Improving Automated Bug Triaging
with Specialized Topic Model

Xin Xia, Member, IEEE, David Lo, Member, IEEE, Ying Ding, Jafar M. Al-Kofahi,
Tien N. Nguyen, Member, IEEE, Xinyu Wang, Member, IEEE

Abstract—Bug triaging refers to the process of assigning a bug to the most appropriate developer to fix. It becomes more and more
difficult and complicated as the size of software and the number of developers increase. In this paper, we propose a new framework for
bug triaging, which maps the words in the bug reports (i.e., the term space) to their corresponding topics (i.e., the topic space). We
propose a specialized topic modeling algorithm named multi-feature topic model (MTM) which extends Latent Dirichlet Allocation (LDA)
for bug triaging. MTM considers product and component information of bug reports to map the term space to the topic space. Finally,
we propose an incremental learning method named TopicMiner which considers the topic distribution of a new bug report to assign an
appropriate fixer based on the affinity of the fixer to the topics. We pair TopicMiner with MTM (TopicMiner™ T M),

We have evaluated our solution on 5 large bug report datasets including GCC, OpenOffice, Mozilla, Netbeans, and Eclipse containing
a total of 227,278 bug reports. We show that TopicMiner™ TM can achieve top-1 and top-5 prediction accuracies of 0.4831 - 0.6868,
and 0.7686 - 0.9084, respectively. We also compare TopicMiner™ ™M with Bugzie, LDA-KL, SVM-LDA, LDA-Activity, and Yang et al.'s
approach. The results show that TopicMiner™TM on average improves top-1 and top-5 prediction accuracies of Bugzie by 128.48%
and 53.22%, LDA-KL by 262.91% and 105.97%, SVM-LDA by 205.89% and 110.48%, LDA-Activity by 377.60% and 176.32%, and
Yang et al’s approach by 59.88% and 13.70%, respectively.

Index Terms—Developer, Bug Triaging, Feature Information, Topic Model
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INTRODUCTION

process (see Table 2). If all of the bug reports need to be

Bugs appear during software development and mainte-
nance, and bug fixing is a time-consuming and costly task.
Many software projects use bug tracking systems (e.g.,
Bugzilla and JIRA) to manage bug reporting, bug reso-
lution, and bug archiving processes [9]. Aside from bug
description and summary information, a typical bug report
records other kinds of useful information, e.g., product and
component. We refer to this information as features of a bug
report. Figure 1 presents a bug report from Eclipse with
BugID=212000." In the figure, we notice that the bug report
belongs to product CDT and component cdt-core.

Once a bug report is received, assigning it to a suitable
developer within a short time interval can reduce the time
and cost of the bug fixing process. This assignment process
is known as bug triaging (e.g., in Figure 1, the bug is assigned
to Oleg Krasilnikov?). Bug triaging is a time-consuming
process since often many developers are involved in soft-
ware development and maintenance. For Eclipse and Mozil-
la, more than 1,800 developers participated in the bug fixing
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1. https:/ /bugs.eclipse.org/bugs/show_bug.cgi?id=212000
2. We checked the bug assignment history and commit logs to iden-
tify Oleg Krasilnikov as the bug fixer.

manually assigned to the most appropriate developers, the
bug triaging tasks would take a lot of time and effort.

To aid in finding appropriate developers, automatic bug
triaging approaches have been proposed [7], [10], [20], [38].
Many of these approaches use the vector space model (VSM)
to represent a bug report, i.e., a bug report is treated as a
vector of terms (words) and their counts. However, devel-
opers often use various terms to express the same meaning.
The same term can also carry different meanings depending
on the context. These synonymous and polysemous words
cannot be captured by VSM.

In the information retrieval community, topic model-
ing [36], which can infer the inherent latent topics of a textu-
al document, has been used as a way to deal with synonyms
and polysemy problems. A topic model converts terms in a
document to topics. Two terms that are different can now be
deemed similar if they are of the same topic which addresses
the synonym and polysemy problems. Various topic mod-
eling algorithms are proposed in the literature including
Latent Semantic Indexing/Analysis (LSA) [16], probabilistic
LSA (pLSA) [18], and Latent Dirichlet Allocation (LDA) [12].
Among the three, LDA is the most recently proposed and
it addresses the limitations of LSA and pLSA [12]. LDA
considers a document as a random mixture of latent topics,
where a topic is a random mixture of terms.

We extend LDA and propose a new topic model named
multi-feature topic model (MTM) for the bug triaging prob-
lem. Since a bug report has multiple features (e.g., product
affected by the bug, component affected by the bug, etc.),
MTM considers the features of a bug report when it converts
terms in the textual description of the report (i.e., texts



in the summary and description fields of the report) to
their corresponding topics in the topic space. Given a bug
report with a particular feature combination (i.e., product-
component combination), MTM converts a word in the
bug report, to a topic. Similar to standard topic modelling
algorithm, like Latent Dirichlet Allocation (LDA) [12], the
word to topic transformation is done by looking at co-
occurrences of words in documents (in our case: bug reports
summaries and descriptions). However, different from LDA,
when converting words to topics in a bug report with a
particular feature combination, MTM puts a special em-
phasis on the appearances of words in bug reports with
the same feature combination, without ignoring the word
appearances in all other bug reports. Since the number of
bug reports of a particular feature combination is often
limited, to infer better topics, MTM needs to also consider
terms that appear in bug reports belonging to other feature
combinations. MTM considers each combination of features
as a random mixture of latent topics, where a topic is a
random mixture of terms. MTM is an extensible topic model,
where one or more features can be taken into consideration.

We refer to a feature as a categorical field in a bug report
that a bug reporter can fill when the reporter submits a
bug report. These fields include the product, component,
reporter, priority, severity, OS, version, and platform fields.
We exclude the natural language descriptions in the bug
reports, which includes the contents of the summary and
description fields, as the features since they are not categor-
ical in nature. In this paper, we use the product-component
combination as the input feature combination, since product
and component are two of the most important features that
describe a bug. Given a bug report with a particular feature
combination, MTM converts a term in the bug report to a
topic by putting special emphasis on the appearances of the
word in bug reports with the same feature combination,
without ignoring the word appearances in all other bug
reports.

We propose a new approach for bug triaging which
leverages MTM. We take as input a training set of bug
reports (whose fixers are known) and a new bug report
whose fixer is to be predicted. Our approach, named
TopicMiner™TM computes the affinity of a developer to a
new bug report, based on the reports that the developer
fixed before. To do this, we compare the topics that appear
in the new bug report with those in the old reports that the
developer has fixed before.

There are a number of recent studies that are related to
ours [38], [35], [27]. Tamrawi et al. propose Bugzie which
recommends a list of candidate fixers that are the most
relevant to a bug report [38]. Somasundaram and Murphy
merge LDA with Kullback Leibler divergence and Support
Vector Machine (SVM) to form LDA-KL and SVM-LDA
respectively which are then used to recommend a list of
components that are most relevant to a bug report in the
topic space [35]. Naguib et al. propose a method which
leverages LDA to recommend bug reports to developer-
s [27]. In their approach, LDA is used to convert a bug
report into topics, and a developer into topics based on
their activities (i.e., based on bug reports that the developer
has assigned, resolved, or reviewed in the past). A bug
report is then compared to various developers in the topic
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space. We refer to their approach as LDA-Activity in this
paper. Yang et al. propose an approach which leverage the
advantages of topic modelling and the features such as
product, component, severity, and priority to recommend
developers [47]. We use Bugzie, LDA-KL, SVM-LDA, LDA-
Activity, Yang et al.’s approach as baselines that we compare
our approach with.

We evaluate our approach on 5 datasets: GCC [2],
OpenOffice [5], Netbeans [4], Eclipse [1], and Mozilla [3].
In total, we analyze 227,278 bug reports. We measure the
effectiveness of TopicMiner™ T in terms of top-1 and top-
5 prediction accuracies following [10], [20], [38]. For the
5 datasets, TopicMiner™T™ can achieve top-1 and top-
5 prediction accuracies of up to 0.6868, and 0.9084 re-
spectively. We compare our approach with 5 state-of-the-
art approaches namely Bugzie [38], LDA-KL [35], SVM-
LDA [35], LDA-Activity [27], and Yang et al.’s approach [47].
TopicMiner™TM on average improves top-1 and top-5 pre-
diction accuracies of Bugzie by 128.48% and 53.22%, LDA-
KL by 262.91% and 105.97%, SVM-LDA by 205.89% and
110.48%, LDA-Activity by 377.60% and 176.32%, and Yang
et al.’s approach by 59.88% and 13.70%, respectively.

The main contributions of the paper are:

1) We propose multi-feature topic model (MTM), which
considers bug report feature information, and we
use it to create a new bug triaging approach named
TopicMiner that leverages topic model to recom-
mend a list of candidate fixers that are the most
relevant to a bug report.

2) We experiment on a large dataset containing a
total of 227,278 bug reports to demonstrate the
effectiveness of TopicMiner™ T, We show that
TOpiCMinerM TM can outperform Bugzie [38], LDA-
KL [35], SVM-LDA [35], and LDA-Activity [27] by a
substantial margin.

The remainder of the paper is organized as follows.
We describe a motivating example in Section 2. We outline
our overall framework in Section 3. We present LDA and
our multi-feature topic model MTM in Section 4 and 5. We
present our topic-based bug triaging approach TopicMiner in
Section 6. Our experiment results are reported in Section 7.
We describe related work in Section 9. We conclude and
mention future work in Section 10.

2 PREMINILARIES
2.1 Motivation Example

Figures 1, 2 and 3 show 3 Eclipse’s bug reports; they all
belong to product CDT and component cdt-core, and are
assigned to the same fixer Oleg Krasilnikov. The bug
report in Figure 1 describes a page insertion error: when a
user derives a wizard from CDTCommonProjectWizard and
inserts a page to an object instance of this class, an exception
would be thrown if the page is inserted at the first position.
The bug report in Figure 2 describes a property page error:
selected configuration changes when a user moves from
one property page to another. The bug report in Figure 3
describes a button display error: edit and delete buttons are
enabled even when nothing is selected.



Product: CDT Component: cdt-core

Version: 4.0.1 Platform: PC All

Severity: normal Priority: P3

Assigned to: Oleg Krasilnikov

Summary: ClassCastException from
MBSWizardHandler.getMainPageData() if extending
CDTCommonProjectWizard

Description: We have derived a Wizard from
CDTCommonProjectWizard and inseted a page at the first
position (before the original pages) ie. the new page will
be the starzting page. Unfortunately during project
creation a ClassCastException is thrown from
MBSWizardHandler.getMainPageData() because it
assumes that the first page is CDTMainWizardPage. The
main data should be returned with some other method to
allow inserting pages at the beginning.
CDTMainWizardPage page =
(CDTMainWizardPage)getStartingPage();

Fig. 1. Bug Report #212000 of Eclipse.

Product: CDT Component: cdt-core

Assigned to: Oleg Krasilnikov

Summary: [Project Model Ul] selected configuration is
changed when moving from one property page to another
Description: Steps to reproduce:

1. Open some project C/C++ property page — active
configuration is selected/displayed

2. Select some other configuration

3. go to some other C/C++ property page — active
configuration gets selected/displayed again

This is very user-unfriendly since the user would typically
assume that the selected configuration remains the same
when going from one page to another thus he could make
changes to the wrong configuration

Fig. 2. Bug Report #190823 of Eclipse.

Product: CDT Component: cdt-core

Assigned to: Oleg Krasilnikov

Summary: edit/delete buttons enabled while nothing is
selected

Description: Steps To Reproduce:

1. Create a gcc project, go to Settings and select Tools >
C Compiler > Symbols

2. Create 2 new symbols FOO and BAR

3. Select BAR, the Edit/Delete buttons are enabled. Delete
BAR

4. The Edit/Delete button are still enabled, but FOO isn’t
selected. Note that the Move up/down buttons are properly
disabled.

In that state, nothing bad happens when clicking
Delete/Edit. Of course the same problem also occurs for
include paths, but there when you press Delete without
having anything selected you get a confirmation dialog
asking if you really want to delete the (non existing)
selected files and directories.

Fig. 3. Bug Report #226562 of Eclipse.

Observations and Implications. From the 3 bug reports, we

can observe the following:

1) These 3 bug reports share some latent (i.e., hidden)
commonalities, e.g., they describe user interface op-
erations and components.

2) The textual descriptions of these 3 bug reports are

different (i.e., the terms used in the summary and

Vocabulary of V words = {page, bar, symbol, tool ...}
¢ = word selection for topic

Topicl ¢ Topic2 ¢, TopicK ¢,
page 0.22 open 0.23

bar 0.13 create 0.16

symbol 0.12 set 0.11] ...

tool 0.1 edit 0.08

button 0.05 display 0.05

Fig. 4. Topic-Word Vectors.
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Fig. 5. Topic Distribution of the Bug Report in Figure 3.

description fields are different). This makes prior
VSM-based bug triaging methods [7], [38] not per-
form well.

3) Terms in these 3 bug reports could be clustered into
different categories, and each category represents an
aspect (i.e., a topic) of the bug reports. For example,
some terms such as open, create, set, edit, etc.
are user interface operations; some terms such as
page, bar, button, etc. are user interface components.
These two (i.e., user interface operations, and user
interface components) are two common topics that
are shared by the 3 bug reports.

4) The developer Oleg Krasilnikov seems to have
the expertise to fix user interface bugs in product
CDT and component cdt-core.

The above observations tell us that bug reports could
share some latent commonalities, and these commonalities
could help to decide the right developer to assign the bug
reports to. We use topic model to recover topics which rep-
resent the latent information and use them to recommend
bug fixers. A topic is expressed as a collection of terms.

