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ABSTRACT

This paper is concerned with solving combinatorial optimization problems, in par-
ticular, the capacitated vehicle routing problems (CVRP). Classical Operations
Research (OR) algorithms such as LKH3 (Helsgaun, 2017) are inefficient and dif-
ficult to scale to larger-size problems. Machine learning based approaches have
recently shown to be promising, partly because of their efficiency (once trained,
they can perform solving within minutes or even seconds). However, there is still
a considerable gap between the quality of a machine learned solution and what
OR methods can offer (e.g., on CVRP-100, the best result of learned solutions is
between 16.10-16.80, significantly worse than LKH3’s 15.65). In this paper, we
present “Learn to Improve” (L2I), the first learning based approach for CVRP that
is efficient in solving speed and at the same time outperforms OR methods. Start-
ing with a random initial solution, L2I learns to iteratively refine the solution with
an improvement operator, selected by a reinforcement learning based controller.
The improvement operator is selected from a pool of powerful operators that are
customized for routing problems. By combining the strengths of the two worlds,
our approach achieves the new state-of-the-art results on CVRP, e.g., an average
cost of 15.57 on CVRP-100.

1 INTRODUCTION

In this paper, we focus on an important class of combinatorial optimization, vehicle routing problems
(VRP), which have a wide range of applications in logistics. Capacitated vehicle routing problem
(CVRP) is a basic variant of VRP, aiming to find a set of routes with minimal cost to fulfill the
demands of a set of customers without violating vehicle capacity constraints. The CVRP is NP-hard
(Dantzig & Ramser, 1959), and both exact and heuristic methods have been developed to solve it
(Fukasawa et al., 2006; Golden et al., 2008; Kumar & Panneerselvam, 2012; Toth & Vigo, 2014).

In recent years, especially after the seminal work of Pointer Networks (Vinyals et al., 2015), re-
searchers start to develop new deep learning and reinforcement learning (RL) frameworks to solve
combinatorial optimization problems (Bello et al., 2016; Mao et al., 2016; Khalil et al., 2017; Ben-
gio et al., 2018; Kool et al., 2019; Chen & Tian, 2019). For the CVRP itself, a number of RL-
based methods have been proposed in the literature (Nazari et al., 2018; Kool et al., 2019; Chen &
Tian, 2019). The learning based methods are trained on a huge number of problem instances, and
have been shown to be extremely fast in producing solutions of reasonably good quality. However,
when tested with the same benchmark instances, these learning-based methods cannot outperform
the state-of-the-art method LKH3 (Helsgaun, 2017), which is a penalty-function-based extension
of classical Lin-Kernighan heuristic (Lin & Kernighan, 1973; Helsgaun, 2000). For example, on
CVRP with 100 customers, LKH3 is able to produce an average cost of 15.65. This line of research
motivated us to study a framework that combines the strength of Operations Research (OR) heuris-
tics with learning capabilities of machine learning (RL in particular). Machine learning can learn
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to solve a class of problem instances fast, when test instances are generated from the same distri-
bution as training instances. Classical approaches like search algorithms are effective but may need
heavy computation, which is time-consuming. Our research interest is in fusing the strengths of
these two worlds. Another related line of research is hyper-heuristics, which is “a search method or
learning mechanism for selecting or generating heuristics to solve computational search problems”
(Burke et al., 2013). Instead of developing a high-level methodology without the need of knowing
the details of low-level heuristics, we are primarily interested in a closely integrated system that best
utilizes the strength of OR operators and learning capability.

Our Contributions. Instead of directly constructing a solution from the problem instance (Graves
et al., 2014; Sutskever et al., 2014; Vinyals et al., 2015), we propose a framework that iteratively
searches among solutions, until a certain termination condition is satisfied. Our main contributions
are as follows:

• We present a learning-based algorithm for solving CVRP, achieving new state-of-the-art re-
sults. The recent line of works using RL to solve CVRP shows the potential of machine
learning algorithms. They can solve CVRP faster, but cannot beat classical OR solvers like
LKH3 in term of solution quality. Our algorithm is the first machine learning framework that
outperforms LKH3 on CVRP.

