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ABSTRACT

Variational Auto-Encoders (VAEs) are designed to capture compressible informa-
tion about a dataset. As a consequence the information stored in the latent space is
seldom sufficient to reconstruct a particular image. To help understand the type of
information stored in the latent space we train a GAN-style decoder constrained
to produce images that the VAE encoder will map to the same region of latent
space. This allows us to “imagine” the information captured in the latent space.
We argue that this is necessary to make a VAE into a truly generative model. We
use our GAN to visualise the latent space of a standard VAE and of a β-VAE.

1 INTRODUCTION

Variational auto-encoders (VAEs) have made a significant impact since their introduction by Kingma
and Welling (2014). However, one of their perceived problems is their reconstruction performance.
This has spawned a wave of research into trying to improve the reconstruction performance (Zhao
et al., 2017; Dai and Wipf, 2019; Larsen et al., 2016; Gao et al., 2017; Brock et al., 2017). We argue
that such attempts are misguided. The whole point of VAEs is to capture only compressible infor-
mation and discard information specific to any particular image. This is a consequence of the well
known evidence lower bound or ELBO objective function consisting of a negative log-probability
of generating the original image from the latent representation (this is often implemented as a mean
squared error between the image and the reconstruction, although as we argue in Appendix A this
term should be proportional to the logarithm of the mean squared error) and a KL-divergence be-
tween the probability distribution representing a latent code and a ‘prior distribution’ (usually taken
as a multivariate normal with mean zero and unit variance). These two terms have a nice inter-
pretation in terms of the minimum description length (Rissanen, 1978)—this has been described
elsewhere, for example, Chen et al. (2016). The KL-term can be viewed as a measure of the amount
of information in the latent code while the log-probability of the image measures the amount of in-
formation required to change the image produced by the decoder into the input image (see Section 3
for details). That is, the latent space of a VAE can be viewed as a model of the dataset—capturing
compressible information while not encoding any image specific information (which is cheaper to
communicate using the reconstruction loss).

The great strength of a VAE is that it builds a model of the dataset that does not over-fit (i.e. code
for in-compressible features found in specific images). However, because of this it typically will not
do a good job of reconstructing images as the latent code does not contain enough information to
do the reconstruction (for very restrictive dataset such as MNIST and Celeb-A a lot of information
can be captured in the latent space, but for more complex datasets like ImageNet or CIFAR the
reconstructions are poor). Of course, if you want good reconstructions on the training set then the
simplest solution is to remove the KL-divergence term and just use an autoencoder. However, having
a model that does not over-fit the dataset can be useful, but in this case the decoder of a standard
VAE should not be regarded as a generative model—that is not its purpose. If we wish to generate
realistic looking images we need to imagine the information discarded by the encoder. As a rather
simplified analogy, consider a verbal description of an image “a five year old girl in a blue dress
standing on a beach”. If we asked different artists to depict such scene there is clearly not enough
information to provide pixel-wise or feature-wise similarity between their interpretation although
each artist could render a convincing image that satisfies the description. In a similar manner if we
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want a VAE to act as a generative model we need to build a renderer that will imagine an image
consistent with the latent variable representation.

A simple way to achieve this is using a modified Generative Adversarial Network (GAN). We call
such a model a latent space renderer-GAN (or LSR-GAN). To generate an image we choose a
latent vector z from the prior distribution for the VAE. This is passed to a generator network that
generates an image, x̂, with the same dimensions as that of the dataset used to train the VAE. The
generated image has both to convince a discriminator network that it is a real image—as is usual
for a GAN (Goodfellow et al., 2014)—at the same time the VAE encoder should map x̂ close to z.
To accomplish this we add an additional cost to the normal GAN loss function for the generator
(LGEN)

LGEN − λ log(qφ(z|x̂)) (1)

where qφ(·|x̂) is the probability distribution generated by the VAE encoder given an image x̂ and z
is the latent vector that was put into the GAN generator. Note that when training the LSR-GAN we
freeze the weights of the VAE encoder. The constant λ is an adjustable hyperparameter providing a
trade-off between how realistic the image should look and how closely it captures the information
in the latent space. This modification of the objective function can clearly be applied to any GAN or
used with any VAE. Although the idea is simple, it provides a powerful method for visualising
(imagining) the information stored in a latent space. Interestingly, it also appears to provide a
powerful regularisation mechanism to stabilize the training for GANs.