To compare two bug reports, rather than using the
similarities of terms used in the bug reports, we use their
latent commonalities, by comparing their corresponding
topic distributions. This is an effective way to compare bug
reports since many similar bug reports use many different
words but have similar topic distributions.
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Fig. 6. Proposed Bug Triaging Framework.

2.2 Topic Modelling

By making use of a topic model such as LDA [12], we
map the terms in a bug report to their corresponding latent
topics. A topic is a terminology used to describe a cluster
of related words. The users do not need to input topics
at all as topic modeling is unsupervised, i.e., we do not
need to define the name of the topics (aka. clusters) in
advance. Topic modeling does not generate topic names, but
the names (if desired) can be manually inferred by looking
at the words that are part of the topic. Most of these topic
are meaningful to a human based on our observations and
previous works [12]. Topic model assumes that words in a
document come from some underlying topics. We need to
discover these underlying topics and the topic assignments
of words. Then, we can represent a document with this
discovered information instead of only words appearing in
documents.

Notice a term can be assigned to multiple topics. The
topic assignment of a term that appears in a document is
affected by the other words in the same document. Let us
assume that term w is important to both topic A and topic
B. If w appears in a document with many words about A,
it is likely to be assigned to topic A. If it also appears in a
document with many words related to B, it will be likely to
be assigned to topic B.

Figure 4 shows an example of topics learned using our
MTM. Under topic 1, terms page, bar, symbol, tool, etc.
represent user interface components. Under topic 2, terms
open, create, set, edit, etc. represent user interface oper-
ations. After we cluster terms into different topics, based
on the proportion of terms in a bug report that belongs
to different topics, we represent the bug report as a topic
distribution. Figure 5 presents an example topic distribution
for the bug report shown in Figure 3.

3 OVERALL FRAMEWORK

Figure 6 presents our overall bug triaging framework that
leverages topic modeling. The framework contains three
phases: model construction phase, recommendation phase,
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and model update phase. In the model construction phase,
a model is built from historical bug reports with known
fixers. In the recommendation phase, the model is used to
recommend a set of developers for a new unassigned bug
report. In the model update phase, the model is updated
by using additional bug reports with known fixers. To
simulate real-life usage of our tool, we allow the model to
be updated. In practice, new bug reports would be reported
and assigned to fixers periodically; these new reports can be
used to update the model.

Our framework first collects various information from a
set of training bug reports with known fixers (Steps 1 and
2). It collects two important features from bug reports which
are the components and products of the reports (Step 1)°.
Next, it extracts the description and summary texts from the
reports (Step 2). We ignore any developer discussion since it
is not available at the time an assignment is made. Moreover,
previous studies also only use description and summary
texts from the reports to recommend bug fixers [7], [38], [35],
[27], [20], [10]. For each description and summary text, our
framework tokenizes the text, removes stop words, stems
them by using Porter stemmer [31] (i.e., reduces them to
their root forms, e.g., “reads” and “reading” are reduced
to “read”), and represents them in the form of a “bag of
words” [25] (Step 2). These terms are in the same order as
in the original bug report. Notice that the term order does
not influence our model as we treat a document as a bag of
words. Then, the processed text and feature information are
inputted into a topic model which outputs a topic distribu-
tion for each bug report in our training data (Steps 3 and
4).* Next, the topic distributions and feature information are
fed to TopicMiner.>

3. In this paper, by default, we use product and component as the
features. Other bug report fields (e.g., severity, priority, reporter, etc.)
could potentially be included as features, but it is unclear if they could
improve the performance further. We leave investigations of these
other features as future work. Product and component are different
but related fields in a bug report, thus we combine these features as a
feature combination.

4. More description is available in Section 5.

5. More description is available in Section 6.



In the recommendation phase, TopicMiner is used to
recommend a ranked list of developers to a new unassigned
bug report. Our framework first extracts the features along
with the summary and description text from the new bug
report (Steps 6 and 7). Then, these are inputted into a topic
model which outputs the topic distribution of the new re-
port (Steps 8 and 9). Next, the topic distribution and feature
information are inputted into TopicMiner to produce a list of
top-k candidate fixers (Steps 10 and 11). In practice, a bug
triager will check the list of potential fixers, and eventually
assign the new bug report to a fixer. In the model update
phase, we update TopicMiner by using the newly assigned
bug report (Step 12).

4 ToPic EXTRACTION WITH LDA

Here, we describe how we use LDA to extract topics from
bug reports.

4.1 Modeling a Bug Report

Using LDA, all unique terms (i.e., words) in bug reports are
collected into a common vocabulary Voc of size V. A topic
k is expressed as a collection of terms from Voc. LDA uses a
topic-word vector ¢, of size V' to represent a topic k. Each
element of the vector ¢, represents the probability of the
corresponding term in Voc to describe the topic.

For a bug report m containing L,, terms, LDA considers
it as a textual document with K technical aspects (ie.,
topics). LDA would infer the values of the following two
key parameters/variables for m:

1. Topic Assignment Vector z,,. Each term in m belongs to
one topic. Thus, a topic assignment vector z,, is of length
Ly, and each element of z,, is an index to one topic (i.e., 1
to K).

2. Topic Distribution Vector 6,,,. A bug report m could have
multiple topics, and different topics have different weights
in describing m. Thus, LDA assigns a bug report m a topic
distribution vector 6, to represent the weights of the K
topics. 6, is of length K, and each element of 6,,, represents
the weight of the corresponding topic. We denote the weight
of topic k in 0., as 0,,[k], and the higher 6,,,[k] is, the more
terms in the bug report m are assigned to topic k.

Notice a term can be assigned to multiple topics. The
topic assignment of a term is affected by the other terms in
the same document. Assume that word w is important to
both topic UI and interface operation. If w appears
in a document which is more about UI, it is more likely to
be assigned to UI topic. If it appears in a document which is
more about interface operation, it will be more likely
to be assigned to interface operation topic.

4.2 Graphical Model and Generative Process

LDA can be represented as a graphical model, which is
shown in Figure 7. A circle represents a variable in the
graphical model and a rectangle represents a variable that
repeats a certain number of times. The arrows represent
dependencies between variables. K refers to the number
of topics which needs to be input by end users. M refers
to the number of documents in the corpus. L, refers to the
number of words in the m‘"* document. The shaded circles
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Fig. 7. The Graphical Model of LDA

are observed variables, which are the words in a bug report.
The other circles refer to latent variables. w,, [n] refers to the
n" word in the m** document. z,,[n] refers to the topic of
the n'" word in the m*" document. ¢, refers to topic-word
vector for each topic k — there are in total K such ¢y. 0y, is
the topic distribution vector — there are in total M such 6,,,. a
and f3 are the parameters of the Dirichlet prior for the topic
distribution vector, and topic-word vector, respectively [12].

LDA is a generative probabilistic model of a textual
corpus. A generative probabilistic model assumes that the
words (i.e., bug reports) are generated based on a certain
statistical process or model with the aforementioned sets of
variables: 0,,, z,,, and ¢y, for each report m and each topic
k. Given a bug report m of size L,,, LDA first generates its
topic distribution vector 6,, according to a specific distribu-
tion (i.e., Dirichlet distribution [17]). Next, LDA randomly
generates a topic for each position in m based on 6,,, ie.,
it generates the topic assignment vector z,, to capture the
topic of each of the L,, positions in m. Finally, for each
position, a topic is randomly chosen honoring the topic
distribution vector 6,,. Next, after the topic is chosen, a
term (word) is chosen honoring the relevant entry in the
topic-word vector ¢y, for the chosen topic. In this way, a bug
report is generated following the generative process of LDA.
If one performs an experiment of generating a bag of words
lots of times using the above process, on average, one would
produce a bag of words where the probability of each word
matches the probability of the word in the bug report.

LDA works in two phases: training and inference. In
the training phase, the terms in the training bug reports
are used to learn the values of the sets of variables, 6,,,
Zm, and ¢y, which best fit the training bug reports. In the
inference phase, given a new bug report new, based on the
values of the sets of variables that have been learned from
training bug reports, LDA infers the topics that are assigned
to terms in new (i.e., zpew), and the topic distribution vector
of new (ie., Oney). In our framework, during the model
construction phase, we employ the training step of LDA;
during the recommendation phase, we employ the inference
step of LDA.

4.3 Algorithms

Here we describe the training phase and prediction phase
of LDA in detail.

Training Phase: In the training phase, we estimate the
values of the variables: z,, (topic assignment vector), ¢
(topic-word vector), and 6,, (topic distribution vector), for
each bug report m and each topic k, that best fit the bug
reports in the training data. Notice that LDA only observes
the words in the bug reports; thus, the optimal estimated
values of these variables will be the ones that have the



largest posterior probability, conditioned on the observed
data (i.e., words in bug reports). Gibbs sampling is one of
the solutions to estimate z,,, ¢ and 0,, [17]. Gibbs sampling
is a generic procedure used to infer values of variables of
a statistical model. It consists of many iterations where the
estimated values of the variables are refined progressively.
In each iteration, the value of each variable is estimated, one
at a time, conditioned on the values of the other variables.
We describe how the values of LDA’s sets of variables are
inferred using Gibbs sampling in the following paragraphs.

Step 1. Estimating the topic assignment vector z,, for each
bug report m in the training data.

Initially, each vector z,, of a bug report m, is assigned
random values. Next, the algorithm iterates many times.
In each iteration, it estimates every element of z,, based
on the current values of the other elements of z,, and
other vectors of other bug reports in the training data. The
iteration process would terminate after a large number of
iterations. In this work, following [12], we set the number
of iterations to 500. The number needs to be large enough
so that the topic distributions are likely to converge. Similar
to prior work (e.g., [12]), we do not use convergence as the
stopping criteria, since the runtime may be too long if we
wait for the topic distributions to fully converge (i.e., they
change no further with additional iterations). We also find
that there are little difference when we set the number of
iterations to be more than 500 (See Section 8.7).

For each iteration, for each bug report m and each topic
k, LDA estimates the probability of k being assigned to the
ih position of m (i.e., z,, [i]). This probability (i.e., p(z, [i] =
k)) is computed as follows:

plomlil = k) = (NM[—i k] +a)  (NY[—i,w;] + B) M
(NM -1+ Ka)~ (N —1+Vp)

In the above equation, N [—i, k] is the number of words
(excluding the i'" word) in bug report m that are assigned
to topic k; N/ is the number of words in bug report m; w;
is the i*" word of bug report m; N\ [—i,w;] is the number
of times the word w; (excluding its appearance in the 7"
position of m) being assigned to topic k in all bug reports;
N} is the number of words assigned to topic & in all bug
reports.

After the probability of each topic k is estimated using
the above equation, the algorithm randomly chooses a topic,
from the K topics, based on the estimated probabilities. The
chosen topic is assigned as the topic of the i'" position of m.
This assignment is refined in the subsequent iterations. At
the end of this step, we have a topic assignment vector z,,
for every bug report m in the training data.

Step 2. Estimating the topic distribution vector 6,,, for each
bug report m in the training data.

Once the topic assignment vector z,, of bug report m
has been computed, considering K topics, we compute its
topic distribution vector 6,,, based on the topics assigned to
its constituent words as:

O =(t1,...,tK), where

# words assigned the it" topic in m 2)
i =

# words in m
In this way, we map the words in the original bug reports

into topics.
Step 3. Estimating topic-word vector ¢, for all K topics.
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In the final step, the topic-word vector ¢; would be
estimated for each topic k. We denote ¢y [¢] as the probability
of the term in the position ¢ of Voc to represent topic k. ¢y, []
is estimated by computing the ratio between the number of
times the i‘" term of Voc is assigned to topic k, and the total
number of times terms in Voc are assigned to topic k.

Prediction Phase: To infer the topic distribution of a new
bug report new, we input its terms, make use of the values
of the sets of variables (i.e., z,,, ¢, , and 6,,, for each
bug report m and each topic k) estimated in the training
phase, and employ Gibbs sampling to iterate through the
terms in the new bug report enough number of times to
infer their corresponding topics. At the end of prediction
phase, we get the topic distribution vector 8,,,, of the new
bug report which would be processed by TopicMiner (see
Section 6). In the next paragraphs, we first describe how
Znew is estimated for a new bug report. Next, we describe
how 0,,.,, is estimated.

Step 1. Estimating the topic assignment vector z,.,, for a
new bug report new.

Initially, our approach randomly assigns topics to zy,cq.
Our approach then performs many (i.e., 500) iterations to
refine the topics in z,¢.,. For each iteration and each position
17 in 2pew, given the topic assignments of bug reports in the
training set and the current assignments of topics to words
in the new bug reports, except for the i word, we can
compute the probability of assigning topic k to the i*" word
of the new bug report new as follows:

(Nocwl=i K] +0)  (NY[=i,w] + B)
(Npew — 1+ Ka) = (NY —1+Vp)

In the above equation, Nycw[—1, k] is the number of wor@g
(excluding the current position 7) in the new bug report new
that are assigned to topic k; IVycq is the number of words
in the new bug report; w; is the word at position ¢ in bug
report m; NY [—i,w;] is the number of times the word w;
(excluding its appearance in the i** position of m) is being
assigned to topic k in all bug reports; N} is the number of
words in all bug reports which are assigned to topic k.

After the probability of each topic k is estimated using
the above equation, the algorithm randomly chooses a topic,
from the K topics, based on the estimated probabilities. The
chosen topic is assigned as the topic of the i'" position of
new. This assignment is refined in the subsequent iterations.
At the end of this step, we have a topic assignment vector
Znew fOr new.

p(znew [Z] = k) =

Step 2. Estimating the topic distribution vector 6,,.,, for
the new bug report new.