• We propose a novel hierarchical framework. Instead of putting all operators in one action
pool, we separate heuristic operators into two classes, namely improvement operators and
perturbation operators. At each state, we choose the class first and then choose operators
within the class. Learning from the current solution is made easier by focusing RL on the
improvement operators only.

• We propose an ensemble method, which trains several RL policies at the same time, but with
different state input features. The ensemble method is shown to produce superior results than
individual policies with an equivalent amount of computation.

Related Work. In recent years, there have been many studies using deep learning and RL to solve
combinatorial optimization problems (Smith, 1999; Mao et al., 2016; Lodi & Zarpellon, 2017;
Veličković et al., 2017; Lombardi & Milano, 2018; Bengio et al., 2018). Routing problems, es-
pecially traveling salesman problems (TSP) and VRP, have been explored by a sequence of works
(Vinyals et al., 2015; Bello et al., 2016; Khalil et al., 2017; Li et al., 2018; Deudon et al., 2018;
Kaempfer & Wolf, 2018; Nazari et al., 2018; Kool et al., 2019; Chen & Tian, 2019). Most of these
works, with the exception of Chen & Tian (2019), follow an end-to-end approach, which is directly
constructing a solution from scratch. Vinyals et al. (2015) first introduce the Pointer Network, in-
spired by sequence-to-sequence models, to solve TSP. They use an attention model to learn the order
of different nodes in a supervised fashion. Later Bello et al. (2016) develop an RL algorithm to train
the Pointer Network. Their framework learns the optimal policy from problem instances and needs
no supervised solutions. Nazari et al. (2018) improve the Pointer Network with a new design, mak-
ing the model invariant with respect to the input sequence, and extend it to solve VRP. Kool et al.
(2019) propose a model based on attention layers, and an RL algorithm to train this model with a
simple but effective baseline. Chen & Tian (2019) propose a NeuRewriter model for VRP. They
define a rewriting rule set and train two policy networks, a region-picking policy and a rule-picking
policy, to obtain the next state. Given an initial solution, their goal is to find a sequence of steps
towards the solution with minimal cost.

1.1 NOTATIONS

In CVRP, there is a depot and a set ofN customers. Each customer i, i ∈ {1, . . . , N}, has a demand
di to be satisfied. A vehicle, which always starts at and ends at the depot, can serve a set of customers
as long as the total customer demand does not exceed the capacity of the vehicle. The traveling cost
ci,j is the cost of a vehicle going from node i to j, with i, j ∈ {0, 1, . . . , N} (where the depot is
denoted by node 0 for convenience). The objective is to find a routing plan with minimal cost that
serves all customers without violating vehicle capacity constraints. Figure 1 gives an illustration of
CVRP, while a mathematical formulation is given in the Appendix.
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Figure 1: An illustration of CVRP. Here we provide a prob-
lem instance. The red one is a sample route, and three routes
consist of a solution for this problem instance. After apply-
ing an operator, current solution changes to a new solution
with dashed lines replaced by blue lines.

Route. A route is a sequence of
nodes visited in order, with the de-
pot (node 0) as the starting and end-
ing node. For example, [0, 1, 3, 4,
0] is a traveling plan that starts at the
depot, visits node 1, 3 and 4 sequen-
tially, and returns to the depot.

Solution. A solution is a set of routes
such that each customer is visited
exactly once, and the total demand
along each route is less than the ve-
hicle capacity.

Operator. An operator is a mapping
from one solution to another. In this
paper, instead of directly constructing
a solution from scratch, we improve
or perturb the solution iteratively us-
ing operators.