Combinations of VAEs and GANs are, of course, not new (Makhzani et al., 2016; Larsen et al.,
2016; Brock et al., 2017; Huang et al., 2018; Srivastava et al., 2017). In all cases we are aware of
GANs have been combined with VAEs to “correct” for the poor reconstruction performance of the
VAE (see Appendix B for a more detailed discussion of the literature on VAE-GAN hybrids). As we
have argued (and expound on in more detail in Section 3), we believe that the decoder of a VAE does
the job it is designed to do. They cannot reconstruct images accurately, because the latent space of a
VAE loses information about the image, by design. All we can do is imagine the type of image that
a point in the latent space represents.

In the next section, we show examples of images generated by the LSR-GAN for both normal VAEs
and β-VAEs (we also spend time describing VAEs, β-VAEs and the LSR-GAN in more detail). In
addition, in this section we present a number of systematic experiments showing the performance of
a VAE and LSR-GAN. In Section 3, we revisit the minimum description length formalism to explain
why we believe a VAE is doomed to fail as a generative model. We conclude in Section 4. We cover
more technical aspects in the appendices. In Appendix A we show that the correct loss function
for a VAE requires minimising a term proportional to the logarithm of the mean squared error.
In Appendix B we draw out the similarities and differences between our approach to hybridising
VAEs with GANs and other work in this area. We present some additional experimental results in
Appendix C. A detailed description of the architecture of LSR-GAN is given in Appendix D. We
end the paper with Appendix E by showing some samples generated by randomly drawing latent
variables and feeding them to the LSR-GAN.

2 IMAGINING LATENT SPACES

A natural question to ask is what information about an image gets represented in the latent space of
a VAE. To answer this we can use the VAE encoder to generate a distribution qφ(z|x) representing
that image in the latent space (see Sections 2.1 for details on VAEs). From this distribution we can
sample points in the latent space and feed this to the LSR-GAN generator. We show examples of
this for both CIFAR-10 and ImageNet (down-sampled to 64 × 64) in Figure 1. In all cases in this
paper the input images are taken from a test set that is independent of the training set. Note that both
CIFAR-10 and ImageNet are “hard” for VAEs in the sense that they represent extremely diverse
sets of images. As a consequence, the VAE latent space will struggle to store detailed information
about the images and the VAE reconstructions will be poor. We have repeated this for a β-VAE (see
section 2.3 for a full description of β-VAEs). We note that there is very little variation between the
different samples drawn from qφ(z|x), particularly for the standard VAE (β = 1), showing that the
latent space of the VAE is relatively smooth (there is more variation when β = 20).
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Input Generated images based on Latent representation

CIFAR-10

β=1

β=1

β=20

β=20

ImageNet

64x64

β=1

β=20

Figure 1: Images generated by our GAN from latent representations of an input image (test images)
based on different β value on CIFAR-10 and ImageNet, the first column is the original image.

To get a sense of the variation in the information stored in latent spaces we show in Figure 2 input-
output pairs, where the left image is the input and right image is the output generated by the LSR-
GAN generator seeded with a latent vector encoding of the input image. The reconstructions capture
the shape and background, but clearly loses a lot of detail. In some cases it appears that the type of
object is being captured, although in the case of the boat with the β-VAE (with β = 20) the wrong
object is being rendered.

2.1 VARIATIONAL AUTOENCODERS

The structure of a VAE is represented schematically below.

x ∼ D
Encoder

(parameters φ)
(µφ,σ

2
φ) z ∼ q(z|x,φ) Decoder

(parameters θ)
x̂ = Dθ(z)

We sample an input x from some dataset, D. To be concrete we will consider the case where
the inputs are images, although clearly a VAE can be used to represent many different types of
data. For each input x the encoder outputs a mean vector, µ, and standard deviation vector, σ, that
describes an axis aligned normal distribution, qφ(z|x) = N

(
z
∣∣µφ(x),diag(σ2

φ(x))
)

. A latent
variable z is sampled from this distribution and then fed to a decoder. For simple black and white
datasets such as MNIST the decoder outputs a scalar at each pixel location that can be interpreted
as the probability that the pixel is black. For more complex datasets the decoder ususal generates a
“reconstruction” x̂ = Dθ(z). The probability of generating a pixel value xi is then usually taken as
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CIFAR-10

ImageNet

64x64

Figure 2: Examples of input-output pairs of images. The left image is an image from the test dataset.
The right image is the image generated by the LSR-GAN seeded with a latent vector encoding of
the input image (β = 1)
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CIFAR-10

Input

VAE

LSR-GAN

Figure 3: The comparison between reconstruction images of VAE and LSR-GAN on test dataset.

a normal distribution with mean x̂i (i.e. pθ(xi|z) = N (xi|x̂i, σ2)) and variance σ2 that measures
the expected size of the errors between the input images, x, and the reconstructions, x̂.