To infer the topic distribution vector 6,,¢,,, we use Equa-
tion (2) to calculate 6,,¢,,, and the detailed step is the same
as step 2 of the training phase.

5 TopPic EXTRACTION WITH MTM

Here, we describe our proposed topic model, named Multi-
feature Topic Model (MTM), and how we use it to extract
topics from bug reports. Notice LDA is a general topic
model, which does not consider the characteristics of bug
reports. Our MTM leverages multiple features of bug re-
ports (i.e., product and component) to better generate the
topics from the bug reports.



5.1 Modeling a Bug Report

All unique terms (i.e., words) in bug reports are collected
into a common vocabulary Voc of size V. In addition to
a textual description, a typical bug report contains many
different fields (e.g., product and component). We refer to
them as features of a bug report, and denote the features of a
bug report m as Fy,,, i.e., Fiy = (fm1, -+ 5 fme). In this work,
we use an instance of MTM with two features: product and
component — we set f,1 to be the product, and f,,,2 to be
the component.

The reason we choose these two features is that devel-
opers often specialize in some products and components.
Moreover, bug reporters have to assign values to these two
features when they submit a bug report (i.e., the values of
these two fields are not null). Furthermore, our previous
study shows that the values of these two features are stable
(i.e., only a small proportion of bug reports have the values
of their product and component fields reassigned before the
final bug fixer is assigned) [45]. In our collected bug report
dataset, we do not observe any missing values for product
and component fields. In the uncommon cases where the
values of the product and component fields get updated,
developers can simply rerun our approach with the updated
values of these fields.

A topic k is expressed as a collection of terms from
Voc. MTM uses a topic-word vector ¢, of size V to
represent a topic k. Each element of the vector ¢;, repre-
sents the probability of the corresponding term in Voc to
describe the topic. For example, in Figure 4, for topic 1,
¢1 = [0.22,0.13,0.12...], i.e., the probability of the term
page to describe topic 1 is 22% while that for bar is 13%.

For a bug report m containing L,, terms, MTM con-
siders it as a textual document with K technical aspects
(i.e., topics). MTM will infer a topic assignment vector z,,
corresponding to bug report m, i.e., for each term in m,
MTM will infer its topic. Thus, a topic assignment vector
Zm is of length L,, (i.e., the number of words in m), and
each element of z,, is an index to one topic (i.e., 1 to K).
Given a document, for each pair of term and topic, our
model would output a probability that the term is related
to a topic. Following [12], [17], we then assign the term to
the topic which has the highest probability.

Assume that the set of all possible feature combinations
together form set F' = {F, Fs,--- , Fr}, where each entry
in it is a feature combination and I is the total number of
feature combinations. In MTM, a specific feature combina-
tion F; (e.g., Fj1 = CDT and Fj3 = cdt-core) is associated to
one or more topics, and each of the topics could be assigned
a weight to describe the strength of its relationship with Fj.
MTM assigns to a specific feature combination F; a feature-
topic vector 0, to represent the weights of all of the K top-
ics. O, has the length of K, and each element of 0, repre-
sents the weight of the corresponding topic at the element’s
position. We denote the value of topic k in 6, as 0, [k], and
the higher 6, [k] is, the more terms in bug reports, whose
feature combination is F}, are assigned topic k. For example,
considering the 3 bug reports in Figures 1, 2 and 3, if the
feature-topic vector is 0, — (¢ DT, cdt—core} = [0-4,0.3,...0.1],
it means that among the 3 bug reports, which have the same
product and component, 40% of the terms are assigned to

TABLE 1
Symbols associated with multi-feature topic model.

[ Nota. [ Type | Description ]

M scalar Numbers of documents (i.e., bug
reports) in the document collec-
tion.

K scalar Numbers of topics.

4 scalar Number of unique terms in the
bug reports.

N scalar Number of bug reports.

I scalar Number of different feature
combinations.

e scalar Dirichlet prior, hyperparameter
for the topic distribution for
each feature combination.

B scalar Dirichlet prior, hyperparameter
for the word distribution for
each topic.

F, vector Vector representation of a fea-
ture combination for the m"
bug report.

W vector All words in the bug reports in
the document collection.

wm[n] | scalar n'™ word in the m™ bug report.

A vector Topic assignment of all words.

zZm([n] | scalar Topic assignment of the n'"
word in the m'" bug report.

Ok vector Word distribution for topic k.

OF, vector Topic distribution for feature
combination F;.

the first topic, and 30% of the terms are assigned to the
second topic, etc.

5.2 Graphical Model and Generative Process

MTM can be represented as a graphical model, which is
shown in Figure 8. A circle represents a variable in the
graphical model and a rectangle represents a variable that
repeats a certain number of times. The arrows represent
dependencies between variables. K refers to the number
of topics which needs to be input by end users. M refers
to the number of documents in the corpus. I refers to the
number of different feature combinations. Feature combi-
nation refers to the combination of multiple features. In
this paper, by default, we use the product and component
features, and combine them as the feature combination.
The shaded circles are observed variables, which are the
words and features of a bug report. The other circles refer
to latent variables. w,,[n] refers to the n‘® word in the
m' document. z,,[n] refers to the topic of the n‘" word
in the m!" document. ¢, refers to topic-word vector for
each topic k — there are in total K such ¢;. OF, is the
feature-topic vector — there are in total I such 0f,. o and
B are the hyperparameters for the feature-topic vector, and
topic-word vector, respectively. Table 1 presents the symbols
associated with MTM. We use the notation of 6, ¢, and K
as the feature-topic vector, topic-word vector, and number
of topics since they are conventionally used in NLP and IR
literature [12].

MTM is a generative probabilistic model of a textual
corpus. A generative probabilistic model assumes that the
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Fig. 8. The Graphical Model of Multi-feature Topic Model (MTM)

data (i.e., bug reports) is generated based on a certain
process/model with the aforementioned sets of variables:
Or,, zm, and ¢i. For each feature combination F;, MTM
first generates its feature-topic vector 8, according to the
Dirichlet distribution [17]. Then for each bug report m,
MTM generates the topic assignment vector z,, to describe
the topic of each position in m according to its feature
combination. This is done by first finding the feature combi-
nation in F' that is equal to F},,. Assume this combination is
F}, then the corresponding feature-topic vector r,, where
F; = F,,, is used to sample topics to fill topic assignment
vector z,,. Finally, in each position of the bug report, MTM
generates a term (word) according to the topic k assigned to
this position, and the topic-word vector 0, corresponding to
topic k. In this way, a bug report is generated by leveraging
MTM.

The above paragraph describes the generative process
of MTM, i.e., how to generate a bug report by leveraging
MTM. This generation process is simulated to infer a topic
distribution vector from a bug report.

In our MTM model, we have the 6 and ¢ matrices. The
vector 0, corresponds to the topic distribution for a feature
combination F;. Traditional LDA does not compute such
topic distribution, rather it computes a topic distribution for
each document (in our case: bug report). The vector ¢, of
MTM contains the same information as the corresponding
vector in LDAs graphical model, that is, the word distribu-
tion for the k'" topic.

Our model can be regarded as a simulation of how
a developer writes a bug report. For example, suppose a
developer finds a bug in the user interface component
of the product firefox. To create a report to describe the
bug, he first picks some topics according to the component
user interface and the product firefox. These topics can
be composed of a topic about user interface (with words
page, bar, symbol, etc.), a topic about interface operation
(with words click, open, close, etc.), a topic about browser
with words (Internet, website, connect, etc.), and some other
topics. To write down a word, the developer needs to first
determine which topic he is describing using the word, then
he picks a word from this determined topic and writes it
down. This process continues until he finishes the report.

These topics are what we intend to learn by using our
model. Instead of assuming that each topic contains only a

Bug report m

Features: En = (fmy fm2)

Words:

Win[1]] Wi [2]] Win[3]] win[4]

Topic

assignment:| Zm[1] | zn[2]

Outputs Inputs

Multi-feature Topic Model (MTM) Number of

Topics K

A topic t Features F; = (F;y, Fi3)

A distribution over words:
@e=[0e1, - Quv]

A distribution over topics:
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@ow : probability of topic t 6, : probability of topic t

Fig. 9. Relationships among the variables in MTM

group of words, we assume that each topic is a distribution
over words. Those words with high probabilities can repre-
sent a topic better than others. Our model tries to learn these
topics automatically. Intuitively, they can also be regarded as
clusters of words.

In reality, the way a developer writes a bug report
differs from what we assume. However, previous works on
topic models have shown that they can learn meaningful
grouping of words that correspond to inherent topics in
documents. So, in our paper, we design a model under
the context of bug triaging and apply it to real bug report
dataset. Both its performance (for bug triaging) and the
learned topics show that it is useful.

Figure 9 presents the relationships of variables in our
model and how our model works. For each bug re-
port m, it is associated with a feature combination F,,
and a list of words w,. A set of bug reports is in-
put into the Multi-feature Topic Model (MTM). There
are two sets of parameters in MTM, which are topic-
word vectors {¢1,¢2, -, ¢} and feature-topic vectors
{0F,,0F,, - ,0p,, }. They are all unknown and will be
learned by MTM based on the input bug reports. After
learning these variables, MTM is then able to assign a topic
to each word, this assignment vector for bug report m is
denoted as z,,.

5.3 Algorithms

MTM follows a two phase process: training phase and
inference phase. The training phase and inference phase
correspond to the model construction phase and recommen-
dation phase in Figure 6. In the training phase, the terms
in the training bug reports are used to learn the values of
the sets of variables, z,,, ¢i, and 0, which best fit the
training bug reports. In the inference phase, given a new
bug report new, based on the values of the sets of variables
that have been learned from training bug reports, MTM
infers the topics that are assigned to terms in new (ie.,
Znew). In our framework, during the model construction
phase, we employ the training step of MTM; during the
recommendation phase, we employ the inference step of
MTM.



Given a new bug report, our approach infers its topic
distribution by using the topic model trained in the model
construction phase. Admittedly, this strategy cannot cope
with new topics that emerge over time, and we assume
that the topics do not change much over time. If developers
are making major changes (by implementing totally new
requirements) or the accuracy of our approach is not good,
the topic model can be retrained from scratch. By doing
so, the newly emerging topics would be learned. Here, we
describe the training phase and prediction phase of MTM in
detail.

TopicMiner takes as input a topic distribution vector. To
obtain this vector 6,,,, given a new bug report m, we first run
MTM on m and obtain z,, by assigning the most probable
topic to each word in m by using Equation (4). Similarly,
we use LDA to infer z,, by assigning the most probable
topic to each word in m by using Equation (1). Next, we
derive 6,, from z,, and inputs it to TopicMiner. A topic
distribution vector for a bug report m 6,, is of length K,
and each element of 0,, is the proportion of words in m
of the corresponding topic. We denote the weight of topic
k (i.e., the proportion of terms in the bug report m that are
assigned to topic k) in 6,, as 0,, [k]. For example, in Figure 5,
if 0,,, = [0.3,0.2,- - -0.15], it means that 30% of all terms in
m are about user interface components, 20% are about user
interface operations, etc.

Training Phase: In the training phase, we aim to estimate
the values of the sets of variables: z.,,, ¢i, and 0F, for each
bug report m, each topic k and each feature combination
F;, that best fit bug reports in a training set. The optimal
estimated values of these variables are the ones that have the
largest posterior probabilities conditioned on the observed
data (i.e., words and features of bug reports). We use Gibbs
sampling [17] to estimate z,,, ¢; and 6p,. Gibbs sampling
is a generic procedure used to infer values of variables of
a statistical model. It consists of many iterations where the
estimated values of the variables are refined progressively.
In each iteration, the value of each variable is estimated, one
at a time, conditioned on the values of the other variables.
We describe how the values of MTM's sets of variables are
inferred using Gibbs sampling in the following paragraphs.

Since the detailed derivation steps are long and compli-
cated, they appear in a technical report [42]. In this paper,
we simply present how the resultant formulas are used in
the Gibbs sampling iterations.

Step 1. Estimating the topic assignment vector z,,, for each
bug report m with feature combination f in the training
data.

Initially, the variable z,, for each bug report m and ¢, for
each topic k, and 0, for each feature combination F; are all
assigned with random values. Next, the algorithm iterates
many times. In each iteration, it estimates every element of
Zm based on the current values of the other elements of z,,
and other vectors of other bug reports in the training data.
The iteration process will terminate after many iterations. In
this work, following [12], to ensure the convergence of topic
distributions, we set the number of iterations to 500. We also
find that there are little difference when we set the number
of iterations more than 500 (See Section 8.7).
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MTM estimates the probability of topic k being assigned
to the i'" position of bug report m (i.e., z,,[i]) with feature
combination f, in each iteration, using the following equa-
tion:
p(enli] = k) = (N =ikl +a) (VY [=i,wi] + B)

" (Nf =1+ Ka) = (NY —1+Vp)

In the above equation, N{'[—i, k] is the number of words
that are assigned to topic k£ in bug reports with feature
combination f (excluding the i** word of m); N f is the
number of words in bug reports with feature combination f;
wj is the i" word of m; NY [—i,w;] is the number of times
the word w; (excluding its appearance in the i*" position
of m) is assigned to topic k; N} is the number of words
assigned to topic k.

After the probability of each topic k is estimated using
the above equation, the algorithm randomly chooses a topic,
from the K topics, based on the estimated probabilities. The
chosen topic is assigned as the topic of the i!”* position of m.
This assignment is refined in the subsequent iterations. At
the end of this step, we have a topic assignment vector z,,
for every bug report m in the training data.

4)

Step 2. Estimating the feature-topic vector 0y, for each
feature combination Fj.