2 LEARN TO IMPROVE

In this section we formally introduce our “Learn to Improve” (L2I) framework, including main
components of the system as well as the design intuitions behind individual components. Figure
2 illustrates the overall framework. As mentioned previously, the framework is iterative in nature,
that is, we always start with a feasible solution, continuously improving the solution or perturbing it.
Along the way, all constraints remain satisfied. By always maintaining the feasibility of the solution,
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Figure 2: Our hierarchy framework. Given a problem in-
stance, our algorithm first generates a feasible solution.
Then it iteratively updates the solution with an improvement
operator selected by an RL-based controller or with a per-
turbation operator chosen by a rule-based controller. After
a certain number of steps, we choose the best one among all
visited solutions.

we are exploring the space of feasi-
ble solutions and any of them found
by our search process could poten-
tially be a good solution. After T (a
parameter set in advance) steps the
algorithm stops, and we choose the
one with the minimum traveling cost
as our final solution. Our framework
has a few distinct components (e.g.,
how to improve the solution, when
and how to perturb it), which could be
rule-based, learned by machine learn-
ing or mixed, and thus allows us to
experiment with different ways of in-
tegrating machine learning and OR,
some of which could lead to superior
methods either in terms of better so-
lution quality or in terms of computa-
tional efficiency. It is worthwhile to
point out that, as contrast to the work
of Chen & Tian (2019), the solu-
tion space we explore is much larger
since we are employing a rich set of
improvement and perturbation opera-
tors.

For this research work, we implemented and experimented with a number of design choices, and
ended up with a method that is both computationally efficient and able to produce state-of-the-art
results. The details of the main components of our method are as follows. Given a history of most
recent solutions, our method uses a threshold-based rule to decide whether we should continue to
improve the current solution, or should perturb it and restart with the perturbed solution. If it decides
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that the current solution could still be improved, it will use an RL-based controller to choose one
of the improvement operators, and try to improve the solution with the chosen operator. We have
a rich set of improvement operators (the list of improvement operators and their details are given
in the Appendix), where intra-route ones attempt to reduce the cost of current solution by moving
customers to different positions in individual routes, while inter-route ones attempt to reduce the cost
by moving customers among different routes. Given that the improvement operators are of distinct
characteristics, it is not straightforward to know in advance which operators are most effective for
the problem under investigation. It is also difficult to know a pre-defined ordering of the operators
that is best for the problem. Thus, an RL-based controller is a good choice to learn the set of
improvement operators that is more effective for the problem (or more specifically, the problem and
the data distribution from which the training and test instances are sampled). As will be shown in
Section 3, our RL model is able to differentiate more useful improvement operators from less useful
ones for CVRP, as well as generate an implicit ordering on how the operators will be applied.

On the other hand, upon reaching a local minimum the perturbation controller randomly chooses a
perturbation operator that destroys (completely or partially) and reconstructs a number of routes to
generate a new starting solution (Table 6 in the Appendix gives the list of perturbation operators and
their details). Specifically, if no cost reduction has been made for L improvement steps, we perturb
the solution and restart the improvement iteration (where for ease of explanation a maximum con-
secutive sequence of improvement operators applied before perturbation is called an improvement
iteration). As a perturbation changes the solution quite dramatically (by producing a substantially
different solution that is usually worse than the current one), we found that it is useful to start a
new improvement iteration with a reasonably good starting point (e.g. by filtering out the restarting
solutions that are significantly worse than current solution or currently best solution). It is clear
that we purposely separate improvement operators from perturbation ones, and an alternative design
would be to mix them all together and have a single controller deciding which operator to apply
next. However, the improvement operators are of different nature from the perturbation ones, and
their impacts are different since the perturbation operators have long-lasting effect by affecting an
entire improvement iteration. Our experience also suggests that learning is made easier by focusing
RL on the improvement operators only. Lastly, it is worthwhile to point out that although the rule-
based perturbation controller is shown to be effective, we do not rule out the possibility that it can
also be learning-based.