The loss function for a VAE is equal to the negative evidence lower bound (ELBO)

L = −Ex∼D
[
Ez∼qφ(z|x)[log(pθ(x|z))] + KL

(
qφ(z|x)

∥∥N (0, I)
)]
. (2)

As explained in Appendix A, log(pθ(x|z)) is chosen to be proportional to the logarithm of the
reconstruction error between x̂ and the input image x—in our experiments this produced better
reconstructions than replacing log(pθ(x|z)) with the mean squared error.

2.2 LSR-GAN

LSR-GAN is a novel hybridization of VAE and GAN model. The most distinct difference of LSR-
GAN from previous work is that it is a two-stage model. In the first stage we train the VAE model.
Having done this we freeze the weights of the VAE and train the GAN. We train the discriminator,
D, of LSR-GAN in the same way as a normal GAN. That is, we minimise a loss function

LD = −Ex[log(D(x))]− Ez [log(1−D(G(z)))] (3)

where G is the generator or the decoder of LSR-GAN. The job of the discriminator, D is, to decide
whether its import is a real image or not. Thus, to optimise the loss function we neet to maximize
the log-probability of passing the real data, x, while minimising the log-probability of accepting
a random sampling G(z) generated by a generator G seeded with a random latent vector z. The
architecture of the generator is the same as that of a normal GAN but the loss function is slightly
different. We add an additional term giving

LG = Ez [log(D(G(z)))] + λ log(qφ(z|G(z))) . (4)

The parameters of the discriminator and generator are trained in the usual tick-tock fashion using
gradient descent. We built the VAE and the generator of GAN using a ResNet (He et al., 2016) as it
gave slightly better performance than using a standard CNN. The architecture of the discriminator
is the same as DCGAN (Radford et al., 2016). The architecture is described in Appendix D.

To test the LSR-GAN we use the VAE to generate a latent representation z for an image drawn from
an independent test set. The latent vector is then used as a seed value for the generator in the LSR-
GAN. The LSR-GAN can get sharper reconstruction images than VAE (see Figure 3). Although
not visually so obvious, we have used a quantitative measure of sharpness computed as luminance-
normalised Laplacian (San Pedro and Siersdorfer, 2009, Section 3.1.2). For the reconstructed images
from the VAE we obtained a measure of 0.17± 0.03 while for the LSR-GAN we obtain 0.28± 0.08
(i.e. an improvement of a factor of two). We have also computed the FID measure of image quality
for CIFAR-10 (Heusel et al., 2017). For images seeded from a testing example the VAE achieved a
score of 89.8 while LSR-GAN achieved a score of 44.1, while for images seeded with random latent
variable (i.e. z ∼ N (0, I)) the FID score for the VAE is 138.6 while for the LSR-GAN it is 47.4.
This should not be surprising. The decoder of the VAE is training only where there are training
images. Despite the fact that the KL-divergence tries to ensure that as much latent space as possible
is used, the constraint of minimising the reconstruction loss means that most of the latent space is
far from a training example. Although the VAE does not do too badly generating testing examples,
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Figure 4: Examples of input-output pairs of images for different β values for a β-VAE. The first
row is from the test dataset. The second and third rows are Others reconstruction generated by
LSR-GAN for VAEs trained with different β values.

these tend to be substantially closer in the latent space to the training examples than random samples.
In contrast the LSR-GAN is trained on random samples so that the generator will have to produce
“realistic” images over the whole latent space. Of course, whether these generated images represents
anything recognisable is open to question. For diverse training sets such as CIFAR-19 and ImageNet
this may be very difficult. What image should we expect from a latent vector halfway between a
truck and a bird? In Appendix E we show images generated by seeding LSR-GAN with random
latent variables for CIFAR-10, ImageNet, MNIST and Celeb-A.