Our approach first separates bug reports into different
groups according to their feature combinations. Bug reports
are in the same group if their feature combinations are
the same. Under each group corresponding to a feature
combination F}, for a topic k, we denote 0, [k] as the prob-
ability that topic k represents fi. 0, [k] is approximately
computed by computing the ratio between the number of
terms which are assigned to topic £ in bug reports with
feature combination Fj, and the total number of terms in
bug reports with feature combination F; (i.e., the maximum
likelihood estimate).

Step 3. Estimating topic-word vector ¢, for all K topics.

In the final step, the topic-word vector ¢ would be
estimated for each topic k. We denote ¢y [¢] as the probability
of the term in position ¢ of a common vocabulary Voc to
represent topic k. ¢y [i] is estimated by computing the ratio
between the number of times the i*" term of V oc is assigned
to topic k, and the total number of times terms in Voc are
assigned to topic k.

Step 4. Estimating the topic distribution vector 6,,, for each
bug report m in the training data.

Once the topic assignment vector z,, of bug report m has
been computed, considering K topics, we compute its topic
distribution vector 6, based on the topics assigned to its
constituent words by using Equation 2. In this way, we map
the words in the original bug reports into topics. This topic
distribution vector would be processed by TopicMiner — as
will be described in Section 6. Notice since step one of our
approach produces all necessary data for Step 2 and Step 4,
it is possible that these two steps can be done in parallel.

Inference Phase: To infer the topic distribution of a new bug
report, we input its terms and multiple features, make use
of the values of the sets of variables (i.e., zp,, ¢ , and 0F, )
estimated in the training phase, and employ Gibbs sampling
to iterate through the terms in the new bug report enough
number of times to get their corresponding topics. At the



end of the prediction phase, we get the topic distribution
vector 0,,,, which would be processed by TopicMiner.

Step 1. Estimating the topic assignment vector z,.,, for a
new bug report new.

Initially, we randomly assign topics to zpew. We then
perform a number of (i.e., 500) iterations to refine the topics
in zpew. For each iteration and each position ¢ in zyew,
given the topic assignments of bug reports in the training
set and the current assignments of topics to words in the
new bug reports, except for the i*" word, we can compute
the probability of assigning topic & to the i*" word of the
new bug report new with feature combination f as follows:

(Nf"'[—i, k] + )
(Nf*—1+Ka)

o (N liwi] + )
(NY —1+Vp)

In the above equation, N f *[—i, k] is the number of words
that are assigned to topic k in the new bug report (excluding
its i*" word) and bug reports with feature combination f in
the training set; N; * is the number of words in the new
bug report and bug reports with feature combination f in
the training set; w; is the i*" word of new; N} [—i, w;] is the
number of times the word w; (excluding its appearance in
the i'" position of new) is assigned topic k in all bug reports;
N} is the number of words that are assigned topic k in all
bug reports.

Equations (4) and (6) are used to assign a topic to word
according to the topics assignment of all other words in our
dataset. Each of them is a probability of assigning a certain
topic to the target word. Intuitively, the calculation of this
probability is based on how likely this topic appears in the
current document and how likely this topic generates the
current word. Separated by the multiplication sign, there are
two components in the formula. The first component is the
probability of topic k appearing in the current document.
The second component is the probability that word w is
generated from topic k. The two parts together determine
the probability of assigning topic & to the current word.

Step 2. Estimating the topic distribution vector 6,,.,, for
the new bug report new.

Our approach infers the topic distribution vector 6,,¢,,
from the topic assignment vector z,.,, using Equation (2).
The detailed step is the same as step 4 of the training phase
of MTM.

5.4 Differences with LDA

LDA can be represented as a graphical model, which is
shown in Figure 7. Its structure is simpler than the graphical
model of MTM. It has fewer observed variables which
exclude features of bug reports such as the product and
component of the reports. Also, rather than having a topic
distribution per feature combination, it has a topic distribu-
tion per bug report 6,,.

Similar to MTM, LDA is a generative probabilistic model
of a textual corpus. The generative process of MTM uses
3 sets of variables: topic distribution 6,,, topic assignment
vector z,,, and topic-word vector ¢, for each report m
and each topic k. Given a bug report m of size L,,, LDA
first generates its topic distribution vector 0, according
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to Dirichlet distribution. Next, LDA generates the topic
assignment vector z,, to describe the topic of each of the L,,
positions in m according to its topic distribution vector 0,,.
Finally, for each position in m, LDA generates a term (word)
according to the topic k, which is assigned to the position,
and the topic-word vector ¢;, corresponding to topic k. In
this way, a bug report is generated following the generative
process of LDA.

Since the graphical model and generative process of
LDA and MTM are different, to estimate the values of z,,,
¢r, and O, of MTM using Gibbs sampling, we need to re-
derive a number of equations that eventually translate to
Equation 4. A comprehensive comparison of LDA and MTM
detailed derivation steps is available in the supplemental
materials.

One major difference between the Gibbs sampling pro-
cess of LDA and MTM is the equation that is used to
update the probability of assigning a topic to a word, that
is recomputed in each Gibbs sampling iteration. Rather than
using Equation (4), the probability of assigning topic & to the
ith word of a new bug report new is computed as follows:

(Npew[—1i, k] + )
(Nnew -1+ Ka)

(N]y[_i7wi] + B)

k) = (NY =1+ VB)
(6)

p(znew M =

In the above equation, N,w[—i,k] is the number of
words (excluding the current position 7) in the new bug
report new that are assigned to topic k; Ny, is the number
of words in the new bug report; w; is the word at position
i in bug report m; NY [—i,w;] is the number of times the
word w; (excluding its appearance in the " position of
m) is being assigned to topic k in all bug reports; N} is
the number of words in all bug reports which are assigned
to topic k. Notice that Equation 1 above is different from
Equation 4 (for MTM). For LDA, NM[—i, k] is used; while
for MTM, NJF[—Z’, k] is used. Nf[—i, k] is used to take the
feature combination into consideration when estimating the
probability of a topic assignment.

Also, for a new product-component combination which
is never seen before in the model building phase, our model
will ignore the product-component information and behave
like LDA.

6 ToPICMINER: AN INCREMENTAL LEARNING

METHOD

In this section, we present TopicMiner that takes as input a

set of topic distribution vectors of a set of bug reports and

outputs a list of developers. Before we describe the process

of how TopicMiner produces its outputs, we need to define a

few terms, as follows:

Definition 1. (Affinity Score of a Developer to a Topic for a
Particular Feature Combination.) Consider a set of topic
distribution vectors T/ for a set of bug reports B with
feature combination f. Let T({ refer to the topic distri-
bution vectors corresponding to bug reports in B that
are assigned to a fixer d. Also, given a topic distribution
vector 0, let 0[t] denote an entry in the topic distribution
vector 0 corresponding to topic t. The affinity score
,u{ (d) of a fixer d towards a topic ¢ considering a feature
combination f is given by:
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TABLE 2
Statistics of Collected Bug Reports.

[ Project | Time | # Reports | #Fixers | # Terms | % Generic [ # Final | # Prod. | # Comp. [ # Comb [ # Ave. | # Ov. |
GCC 2001-12-03 — 2013-04-01 27,632 280 12,895 51.23% 13,475 2 49 49 275 13
OpenOffice | 2002-05-17 — 2013-04-07 42,243 740 17,598 11.66% 37,318 33 54 173 215 351
Netbeans 2008-01-01 — 2013-03-13 46,346 405 21,564 6.42% 43,371 38 381 459 94 200
Eclipse 2008-01-01 — 2013-03-12 82,978 1,898 32,498 26.30% 61,156 165 721 880 69 422
Mozilla 2009-06-23 — 2012-02-23 86,183 1,813 28,356 16.51% 71,958 69 690 777 92 750
7 EXPERIMENTS AND RESULTS
) = 2ot %
" =
Sorerr 0[] 7.1 Dataset

Definition 2. (Affinity Score of a Developer to a Bug
Report of a Particular Feature Combination.) Consider
a bug report b of feature combination f with its topic
distribution vector 6, and let 0[t] correspond to the entry
in @ corresponding to topic ¢. The affinity of developer
d to a bug report b of feature combination f, denoted
as u{ (d), is derived from the affinity of developer d to
the various topics that appear in b considering feature
combination f. It is given by the following equation:

pi(d) = 1= T = uf () = 0[t]) ®)
teb

Here, ¢t € b denotes that topic ¢ is contained in bug report
b (i.e., 0[t] > 0). Informally put, the above formula would
be very small if the bug reports that developer d fixed
before share very few topics with the topics contained
in bug report b. It would be large if they share a lot of
common topics.

Based on the above definitions, TopicMiner proceeds in
the following steps:

1) In the model construction phase (see Section 3), it
extracts a set of topic distribution vectors of all
training (historical) bug reports by using MTM.
Next, it splits the bug reports into different disjoint
sets according to their feature (i.e., product and
component) combinations. For each feature combi-
nation f, each developer d, and each topic ¢, we
use Equation (7) to compute the affinity score of d
towards t considering feature combination f (i.e.,
pf (d)). In this way, we have multiple pf (d) scores
for the different combinations.

2) Inthe recommendation phase, for a new unassigned
bug report b, it extracts its product and component
combination f, and for each developer d, it uses
Equation (8) to compute the affinity score of d
towards b considering feature combination f (ie.,
u{: (d)). Next, it sorts the developers based on their
affinity scores, and recommends a list of top-k de-
velopers with the highest affinity scores.

3) In the model update phase, after a bug report of
feature combination f is assigned to a developer
dfiger, for each topic t, it updates the affinity score
of dfizer towards t considering feature combination
f Ge., ,u{ (dfizer)) by using Equation (7).

When using TopicMiner™ 7 if the product and com-

ponent features of a bug report changes, we can re-run the

algorithm to get a better estimate of the bug reporter to be
assigned to the bug report.

We collect 5 datasets from different open source software
projects: GCC, OpenOffice, Netbeans, Eclipse, and Mozilla.
Table 2 shows the statistics of the 5 datasets that we collect-
ed. The columns correspond to the project name (Project),
the time period of collected bug reports (Time), the number
of collected reports (# Reports), the number of unique bug
fixers (# Fixers), the number of unique terms (i.e., words) in
the bug reports after we remove terms appearing less than
10 times (# Terms), the percentage of bug reports assigned to
fixers with generic names (e.g., nobody, issue) (% Generic),
the number of reports without generic fixers (# Final), the
number of different products (# Prod.), the number of dif-
ferent components (# Comp.), the number of product and
component combination (# Comb.), the average number of
bug reports per product- component combination (# Ave.),
and the number of fixers that fix bugs across multiple
product-component combinations (# Ov.), respectively. All
bug reports are downloaded from the bug tracking systems
of the corresponding projects. We collected bug reports with
status “closed” and “fixed” following previous studies [7],
[10], [20], [38].

Following prior approaches, e.g., [38], we identify bug
fixers by looking at the “assigned to” fields in the bug
reports. However, we notice that for many bug reports the
“assigned to” fields are set to generic names which do
not specify particular developers. In GCC, 51.23% of the
bug reports are assigned to “unassigned”; In OpenOffice,
11.66% of the bug reports are assigned to generic names
such as “issues”, “needsconfirm”, and “swneedsconfirm”;
In Netbeans, 6.42% of the bug reports are assigned to
"issues”; In Eclipse, 26.30% of the bug reports are assigned
to generic names like “platform-runtime-inbox”, “webmas-
ter”, “platform-text-inbox”, and “AJDT-inbox”; In Mozilla,
16.51% of the bug reports are assigned to “nobody”. Since
these generic names are not actual developers, we do not
recommend them, and thus they are excluded from our
datasets. We record the percentage of bug reports assigned
to generic names in column % Generic in Table 2, and
in column # Final Report, we record the final number of
bug reports after we exclude those assigned to fixers with
generic names.

In Table 2, we also list the number of different products
and components in columns # Prod. and # Comp. respec-
tively. In a bug report, the product and component fields
store the product and component that are affected by the
reported bug. A software system contains many products,
and each product may contain many components. Eclipse
has 165 products and 721 components in total as shown in
Table 2.




7.2 Experiment Setup

For each bug report, we extract its bug ID, bug fixer,
summary text, description text, product and component.
We extract the stemmed non-stop terms (i.e., words) from
the summary and description text. We exclude bug fixers
who appear less than 10 times to reduce noise [7], [20], since
the expertise of these developers is hard to predict. We also
remove terms which appear less than 10 times to reduce
noise, and speed up the bug triaging process. These terms
are put in the vectors in the same order as their appearances
in the original bug report collection. Notice that the term
order does not influence the outcome of our model.

To simulate the usage of our approach in practice, we use
the same longitudinal data setup described in [38], [10]. The
bug reports extracted from each bug repository in Table 2 are
first sorted in chronological order of creation time, and then
divided into 11 non-overlapping windows of equal sizes.
The process proceeds as follows: First, in fold 0, we train
using bug reports in frame 0, and test the trained model
using the first bug report in frame 1, then we update the
bug triaging model by using the first bug report, and then
test using the second bug report, and update the model
using the second bug report, and so on for all bug reports in
frame 1. Then, in fold 1, we train using bug reports in frame
0 and frame 1, and proceed in a similar way (like frame
1) to test using bug reports in frame 2, and so on. In the
final fold (fold 9), we train using bug reports in frame 0-9,
and test using bug reports in frame 10. We then compute
the average accuracy, which is defined as the ratio between
the total number of predicted hits and the total number of
test cases (i.e., the number of bug reports from frame 1-10).
Following [38], we consider two criteria for a prediction hit:
the fixer is identified in the top-1 list of developers (top-
1 accuracy), and the fixer is identified in the top-5 list of
developers (top-5 accuracy).