The framework described above provides a way of combining the strength of OR operators, which
are powerful since they are custom-made for routing problems, with learning capabilities of RL,
which is flexible and can be adapted to a given problem and its associated data distribution. Hav-
ing described our overall framework, we are now ready to present the details of the improvement
controller and operators.

2.1 IMPROVEMENT CONTROLLER AND OPERATORS

The improvement controller starts with an initial solution, which is either constructed randomly (for
the first improvement iteration)1 or produced by a perturbation operator (for subsequent iterations),
and then tries to improve it, i.e., reducing the total traveling distance without violating any con-
straints, by selectively applying an improvement operator in Table 5. For the RL model, the set of
improvement operators constitute our action space. These operators change the solution locally and
most are computationally light. With the current state as input, a neural network produces a vector
of action probabilities, and the weights of the network are trained with policy gradient. Figure 6
illustrates the components of our RL model, and their details are given as follows.

2.1.1 STATES

Each state includes features from the problem instance, the solution and the running history. Station-
ary features, such as the location and demand of each customer, are considered as problem-specific
since they are invariant across solutions. Solution-specific features are based on the current travel-
ing plan. For example, given a solution, for each customer we compute its neighboring nodes that
are visited before and afterwards, as well as the relevant distances. Following Ödling (2018), the

1Other construction heuristics, such as the Clarke-Wright algorithm (Clarke & Wright, 1964), can also be
used.
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running history includes the actions that are recently taken as well as their effects. For example,
at−h, 1 ≤ h ≤ H , is the action taken h steps before current step t, and its effect et−h is +1 if the
action led to a reduction of total distance, -1 otherwise. A complete description of state features is
given in Table 4, where i− and i+ denote the node visited before and after node i, 1 ≤ i ≤ N , in
the solution, respectively.

2.1.2 ACTIONS

The actions can be classified into two classes, intra-route operators and inter-route operators. An
intra-route operator attempts to reduce traveling distance of an individual route, while inter-route
operators aim at reducing total traveling distance by moving customers between more than one route.
The details of the operators are given in Table 5. It is worthwhile to point out that the same operator
with different parameters are considered as different actions. For example, Symmetric-exchange(2)
with m = 1, 2, 3 are considered as three distinct actions. For a given problem (or even solution), the
same operator with different parameters may perform differently and thus it is appropriate to treat
them as separate actions and let the RL model learn how to best use them.

2.1.3 POLICY NETWORK

We use the well-known REINFORCE algorithm (Williams, 1992) to update the gradient

∇θJ(θ|s) = Eπ∼pθ(.|s)
[
(L(π|s)− b(s))∇θ log pθ(π|s)

]
of policy with a baseline function b(s). Given a state as described in Section 2.1.1, a policy network
outputs a list of action probabilities, one for each action described. As illustrated in Figure 6,
problem- and solution-specific input features are transformed into an embedding of length D (we
use D = 64), which is fed into an attention network (Vaswani et al., 2017) (we use an attention
layer with 8 heads and 64 output units). The output of the attention network is concatenated with a
sequence of recent actions and their effects (when H > 0). Lastly, the concatenated values are fed
into a network of two fully connected layers, where the first layer uses 64 units and a Relu activation
function and the second layer uses Softmax, producing |A| action probabilities where A is the set of
actions.

2.1.4 REWARDS

We have experimented with a number of reward designs, two of which are producing satisfactory
results as well as distinct patterns of operator sequences. The first reward function (denoted by RF1)
focuses on the intermediate impact of the improvement operators. Specifically, the reward is +1 if the
operator improves the current solution, -1 otherwise. The second reward function (denoted by RF2)
is advantage-based. The total distance achieved for the problem instance during the first improve-
ment iteration is taken as a baseline. For each subsequent iteration, all operators applied during this
iteration received a reward equal to the difference between the distance achieved during the iteration
and the baseline. We observed that an operator is often able to achieve a large distance reduction for
a freshly perturbed solution, while it becomes harder and harder to do so in later improvement steps.
In particular, the likelihood of distance reduction as well as the magnitude of such reduction, both
decrease as the iteration proceeds. Therefore, it seemed unfair to give early improvement operators
a larger reward. The observation suggested that operators used in the same improvement iteration
should be rewarded equally and there would be no discounting (or equivalently, the discount factor
γ is 1).