2.3 BETA-VAE

A goal of generating a latent representation is for the representation to be disentangled. Intuitively
disentanglement seems clear: We would want information that is somehow causally independent
to be encoded into orthogonal directions (or different variables) in our latent space (Bengio et al.,
2013). Unfortunately, this is not only quite difficult to achieve in practice (at least, in an unsupervised
setting), but it is even difficult to formulate (see Locatello et al. (2018)). Despite this difficulty, there
have been many attempts to achieve disentanglement (Kim and Mnih, 2018; Chen et al., 2018;
Burgess et al., 2018). One of the most prominent has been the β-VAE introduced by Higgins et al.
(2017), where the KL-divergence term in a normal VAE is weighted by a parameter β

L = −Ex∼D
[
Ez∼qφ(z|x)[log(pθ(x|z))] + βKL

(
qφ(z|x)

∥∥N (0, I)
)]
. (5)

The argument is that by making β � 1 we encourage disentanglement. Contrariwise, by making
β � 1 we make a VAE closer to an auto-encoder. This improves the reconstruction performance on
the training examples, but at the cost of allowing the latent space to over-fit the training set.

In Figure 4 we show examples of input-output pairs for different values of β. We observe that for
large β the outputs are quite different from the input images in contrast to small β where many more
details of the original input are captured.

Although the LSR-GAN model generates slightly clearer, less blurry, images, it has a lower recon-
struction error than the VAE decoder. We show the mean squared error measured on a testing set
from CIFAR-10 as a function of β in Figure 5(a). This poor performance of the LSR-GAN is un-
surprising, it uses the same information as the VAE (i.e. the information stored in the latent space).
By producing sharper images it will pay the price of getting the boundary wrong. The blurry edges
from the VAE is a way to hedge its bet and reduced the mean squared error. Interestingly, the mean
squared error remains fairly constant as we increase β from a low value, until we reach β = 1 after
which it rapidly increases. One interpretation of this fact is that the VAE with β = 1 is successfully
encoding all the useful information (i.e. compressible information) so for reconstructing unseen im-
ages it will perform as well as an auto-encoder. As we increase β above 1, the reconstruction error
increases rapidly.

In Figure 5(b) we show the classification performance as measured by a simple classifier trained
on the CIFAR-10 training set. The classifier performance achieved an 84% correct classification
on the raw images. We find little variation as we decrease β below 1. As we increase β above
1 the classification accuracy falls off. Again we can attribute this to the latent space of the VAE
(with β = 1) capturing most useful information. Interestingly the high-β VAE fails to capture
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(a) (b)

Figure 5: Performance of the VAE (blue points) and LSR-GAN (red points) versus β. In (a) we show
the means squared error, while in (b) we show the classification performance using a classifier taking
the reconstructed images. The images are taken from CIFAR-10. Error bars show±1 standard error.

“objectness” well. This suggests that, at least for CIFAR-10, the type of object does not contain
very much information about its appearance and is rapidly discarded.

3 MINIMUM DESCRIPTION LENGTH

To understand what VAEs do it is useful to interpret them in the framework of the minimum de-
scription length (MDL) formalism. In MDL we consider communication a dataset D through a
communication channel using as few bits as possible. We can do this using lossy compression,
where we encode each input x by a code z, which we communicate down our channel. The receiver
decodes the message and produces an approximation of the input x̂. To communicate the original
information we send the code z together with the error ε = x−x̂ between the input x and the recon-
struction x̂. Because the distribution of errors, p(ε), is more sharply concentrated than the original
inputs, p(x), this method allows us to communicate the image more efficiently than transmitting the
raw pixel values. The expected cost of transmitting an input is

L = Ex∼D [M(z) + E(ε)]

where M(z) is the number of bits needed to communicate the code, z, and E(ε) is the number
of bits required to communicate the error, ε. In the MDL formalism we attempt to find a code
that minimises the description length L. To communicate the model and errors we need to use an
optimal coding strategy. Rather than specifier and actual code we can use the Shannon bound (i.e.
the negative log-probability of the tokens we transmit). For this to be meaningful, we need to specify
both the errors and code to a finite precision. The precision of the errors will determine the accuracy
of the data we communicate. If the ith component of the error is distributed according to p(εi)
then the cost of communicating the error to a precision of ∆ is approximately − log(p(εi) ∆) =
− log(p(εi)) − log(∆). The factor − log(∆) is common to all coding schemes so is irrelevant to
choosing optimal codes z. In contrast the precision to which we transmit the model will directly
determine the cost M(z). There is a balance to be struck: a more precise model can potential lead
to a better reconstruction x̂, reducing the reconstruction cost, E(ε), but at the same time increasing
the cost, M(z), of communicating the code z.