We use the fixers recorded in the bug repositories as the
ground truth. For the training phase of MTM, following
a previous study [12], we set the maximum number of
iterations to 500, and the parameters o and /3 to 50/7T (where
T is the number of topics) and 0.1, respectively. By default,
we set the number of topics T to 11% of the number of
distinct terms in the training data, since we empirically find
that TopicMiner™ ™ achieves the best performance under
this setting (see Section 7.4.2). We use percentages rather
than a fixed number as the amount of training data varies
for different datasets and different test frames (following the
longitudinal study setup [38], [10] described above). If there
are more distinct terms, there are more topics. Moreover,
since both MTM and LDA use Gibbs Sampling to generate
the topics which introduces randomness, we run MTM and
LDA 10 times, and we compute the average performance
across the 10 times.

We compare TopicMiner™ ™ with a number of baseline
approaches, i.e., Bugzie [38], LDA-KL [35], LDA-SVM [35],
LDA-Activity [27], and Yang et al’s approach [47]. For
Bugzie, there are two parameters: the developer cache
size and the number of descriptive terms. We use 100%
developer cache size and set the number of descriptive
terms to 10. These have been shown to result in the best
performance [38]. For LDA-KL [35], SVM-LDA [35], LDA-
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Activity [27], and Yang et al.’s approach [47], we use JGibb-
sLDA (a popular implementation of LDA), and use the
same settings for weights o and 3, and number of topics
T as MTM. The settings of the weights follow the settings
described in the papers that introduce LDA-KL, SVM-LDA,
and LDA-Activity

7.3 Research Questions

In this paper, we are interested in the following research
questions:

RQ1: How accurate is TopicMiner™ ™M

baselines?

Bugzie and LDA-Activity have been used to recommend
fixers to bug reports in prior studies. LDA-KL and SVM-
LDA can also be used to recommend fixers to bug re-
ports. Yang et al. propose a approach which leverage the
advantages of topic modelling and the features such as
product, component, severity, and priority to recommend
developers [47]. In this research question, we investigate the
extent our approach (TopicMiner™T™) outperforms these
baselines. To answer this research question, we compare the
top-1 and top-5 accuracies of TopicMiner™ T with those of
Bugzie, LDA-KL, SVM-LDA, LDA-Activity, and Yang et al.’s
approach for the 5 datasets.

RQ2: What is the effect of varying the number of topics to the
performance of TopicMiner™ ™™ ?

MTM generates topics from a bug report collection;
the number of topics needs to be manually specified. A
previous study by Panichella et al. shows that different
numbers of topics might affect the performance of topic
models in several software engineering tasks [30]. In this
research question, we investigate whether the performance
of TopicMiner™ ™™ varies for various numbers of topics.
For the other research questions, by default, the number of
topics is set to be 11% of the number of distinct terms in a
training dataset (i.e., a bug report collection).

Moreover, for other LDA-based approaches (i.e., LDA-
KL, SVM-KL, LDA-Activity, and Yang et al.’s approach),
by default, we also set the number of topics as 11% of
the number of distinct terms in a training dataset. Since
the number of topics may also affect the performance of
these approaches, we also experiment with other numbers
of topics. We vary the number of topics to be 1% — 15% of the
number of distinct terms in a training dataset, and compare
the performance of TopicMiner™ ™™ with LDA-KL, SVM-
KL, LDA-Activity, and Yang et al.’s approach.

RQ3: What is the effect of varying the amount of training data
to the performance of TopicMiner™ ™M ?

To evaluate the performance of TopicMiner™ ™, we
use the longitudinal data setup. With the number of folds
increase, the amount of the training data increase. In this
research question, we investigate whether the performance
of TopicMiner™T™ increases with the amount of training
data increase. To answer this research question, we present
the top-1 and top-5 accuracies for the 10 folds as shown in
the experiment setup section.

RQ4: How much time does it take for TopicMiner™ ™ to run?
The efficiency of TopicMiner™T™ would affect its us-
ability. In this question, we investigate whether the runtime

as compared with other



of TopicMinerMTM is reasonable. To answer this research

question, we investigate the average amount of time that is
needed by TopicMiner™T™ and the baseline approaches to
process a bug report during the model construction phase,
and the average time they need to process a bug report
during the recommendation and model update phases.

7.4 Results
7.4.1 RQ1: Accuracy of TopicMiner™ ™M

Table 3 compares the performance of TopicMiner™ T with
the baselines in terms of top-1 and top-5 accuracies, re-
spectively. From the table, we notice the improvement
of our method over Bugzie, LDA-KL, SVM-LDA, LDA-
Activity, and Yang et al.’s approach are substantial. Across
the 5 projects, TopicMiner™”™ on average improves top-
1 and top-5 prediction accuracies of Bugzie by 128.48%
and 53.22%, LDA-KL by 262.91% and 105.97%, SVM-LDA
by 205.89% and 110.48%, LDA-Activity by 377.60% and
176.32%, and Yang et al.’s approach by 59.88% and 13.70%,
respectively. Notice Bugzie’s result shown in Table 3 is
different from the result presented in [38] since we drop
bug reports assigned to generic names, e.g., nobody, issues,
unassigned, etc. These generic names do not identify par-
ticular developers and must be removed to measure the
effectiveness of an automated bug triaging solution.

To check if the differences in the performance of
TopicMinerT™ and the baseline approaches are statisti-
cally significant, for the each dataset, we apply Wilcoxon
Rank Sum test [40] on the top-1 and top-5 accuracies of each
pair of competing approaches. Since we run the test multiple
times (twice for each dataset), we also use Bonferroni cor-
rection [6] to counteract the results of multiple comparisons.
Moreover, we also compute Cliffs delta [14]°, which is a non-
parametric effect size measure that quantifies the amount
of difference between the results of a pair of competing
approaches. We find that in terms of top-1 and top-5 ac-
curacies, the improvements of TopicMiner™T™ over the
baseline approaches are all statistically significant for all of
the 5 projects at the confidence level of 99% (i.e., the p-values
are less than 0.001), and the effect sizes are large for all of
the 5 projects. Thus, the improvements of TopicMiner™ 7
over the baseline approaches are statistically significant and
substantial.

We notice that the performance of TopicMiner™”™ is
worse for the OpenOffice and Mozilla datasets than for
GCC, Netbeans, and Eclipse datasets. We manually check
the datasets, and find that for OpenOffice and Mozilla,
more developers leave and join the communities over the
period of time considered, which increases the difficulty to
recommend fixers to bug reports for those datasets.

Compared with Bugzie, our TopicMiner™T* recom-
mends bug fixers by using topic distributions of bug reports
instead of term (i.e., word) distribution of bug reports. Tech-
niques that rely on term distributions suffer from synonym
and polysemy problems C many words may share the same
meaning, and the same word may have different meanings.
Techniques that rely on topic distributions address these

6. Cliff defines a delta of less than 0.147, between 0.147 to 0.33,
between 0.33 and 0.474, and above 0.474 as negligible, small, medium,
and large effect size respectively.
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problems by clustering similar terms into topics, and many
topics can share the same word. Thus, our TopicMiner 7™
can achieve a better performance than some baseline ap-
proaches, e.g., Bugzie.

Some of the baseline approaches (i.e., LDA-KL, LDA-
SVM, LDA-Activity, and Yang et al.s approach) leverage
LDA which is a general purpose topic modelling technique.
However, bug reports are semi-structured, and they contain
not only the natural language description of the bugs, but
also some additional structured features such as the product
and component information. By leveraging the features, one
can better capture the topic distributions for bug reports by
capturing both global (learned from all bug reports) and
local information (learned from bug reports that share a
particular product and component combination). Thus, our
TopicMiner™ T can achieve a better performance than the
bug triaging approaches which use LDA.

Furthermore, our TopicMiner is an incremental learning
approach. We update the model whenever a new bug report
is assigned to developers. In this way, our model can adapt
to the real-time changes from the open source community,
and further improve the performance of bug trigaing.

We notice LDA-Activity does not work as well as other
baseline approaches. LDA-Activity creates an activity pro-
file for each developer, and the activity profile includes
many different kinds of activities, e.g., bug reviewing, bug
assignment, and bug resolution. Since our task is specif-
ic to one of these activities, considering more activities
introduces noise by unnecessarily increasing the size of
candidate bug fixers.

Figures 10 and 11 present two bug reports from OpenOf-
fice. Both of these two bug reports are in the product
porting and component code, and assigned to foskey.
Although the terms in these two bug reports are different,
they both describe a configuration bug. A topic modeling
based approach such as TopicMinerTM achieves a better
performance than a term based approach such as Bugzie.
Moreover, since LDA does not consider the specific topic
distribution under different product-component combina-
tions, these LDA based approaches do not work well for
these two bug reports. We manually checked the topic distri-
bution for these bug reports and find that their probabilities
for a topic, which we manually label as configuration,
are small. For our MTM, we consider the topic distribu-
tion for different product-component combinations. And
for these two bug reports, we find the probabilities of
these two bug reports for the configuration topic are the
largest compared to other topics. Thus, our TopicMiner™ 7™
can recommend bug fixers better by leveraging product-
component combinations.

We also notice that our TopicMiner”™ does not
work as well as other baseline approaches for bug reports
whose product-component combinations appear fewer than
5 times. For example, in the fold 0 of Mozilla, there is only
one bug report with product Directory and component
LDAP C SDK. Our TopicMiner®”™ cannot recommend a
suitable bug fixer for this bug report, while other approaches
such as Bugzilla and LDA-SVM can recommend the fixer.
Thus, we recommend users to use a general model when
the number of bug reports in a specific product-component
combination is small.
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TABLE 3
Top-1 and top-5 accuracies for TopicMiner™ TM (7MY ys, Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.s
approach (Yang), respectively (mean+tstandard deviation).

Projects Top-1 Accuracy
™ BZ KL SVM AC Yang
GCC 0.504840.0056 | 0.24544-0.0000 | 0.1334+£0.0078 | 0.1939£0.0055 | 0.15854-0.0087 | 0.3012+0.0087
OpenOffice | 0.51614+0.0023 | 0.2706+0.0000 | 0.181140.0039 | 0.2514+0.0055 | 0.1248+0.0102 | 0.3514+0.0121
Netbeans 0.6868+0.0034 | 0.281940.0000 | 0.1882+0.0056 | 0.2213+0.0013 | 0.158340.0029 | 0.4128+0.0045
Eclipse 0.612740.0051 | 0.235240.0000 | 0.1320+0.0012 | 0.1136+0.0256 | 0.06024+0.0210 | 0.40654-0.0045
Mozilla 0.4831+0.0078 | 0.194040.0000 | 0.1376£0.0048 | 0.1365+0.0033 | 0.08524+0.0120 | 0.2817+0.0145
[ Average. | 0.5607 [ 0.2454 [ 0.1545 [ 0.1833 [ 0.1174 [ 0.3507 ]
. Top-5 Accuracy
Projects ™ BZ KL SVM AC Yang
GCC 0.7864+0.0049 | 0.571340.0000 | 0.4071+£0.0023 | 0.4647+0.0056 | 0.394740.0056 | 0.6824+0.0045
OpenOffice | 0.775740.0072 | 0.5723+0.0000 | 0.465140.0038 | 0.4762+0.0045 | 0.3558+0.0125 | 0.6438+0.0015
Netbeans 0.908440.0039 | 0.58614-0.0000 | 0.4478+0.0044 | 0.4594+0.0035 | 0.361340.0078 | 0.845610.0231
Eclipse 0.8865+0.0043 | 0.50724-0.0000 | 0.3385+0.0018 | 0.2633+£0.0016 | 0.179840.0023 | 0.8039+0.0038
Mozilla 0.7686+0.0078 | 0.45551-0.0000 | 0.3443+£0.0089 | 0.2964+0.0056 | 0.201340.0210 | 0.6528+0.0067
[ Average. |  0.8251 | 05385 | 04006 | 03920 | 0298 | 07257 |

Product: porting

Component: code

Assigned to: foskey

Summary: cannot build dmake, cannot find conf.h
Description: For many platforms, the file conf.h is called
config.h. On IRIX, it is sysvr4 that is used

eg

dmake/unix/sysvr4/config.h—=- dmake/unix/sysvr4/conf.h
This will also occur on *bsd, sysvr[1,3] and maybe some
others

Fig. 10. Bug Report #8108 of OpenOffice.

Product: porting

Component: code

Assigned to: foskey

Summary: configure cannot detect Xaw.h
Description:For FreeBSD, configure fails at:

checking for security/pam_appl.h... yes

checking whether we are using the GNU C++ compiler...
yes

configure:8091: result: no

apparently, -l/usr/X11R6/include or other settings are
missing which x_includes holds.

Fig. 11. Bug Report #27021 of OpenOffice.

7.4.2 RQ2: Varying the Number of Topics.

Figures 12, 13, 14, 15, and 16 present the top-1 and top-
5 accuracies of TopicMiner™ T compared with LDA-KL
(KL), SVM-KL (SVM), LDA-Activity (AC), and Yang et al.’s
approach (Yang) with various numbers of topics for the 5
datasets. We notice our TopicMiner™ ™™ shows the best
performance for each number of topics. Furthermore, the
performance of the best setting of each baseline approach
does not outperform the best setting of TopicMiner™ 7,

In general, up to a certain point, the performance of
TopicMiner 7™ increases as the number of topics increas-
es, after that point, the performance then either remains
stable or decreases. In our experiment, the number of top-
ics corresponding to 11% of the number of distinct terms
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Fig. 12. Top-1 (top) and Top-5 (bottom) Accuracy for Different Numbers
of Topics in GCC (5% to 15% of the Number of Distinct Terms in the
Training Data).

achieves the best performance. LDA-KL, SVM-KL, LDA-
Activity, and Yang et al.’s approach show similar trends as
TopicMinerT™ when we increase the number of topics,
and several of these baseline approaches achieve the best
performance when the number of topics is around 11% of
the number of distinct terms.
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Fig. 13. Top-1 (top) and Top-5 (bottom) Accuracy for Different Numbers
of Topics in OpenOffice (5% to 15% of the Number of Distinct Terms in
the Training Data).