To conclude the methodology section, we restart the improvement iteration until reaching a maxi-
mum number T of rollout (either improvement or perturbation) steps. Following a common practice
of encouraging exploration, we use ε-greedy (Sutton & Barto, 2018) such that with a probability of
0.05 the RL controller will choose a random improvement action. Lastly, we also experimented with
ensembling by training 6 different policies with H = 1, 2, . . . , 6 (while keeping other components
of the policy network identical). Ensembling facilitates learning of a diverse set of policies, as well
as reducing wall-clock running time.
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3 EXPERIMENTS AND ANALYSES

In this section, we present our experiment results. First we introduce a detailed setup of CVRP and
hyper-parameters used. Then we compare our performance with prior neural network approaches,
i.e., Nazari et al. (2018), Kool et al. (2019), Chen & Tian (2019), and a classic state-of-the-art
heuristic algorithm. At last we provide detailed analysis of our framework2.

Setup and hyper-parameters. We follow the same settings as previous works (Nazari et al., 2018;
Kool et al., 2019; Chen & Tian, 2019) for CVRP. We consider three sub-problems with number
of customers N = 20, 50, 100, respectively. The location (xi, yi) of each customer, as well as of
the depot, is uniformly sampled from unit square (specifically, xi and yi are uniformly distributed
in the interval [0, 1], respectively), and the traveling cost between two locations ci,j is simply the
corresponding Euclidean distance. The demand di of each customer is uniformly sampled from the
discrete set {1, 2, . . . , 9}. The capacity of a vehicle is 20, 30, 40 for N = 20, 50, 100, respectively.
After L = 6 consecutive step of no improvement, we perturb the solution. To train the policy
network, we use ADAM with a learning rate of 0.001. Unless otherwise stated, for a problem
instance and a given policy we randomly initiate a feasible solution, and then iteratively update
the solution T = 40000 times following the policy. In the following section we will discuss the
performance of a policy with different rollout steps (recall that a rollout step is either an improvement
step or a perturbation one). We choose the best one among all 40000 visited solutions as the final
solution for a given problem instance. In the ensemble model we use different number of historical
actions and effects to train a set of diverse policies (recall the policy network in Figure 6), and for any
problem instance we choose the best solution produced by these policies. Unless otherwise stated,
all reported metrics, such as the final traveling cost and the running time, are always computed as
the average over 2000 random samples. Lastly, our method was implemented in Python, and the
experiments were run computer nodes, each with a single Nvidia Tesla T4 GPU.

3.1 PERFORMANCE COMPARISON

In Table 1 we compare the performance of our algorithm with prior neural network approaches
mentioned above, Google OR-tools (Google, 2019), and classic state-of-the-art heuristic algorithm
LKH3 (Helsgaun, 2017). Our ensemble method chose the solution with minimum traveling cost
among those produced by Policy i (with 1 ≤ i = h ≤ 6). As shown in Table 1, our algorithm out-
performs the prior approaches in terms of average traveling cost. In particular, the average distance
achieved by our algorithm is significantly shorter than prior neural network approaches. Thus, our
algorithm is producing state-of-the-art results for CVRP, and is the first learning-based framework
that outperforms the well-known classic heuristic algorithm.

Table 1: Comparison of our experiment results with those reported in the literature

N = 20 N = 50 N = 100
Obj. Obj. Obj.