The KL-divergence term, KL
(
q(z)

∥∥p(z)
)

(also known as the relative entropy) can be interrupted
as the communication cost (in nats) of transmitting a random variable z with uncertainty given by
q(z) assuming an underlying probability distribution of all random variables of p(z). Using this
interpretation we see that the loss function of a VAE is equivalent to the expected message length (in
nats) of communicating a sample from the dataset D by using a random variable z with uncertainty
q(z). By minimising the loss function we find a coding scheme with the minimum description
length (or, at least, an approximate local minimum). By encoding a message as a random variable
z drawn from a distribution qφ(z|x) the VAE is able to find an optimal balance between accuracy
to which it transmits the model (determined by the standard deviation vector, σ, generated by the
VAE encoder) and the need to reduce the reconstruction error. From an MDL perspective the ELBO
is the correct objective function, and should not be regarded as a approximate lower bound to what
we really want to achieve. If there are too many dimensions in the latent space then some of the
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components of z (channel in information theory terms) are such that zi is approximated distributed
by N (zi|0, 1) for all inputs x. The channel is effectively “switched off” (and it will be ignored by
the decoder as it is just a source of random noise). This is referred to as latent variable collapse
and is sometimes viewed as problematic, however, from the MDL viewpoint it acts as an elegant
automatic dimensionality selection technique.

The job of the decoder in a variational autoencoder is to reconstruct the image only using information
that can be compressed. Image specific information is ignored. For example, information about the
precise shape of an object is probably not compressible. As a result the decoder tends to hedge its
bets and has a blurry outline. Of course, some encoders and decoders will be better than others,
but to date there is little evidence in the literature that the performances of VAEs are massively sub-
optimal, at least, when working with images. With an extremely powerful encoder and decoder and
a limited dataset it would be possible for the encoder to communicate an identifier of the input image
and for the decoder to reproduce the image just from the identifier, thus avoiding communicating
any information about the visual content of the image—this requires that the decoder memorises all
the images. This would be an extreme case of what is sometimes called posterior collapse. There
is some evidence that with very strong encoders and decoders that the amount of information stored
in the latent space (as measured by the KL-divergence) decreases (Bowman et al., 2015). This
might point to a weakness of the VAE set-up—the MDL set-up really only makes sense when the
dataset is arbitrarily large—, but this problem could be ameliorated by data augmentation. However,
using standard CNN encoders and decoders we found no evidence for memorisation of the images
(for example, the VAE would produce a similar level of reconstruction for images from a separate
test set). For language modelling there seems to be more evidence that VAEs often fail to extract
information in the latent space, but for images it seems likely that a properly trained VAE will extract
a good fraction of the compressible information. We believe that the failure of the VAE decoder to
produce high quality reconstructions (except in the case very of simple datasets such as MNIST
and possibly CELEB-A) is because to do so would require communicating information that is non-
compressible. As a consequence we should not think of the decoder of a VAE as a generative model:
It will, by design, produce blurry and poor quality reconstructions. We want this to ensure that the
latent space only captures information that is common across many images. We see the mapping
from images to latent space as a many-to-one mapping. Thus, the mapping from the latent space to
images will be ambiguous and the best we can do is imagine an image compatible with the latent
variable: exactly what we have designed the LSR-GAN to do.

4 CONCLUSION

VAEs are often taken to be a pauper’s GAN. That is, a method for generating samples that is easier
to train than a GAN, but gives slightly worse results. If this is the only objective then it is clearly
legitimate to modify the VAE in anyway that will improve its performance. However, we believe that
this risks losing one of their most desirable properties, namely their ability to learn features of the
whole dataset while avoiding encoding information specific to particular images. We have argued
that because of this property, a VAE is not an ideal generative model. It will not be able to reconstruct
data accurately and consequently will struggle even more with generating new samples. One of the
weaknesses of the vast literature on VAEs is that it often attempts to improve them without regard
to what makes VAEs special.