7.4.3 RQ3: Amount of Training Data

Figures 17, 18, 19, 20, and 21 present the top-1 and top-5
accuracies for TopicMiner™”™ with different amounts of
training data (fold O - fold 9). Note that in our longitudinal
data setup, we divide our data into 11 non-overlapping
frames, thus one frame corresponds to 9.09% (1/11) of the
total number of bug reports. In fold 0, the amount of training
data is 9.09% of the total number of bug reports, and in fold
9, the amount of training data is 90.09% of the total number
of bug reports.

From the 5 figures, we notice for GCC and Netbeans,
in general, the performance of TopicMiner™”™ increases
as the amount of training data increases. For OpenOf-
fice, Eclipse and Mozilla, in general, the performance of
TopicMinerT™ decreases as the amount of training data
increases. Also, we notice for all of the folds, the top-1 and
top-5 accuracies of TopicMiner™ ™ are much better than
those of the baseline approaches.

Our collected Eclipse and Mozilla datasets are much
larger than the other 3 datasets, which contain 82,978 and
86,183 bug reports, and 1,898 and 1,813 candidate fixers,
respectively. As the amount of training data increases, the
number of the candidate fixers also increases, and some
fixers may leave the community, thus, the performance of
TopicMinerT™ decreases as the amount of training data
increases for Eclipse and Mozilla. Still, the performance of
TopicMiner 7™ are acceptable, the top-5 accuracy is above
0.7 for Eclipse and Mozilla in the 10 folds.
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Fig. 14. Top-1 (top) and Top-5 (bottom) Accuracy for Different Numbers
of Topics in Netbeans (5% to 15% of the Number of Distinct Terms in
the Training Data).

For OpenOffice, we notice that for several folds (such
as folds 2, 5, and 9), the performance of TopicMinerM T™
decreases as compared with the previous folds. We man-
ually checked the dataset, and find that in these folds, a
number of new feature combinations are introduced. For ex-
ample, the product-component combination “TestProduct-
other” are introduced in the frame 3 (fold 2), which makes
TopicMiner™T™ wrongly recommend fixers to bug reports
belonging to this new product-component combination.

Moreover, from the two tables, we notice that the num-
ber of features (i.e product-component combinations) do not
have direct impact to the performance of TopicMiner™ 7.
For example, in Mozilla, the number of product-component
combination is 777, but it achieves the lowest top-1 and
top-5 accuracies compared with the other 4 datasets. And
in GCC, the number of product-component combination is
only 49, but its top-1 accuracy is ranked 4th and its top-5
accuracy is ranked 3rd among the 5 datasets.

7.4.4 RQ4: Time Efficiency of TopicMiner™ ™M

Tables 4, 5, 6, 7, and 8 present the total time it takes for the
6 algorithms, i.e., TopicMinerM ™ Bugzie, LDA-KL, SVM-
LDA, LDA-Activity, and Yang et al.’s approach to complete
the model construction phase, and the recommendation and
model update phase in each of the 10 folds. We notice that
the model construction time, and the prediction and model
update time of TopicMiner™”™ are more expensive than
those of the baseline approaches. However, they are still rea-
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Fig. 15. Top-1 (top) and Top-5 (bottom) Accuracy for Different Numbers
of Topics in Eclipse (5% to 15% of the Number of Distinct Terms in the
Training Data).

sonable. On average for a fold, we need about 47.57 minutes
and 10.26 minutes to process 18,596 bug reports during the
model construction phase, and 4,132 bug reports during the
prediction and model update phase, respectively. Note that
the training phase can be done offline (e.g., overnight). Also,
a learned model can be used to recommend fixers to many
new bug reports, and updated incrementally.

8 DISCUSSION
8.1 Stableness of TopicMiner”M

Notice our TopicMiner™ T is run 10 times, and the average
top-1 and top-5 accuracy scores are computed across the
10 times. Here, we would like to investigate whether the
performance of TopicMiner™”™ would be substantially
different when we run it a fewer number of times. Fig-
ures 22, 23, 24, 25, and 26 present the top-1 and top-5 accura-
cies for TopicMiner™T™ with different number of runs for
GCC, OpenOffice, Netbeans, Eclipse, and Mozilla dataset,
respectively. We notice that across the 5 figures, the perfor-
mance of TopicMinerM TM is stable, and for various number
of runs, the difference in performance is small. Thus, we
believe that our TopicMiner™”™ is a stable approach, and
the randomness introduced due to Gibbs Sampling has little
impact to its performance.

We also manually investigate why the performance of
TopicMiner™TM glightly varies (i.e., by at most 3% from
the mean) when we run it multiple times with random
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Fig. 16. Top-1 (top) and Top-5 (bottom) Accuracy for Different Numbers
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Model construction time, and recommendation and model update time, across the 10 folds, for TopicMiner™TM (TM), Bugzie (BZ), LDA-KL (KL),
SVM-LDA (SVM), LDA-Activity (AC), and Yang et al’s approach (Yang) in GCC (in minutes).

Model Construction Time

Approach o [ Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Total Time
™ 2.39 4.78 717 9.56 11.94 14.33 16.72 19.11 21.50 23.89 131.38
BZ 0.03 0.07 0.10 0.13 0.16 0.20 0.23 0.26 0.29 0.33 1.80
KL 1.35 2.71 4.06 541 6.77 8.12 9.48 10.83 12.18 13.54 74.45
SVM 181 3.62 543 724 9.04 1085 | 1266 | 1447 | 1628 | 18.09 99.49
AC 135 2.70 105 5.40 6.75 810 9.45 1080 | 1215 | 13.50 7422
Yang 1.63 3.27 4.90 6.53 8.17 9.80 11.43 13.07 14.70 16.33 89.83

Approach Model Construction Time

PP Fold 0 | Fold1 | Fold2 | Fold3 | Fold4 | Fold 5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Total Time
™ 2.44 2.46 246 245 243 2.48 2.48 2.46 244 248 24.58
BZ 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.90
KL 0.35 0.33 0.33 0.33 0.32 0.37 0.37 0.37 0.33 0.38 3.48
SVM 0.39 0.38 0.39 0.41 0.39 0.39 0.41 0.39 0.39 0.39 3.93
AC 0.31 0.30 0.32 0.30 0.31 0.30 0.32 0.30 0.30 0.38 3.14
Yang 0.33 0.32 0.35 0.34 0.33 0.33 0.33 0.33 0.37 0.37 3.40

TABLE 5

Model construction time, and recommendation and model update time, across the 10 folds, for TopicMiner™TM (TM), Bugzie (BZ), LDA-KL (KL),

SVM-LDA (SVM), LDA-Activity (AC), and Yang et al’s approach (Yang) in OpenOffice (in minutes).

Model Construction Time

Approach oy [ Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Total Time
™ 418 837 | 1255 | 1674 | 2092 | 2510 | 2929 | 3347 | 37.66 | 41.84 230.13
BZ 0.10 0.19 0.29 0.38 048 058 067 077 0.87 0.96 5.29
KL 243 1385 7728 9.70 1213 | 1455 | 1698 | 1941 | 21.83 | 24.26 13341
SVM 343 6.36 1030 | 13.73 | 17.16 | 2059 | 24.02 | 2746 | 30.89 | 34.32 188.77
AC 236 173 7.09 9.45 11.82 | 1418 | 1654 | 1891 | 21.27 | 23.63 129.99
Yang 2.83 5.65 848 T131 | 1414 | 1696 | 1979 | 2262 | 2544 | 2827 155.49

Approach Model Construction Time

ppP Fold 0 [ Fold1 [ Fold2 | Fold3 | Fold4 [ Fold5 [ Fold 6 | Fold 7 | Fold 8 [ Fold 9 | Total Time
™ 483 484 4383 1385 4.85 186 4388 4.89 489 41389 48.61
BZ 036 038 037 0.36 0.38 0.36 038 037 0.37 0.38 371
KL 0.71 0.7 071 0.71 0.72 0.72 0.71 0.73 0.73 0.73 717
SVM T.04 T.04 T.04 1.06 1,05 .06 1.06 1.06 7,08 1,08 1057
AC 058 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.62 0.63 6.07
Yang 082 082 084 0.85 085 0.85 0.86 0.86 085 0.8 845
TABLE 6

Model construction time, and recommendation and model update time, across the 10 folds, for TopicMiner™ TM (TM), Bugzie (BZ), LDA-KL (KL),

SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.'s approach (Yang) in Netbeans (in minutes).

Model Construction Time

Approach | porq G T Fold T [ Fold 2 [ Fold3 [ Fold4 | Fold 5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Tofal Time
™ 7.01 14.01 21.02 28.02 35.03 42.03 49.04 56.04 63.05 70.05 385.28
BZ 0.10 0.20 0.30 0.39 0.49 0.59 0.69 0.79 0.89 0.99 5.42
KL 3.73 745 TI.18 | 1490 | 1863 | 2236 | 2608 | 29.81 | 3353 | 37.26 20493
SVM 163 9.25 1388 | 1850 | 23.13 | 2776 | 3238 | 3701 | 4164 | 4626 25444
AC 3.87 7.74 T1.61 | 1548 | 1935 | 2322 | 2709 | 3096 | 3483 | 38.71 212.88
Yang 127 854 281 | 17.09 | 2136 | 2563 | 2990 | 3417 | 3844 | 4271 23493

Avproach Model Construction Time

PP Fold 0 | Fold 1 | Fold2 | Fold3 | Fold 4 | Fold 5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Total Time
™ 7.20 7.20 7.20 721 721 7.20 7.22 7.22 7.22 7.22 72.10
BZ 0.69 0.69 0.70 0.70 0.70 0.70 0.71 0.71 0.71 0.71 7.02
KL 0.89 0.89 0.89 0.89 0.90 0.90 0.90 0.90 091 091 3.98
SVM T.09 T.09 110 110 110 110 T11 T11 T11 112 11.03
AC 0.82 0.82 0.82 0.82 0.84 0.84 084 084 084 0.84 832
Yang 0.99 .00 7.00 .00 1.02 1.02 1.02 1.02 1.02 1.02 10.11
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TABLE 7
Model construction time, and recommendation and model update time, across the 10 folds, for TopicMiner™ TM (TM), Bugzie (BZ), LDA-KL (KL),
SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.s approach (Yang) in Eclipse (in minutes).

Approach Model Construction Time
pp Fold 0 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Tofal Time
™ 1853 | 37.06 | 55.60 | 74.13 | 92.66 | 111.19 | 129.72 | 14826 | 166.79 | 18532 | 1,019.27
BZ 021 043 0.64 055 107 128 149 170 192 213 11.72
KL 9.65 1929 | 2894 | 3858 | 4823 | 5788 | 6752 | 7717 | 8681 | 9646 530.53
SVM T470 | 2939 | 44.09 | 58.78 | 7348 | 88.18 | 102.87 | 11757 | 132.26 | 146.96 808.28
AC 940 | 1879 | 2819 | 3758 | 4698 | 5637 | 6577 | 7517 | 8456 | 93.96 516.77
Yang T158 | 2317 | 3475 | 4633 | 5791 | 6950 | 8108 | 92.66 | 10424 | 11583 637.04
Avproach Model Construction Time
PP Fold 0 | Fold1 | Fold2 | Fold3 | Fold 4 | Fold 5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Total Time
™ 21.78 | 2178 | 21.78 | 21.81 | 21.81 | 21.81 | 21.81 | 21.81 | 21.82 | 21.82 218.03
BZ 287 287 2.87 2.87 2.87 2.90 2.90 2.90 2.90 2.90 28.85
KL 258 758 258 258 258 2.60 2.60 2.60 2.60 2.60 25.90
SVM 3.02 3.02 3.02 3.03 3.03 3.03 3.03 3.04 3.04 3.04 30.30
AC 237 237 237 237 2.39 2.39 2.39 2.39 241 241 23.86
Yang 2.78 2.78 2.78 2.80 2.80 2.80 7.80 7.80 283 2.83 28.00
TABLE 8

Model construction time, and recommendation and model update time, across the 10 folds, for TopicMiner™ TM (TM), Bugzie (BZ), LDA-KL (KL),
SVM-LDA (SVM), LDA-Activity (AC), and Yang et al.’s approach (Yang) in Mozilla (in minutes).