Google OR Tools 6.43 11.31 17.16
Nazari et al. (2018) 6.40 11.15 16.96

AM greedy (Kool et al., 2019) 6.40 10.98 16.80
AM sampling (Kool et al., 2019) 6.25 10.62 16.23

Chen & Tian (2019) 6.16 10.51 16.10
LKH (Helsgaun, 2017) 6.14 10.38 15.65

L2I 6.12 10.35 15.57

3.2 ANALYSIS OF THE ENSEMBLE METHOD

Recall that we train 6 different policies with H ∈ {1, 2, . . . , 6}. To illustrate the motivation of
the ensemble method, we randomly pick 10 problem instances and show the traveling cost under
different policies for these problem instances in Table 2. We can see that Policy 1 did the best for

2Code will be available at github.com/rlopt/l2i upon approval of the company.
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the first problem instance, but it performed the worst for the second one. Furthermore, there is no
clear winning policy, which is the reason we propose an ensemble method.

Table 2: Motivating examples: traveling cost under different policies for random problem instances

Problem instances
1 2 3 4 5 6 7 8 9 10

Policy 1 18.65 16.67 15.41 15.11 16.69 14.97 16.88 16.37 13.72 15.56
Policy 2 18.86 16.61 15.39 15.10 16.55 14.75 16.73 16.39 13.77 15.56
Policy 3 18.81 16.63 15.43 15.06 16.82 14.72 16.70 16.37 13.73 15.79
Policy 4 18.90 16.60 15.37 15.04 16.66 14.93 16.83 16.32 13.70 15.62
Policy 5 18.73 16.56 15.43 15.12 16.66 15.09 16.80 16.53 13.72 15.56
Policy 6 18.92 16.60 15.43 15.09 16.73 14.65 16.59 16.55 13.73 15.56
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Figure 3: Average traveling cost of different policies with different rollout steps

In Figure 3(a), (b) and (c), we plot the average traveling cost over 2000 problem instances for CVRP
with N = 20, 50, 100, respectively. It is worthwhile to point out that the same hyper-parameters are
used for different N values. The top blue line is for a random policy, the bottom red line is for our
ensemble method, and lines in between are for Policy 1, 2, . . . , 6. The plots show that, regardless
of the number of rollout steps, our trained RL policies consistently outperform the random policy.
Figure 4(c) shows that the gap between the random policy and the ensemble method first increases,
peaks at about 5000 rollout steps, and then gets smaller and smaller. It is encouraging that we get the
maximum gap fast, which will be helpful when computational time is limited. Lastly, in Figure 4(d)
we show three policies, the random policy, the ensemble method, and the best RL policy (Policy
3), for CVRP-100. To match the performance of the random policy with 40000 rollout steps, the
ensemble method would take 2500 rollout steps, while it takes 5000 rollout steps to match Policy 3
with 40000 rollout steps. The outperformance of the ensemble method becomes more obvious when
N = 20, 50. These analysis shows that naively increasing rollout steps of a policy provides less
marginal gains than ensembling a diverse set of policies.
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Table 3: Improvement operators mostly used

Class Name Details

Intra-route
2-Opt Remove two edges and

reconnect their endpoints

Relocate(1) Move a customer in the route to
a new location

Inter-route

Cross(2) Exchange the tails of two routes

Symmetric-exchange(2) Exchange segments of length m
( m = 1) between two routes

Relocate(2) Move a segment of length m
( m = 1) from a route to another

3.3 ANALYSIS OF OPERATOR USAGES

As we mentioned before, the RL model is able to differentiate more useful improvement operators
from less useful ones for CVRP. In our experiments, we count the usage of different operators for
different policies as training epochs grow. When the myopic reward function RF1 in Section 2.1.4 is
used, our experimental results show that the policy converges to use a fixed subset of improvement
operators (for detailed operators, see Table 3). This subset of operators are also preferred by all
policies when we use RF2. However, the pattern of operator usages varies among the policies. For
example, Figure 4(a) and (b) illustrate different patterns of operator usages for Policy 1 and Policy
2, respectively.
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Figure 4: Pattern of operator usages as training epoch grows