As we have argued in this paper, a consistent way of using the latent space of a VAE is to use a GAN
as a data renderer, using the VAE encoder to ensure that the GAN is generating images that represent
the information encoded in the VAE’s latent space. This involves “imagining” the information that
the VAE disregards. LSR-GAN can be particularly useful in generating random samples, although,
as shown in Appendix E, for very diverse datasets the samples are often not recognisable as real
world objects. Although there are already many VAE-GAN hybrids, to the best of our knowledge,
they are all designed to “fix” the VAE. In our view VAEs are not broken and “fixing” them is actually
likely to break them (i.e. by encoding image specific information in the latent space). Although, the
main idea in this paper is relatively simple, we believe its main contribution is as a corrective to the
swath of literature on VAEs that, in our view, often throws the baby out with the bath water in an
attempt to fix VAEs despite the fact that perform in exactly the way they were designed to.
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Supplementary Material

A ON THE ELBO

In the standard VAE we maximise the log-probability of generating the original image. In the origi-
nal paper this was achieved by the decoder outputting a probability distribution akin to what happens
in the latent space. More often it is assumed that the pixel errors are normally distributed with some
variance σ2. Thus the log-probability of generating all the images is

∑
x sinD

Ez∼q(z|x)[log(p(x|z)] =

N∑
i=1

log
(
N (x|x̂, σ2)

)
= −

N∑
i=1

(xi − x̂i)2
2σ2

− N

2
log
(
2πσ2

)
where the sum is over all predicted pixels—i.e. the number of pixels in an image times the number
of colour channels times the number of examples (or, more usually, the mini-batch size). However,

σ2 =
1

N

N∑
i=1

(xi − x̂i)2

(at least, if we make the natural assumption that the errors have mean zero). As a consequence∑
x∈D

Ez∼q(z|x)[log(p(x|z)] = −N
2
− N

2
log
(
2πσ2

)
so that we should minimise N log

(
σ2
)
/2. In information theory terms this tells us that it cheaper to

communicate the residues if they are more tightly concentrated. Note that since σ2 is proportional
to the mean squared error, EMSE, it suffices to minimise N log(EMSE) /2. We note that

∂

∂x̂i

N

2
log
(
2πσ2

)
=
x̂i − xi
σ2

which is precisely the gradient of

N∑
i=1

(xi − x̂i)2
2σ2

if we ignored the dependence of σ2 on x̂i. In many publically available implementations of VAEs
the algorithm minimises

∑N
i=1(xi−x̂i)2 which arbitrarily assumes σ2 = 1

2 rather than its true value.
This means that these implementations are effectively running a β-VAE with some unknown β (in
our experience with β > 1). This makes comparing results from different VAE implementations
difficult. For example, rescaling outputs to lie in the range [−1, 1] rather than [0, 1] would change
the effective β-value.

B VAE-GAN HYBRIDS

The hybridisation of VAE (or autoencoder) and GAN models have been developed for several years.
There are many attempts on this area and we compare LSR-GAN to the most related work in this
section.

The adversarial types autoencoder is the most intuitive and simplest way to combine a VAE or an au-
toencdoer and a GAN models. Most of these models introduce a discriminator into the autoencoder
training. AAE (Makhzani et al., 2016) applies a discriminator to distinguish the output of encoder
and the random sample from the prior distribution. It uses this discriminator to replace the KL term
in VAE. VAE/GAN (Larsen et al., 2016) is the first model that applied feature-wise errors and the
input of its generator contains three different types images: the reconstruction images, the generated
images and the real images. The same as our model, it collapse the decoder and the generator into
one. MDGAN (Che et al., 2017) is another AE-GAN hybrid which is close to VAE/GAN, they try
to match the manifold of GAN to real data by adding a geometric metrics regulariser and mode
regulariser. None of these methods feed the output of generator back into the encoder or train their
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network in two-stages, which is the biggest difference between these methods and ours. Also, many
of these hybrid models adopt an autoencoder instead of VAE while the VAE in our model cannot be
replaced by an autoencoder.

There are not many models that use the output of decoder to feed the encoder. The Introspective
Adversarial Network (IAN) (Brock et al., 2017) is a unified model which means the discriminator
is not separate. IAN only encodes the feature that extracted by discriminator rather than the raw
images. The discriminator of IAN extracts features from both raw images and synthetic images.
The generator accept both random sample and the output of the discriminator as inputs at the same
time. In contrast, our models only accept one input. Another model that adopts the introspective
method is IntroVAE (Huang et al., 2018), it constructs the inference model E and generator model
G in a circulation loop. IntroVAE has the ability to generate high-resolution images. But it does not
contain any discriminator network.

