as no private data was distributed via this system, actual
review by security and compliance groups or institutional review boards may uncover additional
requirements to reduce risk of data exposure that could require significant rework or further study.

6 Conclusion

KFP removes barriers to data access and data sharing via self-service faux-data generation. Users
of KFP do not need to have access to a protected dataset nor does a human have to be involved
in translating researchers data needs into a non-protected dataset. This self-service data can be
differentially private or meet other privacy needs based on plugin capabilities. With faux-data,
researchers can publicly share data upon which their research relies without organizational fear of
privacy breaches. KFP also facilitates a process by which evaluation, analysis, or model building is
first performed with faux-data followed by repetition upon private data.

Finally, instead of taking the computational and labor intensive step of full EHR de-identification
or synthesis, KFP takes the smaller and more easily implemented step of just-in-time data de-
identification or synthesis. As shown in our experiments, if the proper method is selected, data can be
quickly generated based on real data that the requester need not have direct access to. We surmise
that this tool will improve data exploration and reduce dependency on complex processes required
for data access. The result of this system will be improved reproducibility in ML.

References
[1] United States Department of Health and Human Services. Hipaa for professionals. https:

//www.hhs.gov/hipaa/for-professionals/index.html. Accessed: 2018-05-08.

6

https://www.hhs.gov/hipaa/for-professionals/index.html
https://www.hhs.gov/hipaa/for-professionals/index.html


[2] Jason Walonoski, Mark Kramer, Joseph Nichols, Andre Quina, Chris Moesel, Dylan Hall,
Carlton Duffett, Kudakwashe Dube, Thomas Gallagher, and Scott McLachlan. Synthea: An
approach, method, and software mechanism for generating synthetic patients and the synthetic
electronic health care record. Journal of the American Medical Informatics Association,
25(3):230–238, March 2018.

[3] N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault. In 2016 IEEE In-
ternational Conference on Data Science and Advanced Analytics (DSAA), pages 399–410,
2016.

[4] Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart, and Jimeng
Sun. Generating multi-label discrete patient records using generative adversarial networks.
arXiv:1703.06490 [cs], 2017.

[5] Wes McKinney. Data structures for statistical computing in python. In Stéfan van der Walt and
Jarrod Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56,
2010.

[6] Jeffrey T. Leek and Roger D. Peng. Opinion: Reproducible research can still be wrong: Adopting
a prevention approach. Proceedings of the National Academy of Sciences, 112(6):1645–1646,
February 2015.

[7] Roger D. Peng, Francesca Dominici, and Scott L. Zeger. Reproducible Epidemiologic Research.
American Journal of Epidemiology, 163(9):783–789, May 2006.

[8] Chris Drummond. Replicability is not Reproducibility: Nor is it Good Science. In Proc. of
the Evaluation Methods for Machine Learning Workshop at the 26th ICML, page 4, Montreal,
Canada, 2009.

[9] M. Schwab, M. Karrenbach, and J. Claerbout. Making Scientific Computations Reproducible.
Computing in Science & Engineering, 2(6):61–67, 2000.

[10] American Medical Association. Hipaa violations & enforcement. https://www.ama-assn.org/
practice-management/hipaa-violations-enforcement. Accessed: 2018-05-05.

[11] Latanya Sweeney. k-ANONYMITY: A MODEL FOR PROTECTING PRIVACY. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, October
2002.

[12] Paul Ohm. Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization.
SSRN Scholarly Paper ID 1450006, Social Science Research Network, Rochester, NY, August
2009.

[13] Jr James G. Hodge, Lawrence O. Gostin, and Peter D. Jacobson. Legal Issues Concerning
Electronic Health Information: Privacy, Quality, and Liability. JAMA, 282(15):1466–1471,
October 1999.

[14] Sharyl J. Nass, Laura A. Levit, and Lawrence O. Gostin, editors. Beyond the HIPAA Privacy
Rule: Enhancing Privacy, Improving Health Through Research. The National Academies
Collection: Reports funded by National Institutes of Health. National Academies Press (US),
Washington (DC), 2009.

[15] W3C Working Group. Web Services Architecture. https://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/relwwwrest.

[16] B. W. Silverman. Density estimation for statistics and data analysis. Number 26 in Monographs
on statistics and applied probability. Chapman and Hall, London ; New York, 1986.

[17] Haoyue Ping, Julia Stoyanovich, and Bill Howe. Datasynthesizer: Privacy-preserving synthetic
datasets. In Proceedings of the 29th International Conference on Scientific and Statistical
Database Management, SSDBM ’17, pages 42:1–42:5, New York, NY, USA, 2017. ACM.

[18] Bill Howe, Julia Stoyanovich, Haoyue Ping, Bernease Herman, and Matt Gee. Synthetic Data
for Social Good. arXiv:1710.08874 [cs], October 2017. arXiv: 1710.08874.

7

https://www.ama-assn.org/practice-management/hipaa-violations-enforcement
https://www.ama-assn.org/practice-management/hipaa-violations-enforcement


[19] Roger D. Peng. Reproducible Research in Computational Science. Science (New York, N.y.),
334(6060):1226–1227, December 2011.

[20] National Center for Education Statistics. NAEP Analysis and Scaling - Minimum School and
Student Sample Sizes for Reporting Group Results, September 2009.

8


	Introduction
	Background
	System Details
	System Architecture
	Included Synthesis Methods

	Experiments
	Timing Method
	Insights

	Discussion
	Conclusion