3.4 ANALYSIS OF PERTURBATION MAGNITUDE
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Figure 5: Impact of perturbation magnitude

From our experimental study we also observed that
the solution quality is sensitive to the magnitude of
perturbation. To illustrate the impact of perturba-
tion, in Figure 5 we plot the performance of two
run configurations, one with Random-permute ap-
plied to all routes (called Random-permute-all), while
the other with Random-permute applied to two routes
only (called Random-permute-2). As seen from Fig-
ure 5, Random-permute-2 significantly outperformed
Random-permute-all. Intuitively, when the magni-
tude of perturbation is too large, the resulting solu-
tion generally becomes much worse and it will take
our algorithm a large number of improvement steps
to remedy the deterioration.
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4 CONCLUSION

In this paper we propose “Learn to Improve” for solving VRP, which starts with an initial solution
and iteratively updates the solution with an improvement operator selected by an RL-based controller
or with a perturbation operator chosen by a rule-based controller. We also propose an ensemble
method that trains several RL policies and chooses the best solution produced by the policies. Our
method achieved new state-of-the-art results for CVRP instances.

Our work provides a way of combining the strength of OR with learning capabilities of RL. For
future work, we would like to apply the solution framework to solve other variants of the VRP,
such as vehicle routing problems with time windows (VRPTW), as well as other combinatorial
problems, such as maximum independent set problems and graph coloring problems. Furthermore,
it is interesting to investigate whether allowing temporary constraint violations in our framework
will help improve solution quality or not.
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A AN INTEGER PROGRAMMING FORMULATION OF THE CVRP

Formally, there is a depot and a set of N customers in the CVRP. Each customer i, i ∈ {1, . . . , N},
has a demand di to be satisfied. A vehicle, which always starts at and ends at the depot, can serve a
set of customers as long as the total customer demand does not exceed the capacity of the vehicle C.
The traveling cost ci,j is the cost of a vehicle going from node i to j, with i, j ∈ V = {0, 1, . . . , N}
(where the depot is denoted by node 0 for convenience). The objective is to find a routing plan with
minimal cost that serves all customers without violating vehicle capacity constraints. An integer
programming formulation of the CVRP (Toth & Vigo, 2002) is given below.

min
xi,j

∑
i∈V

∑
j∈V

ci,jxi,j

s.t.
∑
i∈V

xi,j = 1, ∀j ∈ V \ {0} (1)∑
j∈V

xi,j = 1, ∀i ∈ V \ {0} (2)

∑
i∈V

xi,0 = K, (3)∑
j∈V

x0,j = K, (4)

ui − uj + Cxi,j ≤ C − dj , ∀i, j ∈ V \ {0}, i 6= j, s.t. di + dj ≤ C (5)
di ≤ ui ≤ C, ∀i ∈ V \ {0}, (6)
xi,j ∈ {0, 1},∀i, j ∈ V,

where K is the number of vehicles available (w.l.o.g., it is assumed that K = N for the CVRP
we consider). Constraints (1) and (2) specify that each customer is visited exactly once, while
constraints (3) and (4) specify the in and out degree of the depot, respectively. Constraints (5) and
(6) impose the vehicle capacity requirements.