Approach Model Construction Time
PP Fold 0 | Fold1 | Fold2 | Fold3 | Fold4 | Fold5 | Fold 6 | Fold 7 | Fold 8 | Fold 9 | Total Time
™ 11.30 22.59 33.89 45.18 56.48 67.77 79.07 90.36 101.66 112.95 621.24
BZ 0.24 0.48 0.72 0.96 1.20 1.44 1.68 1.92 2.16 2.40 13.19
KL 6.33 12.67 19.00 25.34 31.67 38.01 44.34 50.68 57.01 63.34 348.40
SVM 8.55 17.10 25.64 34.19 42.74 51.29 59.83 68.38 76.93 85.48 470.13
AC 6.06 12.12 18.19 24.25 30.31 36.37 42.43 48.50 54.56 60.62 333.41
Yang 7.41 14.83 22.24 29.66 37.07 44.48 51.90 59.31 66.72 74.14 407.76
Approach Model Construction Time ]
pp Fold 0 [ FoldT | Fold2 [ Fold3 | Fold4 | Fold5 [ Fold 6 | Fold 7 [ Fold 8 | Fold 9 [ Total Time
™ 1494 | 1494 | 1494 | 1497 | 1497 | 1497 | 1497 | 1499 [ 1499 | 1499 149.67
Bz 2.66 2.66 2.67 2.67 2.67 2.69 2.69 2.69 2.69 2.69 26.78
KL 1.92 1.92 1.92 1.94 1.94 1.94 1.94 1.94 1.94 1.94 19.34
SVM 2.34 2.34 2.34 2.35 2.35 2.35 2.35 2.38 2.38 2.38 23.56
AC 1.56 1.56 1.56 1.58 1.58 1.58 1.58 1.58 1.58 1.58 15.74
Yang 1.96 1.96 1.96 1.96 1.97 1.97 1.97 1.99 1.99 1.99 19.72

selections of the initial seed. We find that the topics in-
ferred using MTM are slightly different for the multiple
runs, which causes the performance of TopicMiner™”™ to
slightly fluctuate. The topics slightly fluctuate with different
seeds because of the random process involved in Gibbs
sampling. To reduce the fluctuation further, it is possible to
either increase the number of iterations in Gibbs sampling
or to consider the generation of multiple topic models which
are used to vote on the recommendation (c.f., [11]). We leave
the exploration of these options as future work.

Moreover, we notice that the top-5 accuracies of
TopicMiner™T™ are higher than the corresponding top-1
accuracies; this is the case since top-1 accuracy (i.e., the
proportion of bug reports for which the first recommended
fixer is the actual fixer) is a stricter evaluation metric, than
top-5 accuracy (i.e., the proportion of bug reports for which
one of the first five recommended fixers is the actual fixer).

8.2 Effect of Training Using the Last Frame

In our previous section, we use the same longitudinal data
setup described in Section 7.2. Shokripour et al. find that
training a prediction model by using the whole history of a

software system may cause a loss of performance [34]. Here,
we would like to investigate whether it is the same case
for bug triaging. To perform such investigation, we adapt
the experiment setting described in Section 7.2, such that in
each fold, we reduce the training set to include only the last
frame. For example, in fold 9, we only use the bug reports
in frame 9 to build the prediction model, and test using bug
reports in frame 10.

Table 9 compares the performance of TopicMiner™?™

with the baselines in terms of top-1 and top-5 accu-
racies, respectively. We notice still our TopicMiner T
shows substantial improvement over the baseline approach-
es. Moreover, we notice that TopicMiner™T™ using only
the last frame achieves a slightly better performance than
TopicMiner™TM ysing all of the historical bug reports. On
average across the 5 projects, the top-1 and top-5 accuracies
for TopicMiner™ ™™ trained using only the last frame are
0.5864 and 0.8313, while these scores for TopicMiner™ M
using all of the historical bug reports are 0.5607 and 0.8251,
respectively.
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TABLE 9
TopicMiner™ TM (T'M) vs. Bugzie (BZ), LDA-KL (KL), SVM-LDA (SVM),
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Fig. 23. Average top-1 and top-5 accuracies for TopicMiner with LDA-Activity (AC), and Yang et al’s approach (Yang), respectively.

different number of runs applied to OpenOffice dataset.

Top-1 Accuracy

Projects T™ BZ KL | SVM | AC | Yang
GCC 05117 | 0.2654 | 0.1546 | 0.2138 | 0.1765 | 0.3234
OpenOffice | 05339 | 0.2945 | 0.2011 | 0.2765 | 0.1468 | 0.3814
1 1 Netbeans | 0.7196 | 0.3119 | 02234 | 0.2432 | 0.1728 | 0.4321
— s . e . . Eclipse 06423 | 0.2552 | 0.1541 | 0.1325 | 0.0865 | 0.4214
Mozilla | 0.5247 | 0.2134 | 0.1543 | 0.1537 | 0.1014 | 0.3009
[ Average. [ 0.5864 | 0.2681 | 0.1775 | 0.2039 | 0.1368 | 0.3718 |
———— . . Top-5 Accuracy
Projects T BZ KL | SVM | AC | Yang
0.5 1 GCC 0.8041 | 0.5934 | 0.4270 | 0.4867 | 0.4123 | 0.7076

OpenOffice | 0.7811 | 0.6006 | 0.5015 | 0.5062 | 0.3786 | 0.6542
Netbeans 0.8912 | 0.6012 | 0.4676 | 0.4812 | 0.3815 | 0.8614
Eclipse 0.9052 | 0.5372 | 0.3543 | 0.2865 | 0.1890 | 0.8234
—=-Top-5 Accuracy Mozilla 0.7751 | 0.4756 | 0.3543 | 0.3156 | 0.2236 | 0.6785

[ Average. | 0.8313 | 0.5616 | 0.4209 | 0.4152 | 0.3170 | 0.7450 |

Accuracy Scores

——Top-1 Accuracy

Number of Runs 8.3 Impact of Different Product-Component Combina-
tions

Fig. 24. Average top-1 and top-5 accuracies for TopicMiner™TM jith

_ : Considering some product-component combinations have
different number of runs applied to Netbeans dataset.

more bug reports, while some product-component combi-
nations have less, we also check whether there is any fall



TABLE 10
The first 5 product-component combinations which appear at least 10
times, and the top 5 product-component combinations which appear
the most in OpenOffice dataset.

[ Product | Component [ # Comb. | Top-1 | Top-5 |
performance code 10 0.00 0.00
udk documentation 12 0.08 0.17
Infrastructure | documentation 12 0.25 0.58
App Dev vba 12 0.50 0.50
Base MySQL Conn 12 0.33 0.33
General ui 1334 0.43 0.68
gsl code 1634 0.43 0.73
Writer code 1668 0.55 0.83
Base code 2464 0.68 0.92
General code 2509 0.40 0.69
TABLE 11

The first 5 product-component combinations which appear at least 10
times, and the top 5 product-component combinations which appear
the most in NetBeans dataset.

[ Product ] Component [ # Comb. [ Top-1 | Top-5 |

serverplugins Code 10 0.20 0.50
cnd ClassView 10 0.60 0.60
webservices Editor 10 0.40 0.70
ide Commit Validation 10 0.30 0.40
javascript JSON 10 0.50 0.60
Java Source 689 0.67 0.94
cnd Code Model 783 0.61 0.97
debugger Java 806 0.88 0.99
php Editor 1087 0.66 0.97
projects Maven 1132 0.73 0.98

off in performance for product-component combinations
with fewer bug reports. Tables 10 and 11 present the first
5 product-component combinations which appear at least
10 times, and the top 5 product-component combinations
which appear the most in OpenOffice and Netbeans dataset-
s, respectively. The columns correspond to the name of the
product (Product), name of the component (Component),
number of the times that the product-component combina-
tion appears in our collected data (# Comb.), top-1 accuracy
for TopicMiner”™ for bug reports that fall under the
product-component combination (Top-1), and top-5 accura-
cy for TopicMiner™”™ (Top-5).

From Tables 10 and 11, we notice in general, as the
number of bugs in the product-component combination
increases, the top-1 and top-5 accuracies also increase. For
example, for NetBeans dataset, the top-1 and top-5 accura-
cies for the product-component combination “serverplugin-
Code” are 0.20 and 0.50, while the top-1 and top-5 accuracies
for the product-component combination “projects-maven”
are 0.73 and 0.98.

MTM LDA

8.4 TopicMiner vs. TopicMiner

TopicMiner can be paired with various topic models. To fur-
ther validate the benefit of our new topic model MTM, we
pair TopicMiner with LDA (TopicMiner’P#) and compare
its performance with TopicMiner™ ™™ . To pair TopicMiner
with LDA, we simply modify the first step of TopicMiner,
described in Section 6, to use LDA instead of MTM. Notice
LDA does not use the product-component combination in-
formation, so we leave them out when training and using
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TABLE 12
TopicMinerMTM (TM) ys, TopicMiner*P4 (TL).

Projects T;I?wl Accujricy ngws Accu;icy
GCC 0.5048 | 0.2888 || 0.7864 | 0.6443
OpenOffice | 0.5161 | 0.1573 || 0.7757 | 0.3687
Netbeans | 0.6868 | 0.5383 || 0.9084 | 0.8881
Eclipse 0.6127 | 0.4278 || 0.8865 | 0.8265
Mozilla 0.4831 | 0.3136 || 0.7686 | 0.6690
[ Average. | 0.5607 | 0.3452 ][ 0.8251 [ 0.6793 |

TABLE 13
TopicMinerMTM (TM) vs. TopicMinert D4, (TE ).

. Top-1 Accurac Top-5 Accurac

Projects TIJ)W T f Y TI;” T LL y
GCC 0.5048 | 0.3043 0.7864 | 0.6649
OpenOffice | 0.5161 | 0.1854 || 0.7757 | 0.4032
Netbeans 0.6868 | 0.5621 0.9084 | 0.8654
Eclipse 0.6127 | 0.4456 0.8865 | 0.8321
Mozilla 0.4831 | 0.3245 0.7686 | 0.6821

[ Average. [ 0.5607 [ 0.3644 “ 0.8251 [ 0.6895 ]

LDA. After we get the topic distributions by leveraging
LDA, we then input the topic distributions with the product-
component combination information into TopicMiner. Top-
icMliner considers both the topic distributions and product-
component combination to recommend developers.

Table 12 presents the top-1 and top-5 accura-
cies for TopicMinerMT™ and TopicMiner*P4. We notice
that TopicMiner™TM achieves better performance than
TopicMiner"P4. Across the 5 projects, TopicMiner™ ™™ on
average improves top-1 and top-5 prediction accuracies of
TopicMinerP4 by 62.43% and 21.46%, respectively.

8.5 TopicMiner "M ys, TopicMiner:24

Local

Here, we create a new baseline named TopicMinert D4, This
baseline first groups bug reports according to their product-
component combination. Next, for each group, we use L-
DA to extract the topic distributions for the bug reports,
and build a TopicMiner model. For a new bug report, we
first get its product-component combination, and use the
corresponding TopicMiner model for the particular feature
combination to recommend fixers.

Table 13 presents the top-1 and top-5 accuracies

for TopicMiner
TopicMinerMTM

icMinert D4, Across the 5 projects, TopicMiner

MTM

, and TopicMiner£24, We notice that

achieves better performance than Top-
MTM

on

average improves top-1 and top-5 prediction accuracies of
TopicMiner D4, by 53.87% and 19.67%, respectively. Notice
TopicMiner M uses both global (i.e., from all feature com-
binations) and local information (i.e., from a specific feature
combination) to identify the topics of a bug report, while

TopicMinert D4, only uses local information.

8.6 Adding Product and Component Information to the
Baselines

Here, we also incorporate product and component infor-
mation into the 4 baseline approaches (Bugzie, LDA-KL,



TABLE 14
TopicMinerMTM (TM) ys. Bugzie (BZ*), LDA-KL (KL*), SVM-LDA
(SVM*), and LDA-Activity (AC*), respectively.

. Top-1 Accuracy
Projects TM | BZ* | KL* | SVM* | AC*
GCC 0.5048 | 0.2808 | 0.1780 | 0.2470 | 0.0531
OpenOffice | 0.5161 | 0.3314 | 0.1461 | 0.1602 | 0.0546
Netbeans 0.6868 | 0.4333 | 0.4356 | 0.4594 | 0.2362
Eclipse 0.6127 | 0.4186 | 0.3891 | 0.3915 | 0.2605
Mozilla 0.4831 | 0.2842 | 0.2552 | 0.2920 | 0.1137
[ Average. | 0.5607 | 0.3497 | 0.2808 | 0.3100 | 0.1436 |
. Top-5 Accuracy
Projects TM | BZ* | KL* | SVM* | AC*
GCC 0.7864 | 0.6638 | 0.5380 | 0.6021 | 0.2542
OpenOffice | 0.7757 | 0.6739 | 0.3529 | 0.3519 | 0.2156
Netbeans 0.9084 | 0.8392 | 0.8422 | 0.8553 | 0.7638
Eclipse 0.8865 | 0.8230 | 0.7852 | 0.8131 | 0.7342
Mozilla 0.7686 | 0.6684 | 0.5992 | 0.6482 | 0.4309
[ Average. | 0.8251 | 0.7337 | 0.6235 | 0.6541 | 0.4797 |

SVM-LDA, and LDA—ActiVity)7. We first divide the datasets
into many small datasets, one for each feature combination
(i.e., product-component combination). Next, we train a
model for each feature combination, and use the model
to recommend fixers for bug reports of the same feature
combination. The goal is to check whether the baseline ap-
proaches work better than TopicMiner™T™M if they also con-
sider product and component information. Table 14 presents
the top-1 and top-5 accuracies. From the table, we notice
the improvement of our method over Bugzie, LDA-KL,
SVM-LDA, and LDA-Activity are substantial. Across the
5 projects, TopicMiner™ ™™ on average improves top-1 and
top-5 prediction accuracies of Bugzie by 60.34% and 12.46%,
LDA-KL by 99.68% and 32.33%, SVM-LDA by 80.87% and
26.14%, LDA-Activity by 290.46% and 72.00%, respectively.