The most closely work to our LSR-GAN is VEEGAN (Srivastava et al., 2017). It introduces a
second network Fθ to the GAN. The task of Fθ is to map both the real images and synthetic images
to a Gaussian distribution which is what we ask the encoder to do. When the input of Fθ is the
output of generator, the objective function minimise the distance between the input of generator and
the output of Fθ. If the input of Fθ is real data, the objective function minimise the cross entropy
between Gaussian prior and the output of Fθ. Another related model is the Generative moment
matching networks (GMMN) (Li et al., 2015). In this model the autoencoder is frozen and they
then minimize the maximum mean discrepancy (MMD) between the generated representation and
data representation, and they use an uniform prior to generate the representations. In LSR-GAN,
we match two Gaussian distributions in maximizing the probability distance. None of these related
works are two-stages models except GMMN. Also, to the best of our knowledge, LSR-GAN is the
first VAE-GAN hybrid model that applies the probability distance in the loss function.

C ADDITIONAL EXPERIMENTS

We briefly present some additional experimental data.

C.1 DEPENDENCE OF LSR-GAN ON β

In Table 1 we present measurements of the performance of outputs from both VAEs and LSR-GAN
for different values of β. Some of this data is also presented graphically in Figure 5, but we have
included additional measurements.
Table 1: The measurement for different β values. Variance is the variance among images generated
by same latent representations. Absolute accuracy is the rate that classifier classifies reconstruction
images right. Relative accuracy is the rate that classifier classifies reconstruction images the same
as raw images.

β=0.01 β=0.1 β=0.5 β=1 β=5 β=10 β=15 β=20

Mean Square Error (VAE) 54.56± 0.30 54.07± 0.29 53.80± 0.29 55.9± 0.3 84.64± 0.42 111.49± 0.53 132.56± 0.61 150.40± 0.66

Mean Square Error (LSR-GAN) Model Collapse 153.09± 0.66 139.75± 0.63 163.06± 0.73 177.22± 0.86 229.53± 1.07 265.74± 1.19 302.17± 1.47

Variance (VAE) 3.03e− 5± 2.44e− 7 2.7e− 3± 1.89e− 5 0.05± 3e− 4 0.17± 0.01 4.94± 0.03 21.02± 0.13 50.80± 0.34 89.25± 0.61

Variance (LSR-GAN) Model Collapse 0.04± 4.3e− 3 0.23± 2.8e− 3 1.67± 0.02 416.83± 5.10 2667.45± 37.73 4920.23± 47.43 4234.5± 58.73

Absolute Classification (VAE) 44.08± 0.22% 45.66± 0.21% 45.01± 0.17% 42.56± 0.13% 28.17± 0.13% 21.26± 0.20% 18.89± 0.18% 17.70± 0.23%

Absolute Classification (LSR-GAN) Model Collapse 43.29± 0.18% 45.06± 0.23% 47.19± 0.13% 40.23± 0.18% 32.58± 0.21% 27.93± 0.21% 26.18± 0.17%

Relative Classification (VAE) 45.69± 0.21% 44.11± 0.20% 43.38± 0.21% 43.75± 0.25%% 28.34± 0.15% 21.59± 0.21% 18.90± 0.18% 16.90± 0.21%

Relative Classification (LSR-GAN) Model Collapse 45.02± 0.18% 44.71± 0.16% 48.41± 0.25%% 43.54± 0.18% 37.90± 0.17% 33.68± 0.20% 31.91± 0.19%

C.2 DEPENDENCE OF LSR-GAN ON λ

The performance of the LSR-GAN depends on the hyper-parameter λ. This balances the need to
produce convincing images (from the discriminator’s point of view) with the requirement that the
latent space of the GAN should be close to that for the VAE. These two objectives are not necessarily
contradictory, although we will see that changing λ has benefits and drawbacks.

In Figure 6 we show the effect of changing λ over approximately three orders of magnitude on
(a) the absolute classification accuracy (b) the classification accuracy compared to the class labels
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Table 2: The measurement for different λ values. Variance is the variance among the images gen-
erated by same latent representations. Absolute accuracy is the rate that classifier classifies recon-
struction images right. Relative accuracy is the rate that classifier classifies reconstruction images
the same as raw images.