Table 4: State features

Type Name Details

Problem- and
solution-specific

ci Demand of customer i
Ci Free capacity of the route containing customer i

(xi, yi) Location of customer i
(xi− , yi−) Location of node visited before i
(xi+ , yi+) Location of node visited after i
di−,i Distance from i− to i
di,i+ Distance from i to i+

di−,i+ Distance from i− to i+

History-related at−h Action taken h steps before
et−h Effect of at−h

B DETAILS OF STATES AND OPERATORS

We list the details of our state features in Table 4, and of operators in Table 5 and 6.
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Table 5: Improvement operators

Class Name Details

Intra-route

2-Opt Remove two edges and
reconnect their endpoints

Symmetric-exchange(1) Exchange two customers in the route

Relocate(1) Move a customer in the route to
a new location

Inter-route

Cross(2) Exchange the tails of two routes

Reverse-cross(2) Reverse one of two routes and then
exchange their tails

Symmetric-exchange(2) Exchange segments of length m
( m = 1, 2, 3) between two routes

Asymmetric-exchange(2)
Exchange segments of length m and n

(m = 1, 2, 3, n = 1, 2, 3, m 6= n)
between two routes

Relocate(2) Move a segment of length m
( m = 1, 2, 3) from a route to another

Cyclic-exchange(3) Exchange cyclically one customer
between three routes

Table 6: Perturbation operators

Class Name Details

Inter-route perturbation

Random-permute
Randomly destroy m routes and

re-construct routes by visiting affected
customers in a random order

Random-exchange(2) Randomly exchange m pairs of nearby
customers between two routes

Cyclic-exchange Exchange cyclically customers
between multiple routes

C POLICY NETWORK

Figure 6 shows the structure of our policy network.

D RESULTS ON TSP

To quickly produce results for the TSP, we slightly modified our code for the CVRP by always
using the first point in a TSP input as the depot in the CVRP formulation and enforcing that there
is exactly one route in a solution. The capacity of any point is naturally assumed to be zero. Lastly,
we implemented a simple perturbation operator by randomly permuting 20 points for TSP-50 and
TSP-100 (10 points for TSP20). Figure 7 shows the trends of individual polices, as well as the
ensemble one, for TSP-100. Again we observe that the ensemble method out-performed individual
policies, while producing a total distance slightly above the optimal value of 7.76 as reported in the
literature. The results for TSP-20 and TSP-50 are similar and thus omitted.

E SCALABILITY ANALYSIS

We also tested our method on larger CVRP instances, CVRP-200 and CVRP-10003, using the same
experimental settings as CVRP-100 (e.g. the capacity of a vehicle is fixed at 50). The results are

3It is worthwhile to point out that CVRP-1000 results are averaged over 200, instead of 2000, instances,
simply due to time limit.
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Figure 6: Policy network. The dash-line box is the state embedding part of policy network, which
contains problem- and solution-specific input features, an attention network, and a sequence of
historical actions and effects. The concatenated values are fed into a network of two fully connected
layers, producing a vector of action probabilities.
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Figure 7: Results for TSP-100

given in Figure 8, which shows that our ensemble method scales well as the number of customers
increases. In particular, the running time of our method increases less dramatically than LKH3.
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Figure 9: CVRP-100 results under different data distributions by Policy 3
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Figure 10: Generalization results using Policy 3

Following the same protocol of data generation as in Uchoa et al. (2017) (the authors of the paper
were the creators and owners of the CVRPLib website4), we tested our method for four additional
scenarios, namely, central depot positioning, eccentric depot positioning, clustered customer po-
sitioning, and random-clustered customer positioning. It is worthwhile to point out that the data
distribution used in our initial paper corresponds to random depot and random customer position-
ing. Figure 9 (a) shows the impact of depot positioning (while using random customer positioning),
and (b) shows the effect of customer positioning (while using random depot positioning). To make
results from different data distributions comparable, we normalized the distance by the minimal dis-
tance achieved for each data distribution (denoted by “Ratio” as in the Figure), respectively. The
plots show that our method works across different data distributions, and the decreasing trends of
distance look similar.

4http://vrp.galgos.inf.puc-rio.br/index.php/en/
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Furthermore, we also used the model trained for CVRP-100 to solve CVRP-50 and CVRP-20. Sim-
ilarly, we also tested a trained CVRP-50 model for CVRP-20. Figure 10 shows that current imple-
mentation of our method can be applied to problems of different sizes.
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