8.7

By default, we set the number of iterations for MTM as
500. In this section, we also investigate the performance
of TopicMiner™T™ with different number of iterations. We
set the number of iterations as 100 - 1,000, and every time
increase it by 100. Figures 27, 28, 29, 30, and 31 present the
top-1 and top-5 accuracies for TopicMiner 7™ with differ-
ent number of iterations for GCC, OpenOffice, Netbeans,
Eclipse, and Mozilla datasets, respectively. We notice that
when we increase the number of iterations from 100 to 500,
the performance of TopicMiner™ 7 is increased. However,
when we increase the number of iterations from 500 to 1,000,
the performance of TopicMiner™”™ remains more or less
the same. In practice, we will need more time to run MTM
if we set a high number of iterations. Thus, we recommend
MTM users to set the number of iterations as 500.

Impact on Different Number of Iterations

8.8

In the preprocessing of our datasets, we exclude bug fixers
who appear less than 10 times to reduce noise (follow-
ing [38], [10]), and we also remove terms which appear
less than 10 times to reduce noise and speed up the bug

Impact on the Preprocessing of Terms and Fixers

7. Notice Yang et al.’s approach incorporate the product and compo-
nent information into their recommendation model.

22

05 |

Top-1 Accuracy

Accuracy Scores

Top-5 Accuracy

100 400 700
Number of Iterations

Fig. 27. Top-1 and Top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the GCC dataset.

05 F

Top-1 Accuracy

Accuracy Score

Top-5 Accuracy

100 400 700
Number of Iterations

Fig. 28. Top-1 and Top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the OpenOffice dataset.

triaging process (following [38], [10]). In this section, we
also investigate the performance of TopicMiner™T™ with
all of the terms and fixers in the five datasets. Table 15
presents the top-1 and top-5 accuracies of TopicMiner™ 7™
compared with the baseline approaches in this noisy set-
ting. On average, TopicMiner™ 7 achieves top-1 and top-
5 accuracies of 0.5321 and 0.7736 respectively. We notice
that TopicMiner™?™ achieves a better performance in the
default setting than the noisy setting — which is expected.
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Fig. 29. Top-1 and Top-5 accuracies for TopicMiner™TM with different
number of iterations applied to the Netbeans dataset.
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Fig. 30. Top-1 and Top-5 accuracies for TopicMinerMTM with different
number of iterations applied to the Eclipse dataset.
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Fig. 31. Top-1 and Top-5 accuracies for TopicMiner™TM with different
number of iterations applied to the Mozilla dataset.

The same reduction in performance applies to all baselines.
Furthermore, TopicMiner™”™ still outperforms the base-
line approaches by substantial margins even in the noisy
setting.

TABLE 15
Top-1 and top-5 accuracies of TopicMiner™ TM compared with the
baseline approaches in the noisy setting.

Top-1 Accuracy

Projects ™ BZ KL | SVM | AC | Yang
GCC 05068 | 0.2250 | 0.1290 | 0.1739 | 0.1345 | 0.2654
OpenOffice | 0.5077 | 0.2509 | 0.1727 | 0.2315 | 0.1189 | 0.3348
NetBeans | 0.6432 | 0.2913 | 0.1789 | 02123 | 0.1456 | 0.4212
Eclipse | 0.6220 | 02234 | 0.1123 | 0.1036 | 0.0712 | 0.3945
Mozilla | 0.4724 | 0.1894 | 0.1432 | 0.1345 | 0.0783 | 0.2714
Average. | 0.5504 | 0.2360 | 0.1472 | 0.1711 | 0.1097 | 0.3375

. Top-5 Accuracy
Projects ™ BZ KL | SVM | AC | Yang
GCC 0.7923 | 05513 | 0.3812 | 0.4432 | 03723 | 0.6645
OpenOffice | 0.7623 | 05514 | 04652 | 0.4532 | 0.3334 | 0.6512
NetBeans | 0.8543 | 0.5543 | 04234 | 04313 | 03323 | 0.8213
Eclipse | 0.8923 | 0.4832 | 0.3234 | 02513 | 0.1704 | 0.7945
Mozilla | 0.7603 | 0.4344 | 0.3234 | 0.2789 | 0.1923 | 0.6345
Average. | 0.8123 | 0.5149 | 0.3833 | 0.3716 | 0.2801 | 0.7132
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8.9 Threats to Validity

Threats to internal validity relates to errors and bias in our
experiments. We have double checked our experiments and
datasets. Still there could be errors that we did not notice.
For the ground truth selection, to ensure the fixers in the
bug reports are the true bug fixers, we follow the previous
approaches such as [38]. We first collected the bug reports
which have status of “closed” and “fixed” to ensure these
bugs are real bugs and have been fixed. Next, we extracted
the fixers in the “assigned to” field. The final fixer who fixed
the bug would be recorded into the “assigned to” field. To
further reduce the threats due to ground truth identification,
we also remove the bug reports with the ”assigned to” fields
set to generic names.

Our settings for the parameters of LDA and MTM might
not be optimal; to minimize this threat we have investigated
various numbers of topics and used the same settings for
LDA and MTM. Also, even with the suboptimal settings,
our approach has outperformed Bugzie, which is one of the
state-of-the-art approaches.

In the paper, we use the value of the product and
component fields as inputs to MTM. Values of product and
component fields have been used by a number of previous
studies on bug report management [37], [29], [43], [39]. In
the bug triaging process, the appropriate fixer is typically
determined after the values of the product and component
fields are determined. For example, in Mozilla® and Eclipse9,
when users report a bug, they are required to fill the product
and component fields, and then the bug triager would
find the appropriate fixer. The values of the product and
component fields can be changed during the life time of
a bug report. In this work, we use the final values of the
product and component fields. Thus, we are also interested
to check whether the final values of these fields are typically
determined before the final bug fixer is determined. We
analyze the bug reports of GCC, OpenOffice, Netbeans,
Mozilla, and Eclipse, and we find that for 86.52%, 85.22%,
38.03%, 79.83%, and 85.33% of the bug reports of the respec-
tive software projects the product and component fields are
finalized first before the final bug fixers are assigned. Notice
that for Netbeans, the percentage is low; we asked some
developers in the Netbeans development community and
they told us that this is due to the community maintenance
process — i.e., many products and components are renamed
and the values of the product and component fields of older
bug reports are changed to reflect the new names. Despite
the difference between Netbeans and the other datasets,
we include it for diversity purpose. Reclassifications of old
products and components happen in practice, and we need
to investigate if our approach works well for such situation.
For the other four software projects, most of the bug reports
have their product and component fields finalized before
the fixer is determined. Thus, we believe the usage of the
product and component fields is realistic and the values
of these fields can be used to help find a suitable fixer in
practice.

8. https:/ /developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_
writing_guidelines
9. https:/ /bugs.eclipse.org/bugs/page.cgi?id=bug-writing. html



Threats to external validity relates to the generalizabil-
ity of our results. We have analyzed 227,278 bug reports
from 5 software systems. In the future, we plan to reduce
this threat further by analyzing more bug reports from more
software systems.

Threats to construct validity refers to the suitability of
our evaluation measures. We use top-1 and top-5 accuracies
which are also used by past bug triaging studies [10], [20],
[38]. Thus, we believe there is little threat to construct
validity.

9 RELATED WORK
9.1 Automated Bug Triaging

There are a number of machine learning and information
retrieval approaches for automatic bug triaging [7], [8], [22],
[27], [35], [15], [38], [20], [26]. Anvik et al. and Cubranic et al.
propose the bug triaging problem, and use machine learning
methods such as Naive Bayes, SVM, and C4.8 to solve it [7],
[15]. Jeong et al. propose to use a bug tossing graph to
improve bug triaging prediction accuracy [20]. Bhattacharya
et al. improve the accuracy of the approach by Jeong et
al. further by proposing a multi-feature tossing graph [10].
Tamrawi et al. [38] propose a method called Bugzie, which
uses a fuzzy set and cache-based approach to increase the
accuracy of bug triaging. Naguib et al. propose a method
that compares a bug report to developers in topic space by
leveraging LDA [27]. They first categorize bug reports into
topics by using LDA, and then create activity profiles for
developers in a bug tracking system. A profile contains two
parts: developer’s role and topic associations. These profiles
are then used to recommend developers for new bug re-
ports. TopicMiner™ M and LDA-Activity use different topic
models and the formulas used to compute the suitability of
a developer to a bug report also differ. To assign topics to
words in bug reports, we build a specialized topic model,
i.e.,, MTM, that takes special characteristics/features of bug
reports into consideration. Also, to compute developer topic
associations (i.e., be (d), the similarity between a developer
and a topic), different from LDA-Activity, TopicMiner T
considers feature combination and the rarity of a topic
(i.e., the denumerator of Equation 8). To predict bug fixers,
LDA-Activity considers developer historical contributions
not only as fixers but also in other roles (i.e., reviewers and
assigners). TopicMiner™ ™™ focuses on developer contribu-
tions as fixers; it ignores developer contributions in other
roles which might introduce noise. We have shown that
TopicMiner™TM outperforms LDA-Activity by a substantial
margin.

Yang et al. also use LDA to extract topics from bug
reports, and find bug reports related to each topic [47].
For a new bug report, their approach first decides the
topics of the bug report. Then they utilize multiple features
(i.e., component, product, priority and severity) to identify
similar reports that have the same set of features as the
new bug report, and recommend developers based on the
similar reports. Our approach is different from Yang et al.’s
approach. First, we design a specific topic model named
MTM which incorporates the multi-feature information into
the topic model while Yang et al. only use LDA. Second,
Yang et al. use severity and priority fields in the bug reports;
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however, in practice, most of the bug reports set their
severity and priority values as the default value [45].

There have been a number of automatic bug triaging
methods that use other information sources aside from
bug reports, e.g., commits and source code comments. A
number of approaches use feature location techniques to
find program units (e.g., files or classes) that are related
to a change request (i.e., bug report or feature request)
and then mine commits in version control repositories or
comments in source code files to recommend appropriate
developers [21], [24], [33]. The success of these approaches
depends on the accuracy of feature location techniques
which are often still low [32]. Also, the quality of the code
comments and commits information can be poor due to
outdated comments [19], unavailability of authorship infor-
mation for authors without commit rights in CVS and SVN
repositories [23], etc. In this work, we focus on analyzing
textual information available in bug reports to recommend
appropriate fixers.

9.2 Other Studies on Bug Report Management

Somasundaram and Murphy propose LDA-KL and SVM-
LDA to recommend appropriate components to a bug re-
port [35]. They first extract topic distributions of bug reports
by using LDA, and then use KL-divergence and support
vector machine (SVM) to recommend appropriate compo-
nents. LDA-KL computes the similarity between the topic
distribution of a new bug report with the average topic
distribution of a collection of bug reports belonging to the
same unit (i.e., component). The units with the least di-
vergence are recommended. SVM-LDA works by inputting
topic distributions of training (historical) bug reports and
their labels (i.e., components they belong to) to a SVM to
create a classifier. This classifier is then used to predict
labels of a new bug report. In this work, we adapt LDA-
KL and SVM-LDA for bug fixer recommendation; we do so
by considering bug reports fixed by the same developer as
a unit (for LDA-KL) and by considering bug fixers as labels
(for SVM-LDA). We have compared TopicMinerM ™™ with
LDA-KL and SVM-LDA, and shown that TopicMiner™T™
outperforms these baselines.

Bortis and van der Hoek propose Porchlight which al-
lows developers to tag bug reports and search bug reports
of interest using a query language [13]. Our work, similar to
past automated bug triaging solutions [7], [8], [27], [35], [15],
[38], [20], [26], is complementary to Porchlight. Porchlight
can be used along with automated bug triaging solutions to
navigate through a large number of bug reports and assign
appropriate developers to each one of them.

Related to bug triaging studies, a few studies recom-
mend people that would participate in a bug resolution
process [41], [46], [44]. These people include triagers, fixers,
and other people that post one or more comments in a
discussion thread, corresponding to a bug report, in a bug
tracking system. For example, Xia et al. use LDA and multi-
label learning to recommend participants in a bug resolution
process [44]. Different from these studies, in this work, we
focus on the bug fixers. For a bug report, since there is
only one fixer but there are many participants to the bug
resolution process, we address a more difficult problem.



Different from the approach in [44], we propose a new topic
model, named MTM, and show that it can outperform LDA
for bug triaging.

9.3 Specialized Topic Model

Nguyen et al. propose a specialized topic model to find
buggy source code files [28]. Nguyen et al. propose another
topic model to detect duplicate bug reports [29]. Our work
is orthogonal to the above studies and our topic model is
also different from the models used in the above studies.
MTM assigns topics to words in a bug report from the
topic distribution of the corresponding feature combination
of that report. We need to consider feature combination for
bug triaging as many developers are more familiar with a
particular set of product and component combinations than
other combinations. However, for bug triaging, there is no
need to consider the topic distribution of buggy source code
files (considered in [28]) or the topic distribution of buggy
concepts shared by bug reports that are duplicate of one
another (considered in [29]).

10 CONCLUSION AND FUTURE WORK

We propose a new topic model based bug triaging approach,
named TopicMiner, and a new topic model, named multi-
feature topic model (MTM), which takes into consideration
the features of a bug report when assigning topics to words
in the report. We have evaluated our solution on 227,278 bug
reports from five software systems and demonstrate that
TopicMiner™TM outperforms Bugzie, LDA-KL, SVM-LDA,
LDA-Activity, and Yang et al.’s approach by substantial
margins.

In the future, we plan to improve the effectiveness of our
approach further, and investigate additional bug reports.
Also, in this work, we merge the two features (i.e., product
and component) as one composite feature (i.e., by creating
a feature combination). Other ways of using the multiple
features exist and we plan to explore them in a future
work. We also plan to design a better topic model to predict
fixers when the number of bug reports in a specific product-
component combination is small (e.g., by using a mixture of
models which includes a general model that the approach
can back off to when the number of bug reports in a specific
product-component combination is small).
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