λ=0.01 λ=0.1 λ=0.5 λ=1 λ=5 λ=10 λ=15 λ=20

Mean Square Error 285.99± 1.39 231.34± 1.14 193.72± 0.90 163.06± 0.73 104.15± 0.46 90.66± 0.43 86.81± 0.42 84.69± 0.40

Variance 68.54± 1.17 15.06± 0.25 3.96± 0.08 1.67± 0.02 0.70± 0.01 0.54± 0.00 0.50± 0.00 0.48± 0.00

Absolute Classification 35.52± 0.23% 45.2± 0.21% 46.96± 0.28% 47.19± 0.13% 47.21± 0.20% 47.45± 0.18% 47.89± 0.21% 48.72± 0.23%

Relative Classification 36.37± 0.18% 46.40± 0.20% 48.08± 0.21% 48.41± 0.25%% 48.65± 0.15% 48.72± 0.30% 48.79± 0.28% 50.22± 0.21%

predicted by the classifier on the raw images (c) the mean squared reconstruction error and (d) the
variance in the predictions when choosing different samples from qφ(z|x). We see that increasing λ
improves the classification performance (both relative and absolute). However, and perhaps surpris-
ingly, increasing λ produces a significant reduction in the reconstruction error. More intuitively it
also causes a reduction in the variance between images sampled independently from qφ(z|x). That
is, using the encoder in the LSR-GAN acts a regulariser ensuring close by points in latent space map
to similar images. More details are given in Table 2.

(a) (b)

(c) (d)

Figure 6: Graphs showing the classification performance of images generated by our GAN with
different λ values (on test dataset). The left-bottom graph shows the mean square error between
reconstruction images and imagination images. The right-bottom graph shows the variance between
images generated by our GAN from latent representations of an input image. The x-axis is the log
value of different λ, the errors are too small which make error bars look like lines.
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D ARCHITECTURE OF THE LSR-GAN

In this appendix we describe the detailed architecture of the VAE and LSR-GAN we used. Table 3
describes the structure of the VAE’s encoder and decoder and the GAN’s generator and discriminator
networks. The encoder and decoder/generator are based on a ResNet. The ResNet block structure
is shown in Figure 7. Both networks are optimized using Adam (Kingma and Ba, 2015) with a
learning rate of 2 × 10−4 and β1 = 0.5. The code we used to implement the models is available at
https://github.com/iclr-2020-zzz/LSR-GAN.

Table 3: Architectures for the three networks in LSR-GAN, BN denotes batch normalization

Encoder Decoder(Generator) Discriminator

ResBlock down 64 512 FC Network, BN, ReLU 4 x 4, stride=2, padding=1,
32 CNN, LeakyReLU

ResBlock down 128 ResBlock up 128 4 x 4, stride=2, padding=1,
64 CNN, BN, LeakyReLU

ResBlock down 32 ResBlock up 64 4 x 4, stride=2, padding=1,
128 CNN, BN, LeakyReLU

128 FC Network, BN, ReLU ResBlock up 32 4 x 4, stride=2, padding=1,
3 CNN, Sigmoid

128 FC Network 1 x 1, 3 CNN, Tanh

Conv

BN

ReLU

Conv

BN

Avgpool 2x2

ReLU

Figure 7: ResBlock architecture.
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E SAMPLING

In this appendix we show sample images generated by LSR-GAN starting with a random seed
z ∼ N (0, I). These are shown in Figure 9 for an LSR-GAN trained on CIFAR-10 and Ima-
geNet. Although the images superficially look reasonable on close inspection it is clear that most
samples for the LSR-GAN trained on CIFAR-10 and ImageNet are not real world objects. This re-
flects the fact that the images for these two dataset are very variable leaving most of the latent space
representing rather surreal objects.

Figure 8: Random samples generated by LSR-GAN trained on CIFAR10 and ImageNet with β =1
and λ=1.
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We have also trained LSR-GAN on MNIST and Celeb-A with samples shown in Figure 9. Perhaps
unsurprisingly, most samples are identifiable.

Figure 9: Random samples generated by LSR-GAN trained on MNIST and Celeb-A with β =1 and
λ=1.
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