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ABSTRACT

The Lottery Ticket Hypothesis from Frankle & Carbin (2019) conjectures that, for
typically-sized neural networks, it is possible to find small sub-networks which
train faster and yield superior performance than their original counterparts. The
proposed algorithm to search for “winning tickets”, Iterative Magnitude Pruning,
consistently finds sub-networks with 90− 95% less parameters which train faster
and better than the overparameterized models they were extracted from, creating
potential applications to problems such as transfer learning.
In this paper, we propose Continuous Sparsification, a new algorithm to search
for winning tickets which continuously removes parameters from a network dur-
ing training, and learns the sub-network’s structure with gradient-based methods
instead of relying on pruning strategies. We show empirically that our method is
capable of finding tickets that outperforms the ones learned by Iterative Magnitude
Pruning, and at the same time providing faster search, when measured in number
of training epochs or wall-clock time.

1 INTRODUCTION

Although deep neural networks have become ubiquitous in fields such as computer vision and
natural language processing, extreme overparameterization is typically required to achieve state-of-
the-art results (Xie et al., 2017; Devlin et al., 2018), causing higher training costs and hindering
applications where memory or inference time are constrained. Recent theoretical work suggest that
overparameterization plays a key role in both the capacity and generalization of a network (Neyshabur
et al., 2018), and in training dynamics (Allen-Zhu et al., 2019). However, it remains unclear whether
overparameterization is truly necessary to train networks to state-of-the-art performance.

At the same time, empirical approaches have been successful in finding less overparameterized
neural networks, either by reducing the network after training (Han et al., 2015; 2016) or through
more efficient architectures that can be trained from scratch (Iandola et al., 2016). Recently, the
combination of these two approaches lead to new methods which discover efficient architectures
through optimization instead of design (Liu et al., 2019; Savarese & Maire, 2019). Nonetheless,
parameter efficiency is typically maximized by pruning an already trained network.

The fact that pruned networks are hard to train from scratch (Han et al., 2015; 2016) suggests that,
while overparameterization is not necessary for a model’s capacity, it might be required for successful
network training. Recently, this idea has been put into question by Frankle & Carbin (2019), where
heavily pruned networks are trained faster than their original counterparts, often yielding superior
performance.

A key finding is that the same parameter initialization should be used when re-training the pruned
network. A winning ticket, defined by a sub-network and a setting of randomly-initialized parameters,
is quickly trainable and has already found applications in, for example, transfer learning (Morcos
et al., 2019; Mehta, 2019; Soelen & Sheppard, 2019), making the search for winning tickets a problem
of independent interest.

Currently, the standard algorithm to find winning tickets is Iterative Magnitude Pruning (IMP)
(Frankle & Carbin, 2019; Frankle et al., 2019), which consists of a repeating a 2-stage procedure
that alternates between parameter optimization and pruning. As a result, IMP relies on a sensible
choice for pruning strategy, and is time-consuming: finding a winning ticket with 1% of the original
parameters in a 6-layer CNN requires over 20 rounds of training followed by pruning, totalling over
1000 epochs (Frankle & Carbin, 2019). Choosing a parameter’s magnitude as pruning criterion
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has also shown to be sub-optimal in some settings (Zhou et al., 2019), leading to the question of
whether better winning tickets can be found by different pruning methods. Moreover, at each iteration,
IMP resets the parameters of the network back to initialization, hence considerable time is spent on
re-training similar networks with different sparsities.

With the goal of speeding up the search for winning tickets in deep neural networks, we design
a novel method, Continuous Sparsification, which continuously removes weights from a network
during training, instead of following a strategy to prune parameters at discrete time intervals. Unlike
IMP, our method approaches the search for sparse networks as a `0-regularized optimization problem
(Louizos et al., 2017), resulting in a method that can be fully described in the optimization framework.
To approximate `0-regularization, we propose a smooth re-parameterization, allowing for the sub-
network’s structure to be directly learned with gradient-based methods. Unlike previous works, our
re-parameterization is deterministic, proving more convenient for the tasks of pruning and ticket
search, while also yielding faster training times.

Experimentally, our method offers superior performance when pruning VGG to extreme regimes, and
is capable of finding winning tickets in Residual Networks trained on CIFAR-10 at a fraction of time
taken by Iterative Magnitude Pruning. In particular, Continuous Sparsification successfully finds
tickets in under 5 iterations, compared to 20 iterations required by Iterative Magnitude Pruning in
the same setting. To further speed up the search for sub-networks, our method abdicates parameter
rewinding, a key ingredient of Iterative Magnitude Pruning. By showing superior results without
rewinding, our experiments offer insights on how ticket search should be performed.

2 RELATED WORK

2.1 LOTTERY TICKET HYPOTHESIS

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) states that for a network f(x;w), w ∈ Rd,
and randomly-initialized parameters w0 ∼ D, there exists a sparse sub-network, defined by a configu-
ration m ∈ {0, 1}d, ‖m‖0 � d, that, when trained from scratch, achieves higher performance than
f(x;w) while requiring fewer training iterations. The authors support this conjecture experimentally,
showing that such sub-networks indeed exist: in particular, they can be discovered by repeatedly train-
ing, pruning, and re-initializing the network, through a procedure named Iterative Magnitude Pruning
(IMP; Algorithm 1) (Frankle et al., 2019). More specifically, IMP alternates between: (1) training the
weights w of a network, (2) removing a fixed fraction of the weights with the smallest magnitude
(pruning), and (3) rewinding: setting the remaining weights back to their original initialization w0.

The sub-networks found by IMP, which indeed train faster and outperform their original, dense
networks, are called winning tickets, and can generalize across datasets (Mehta, 2019; Soelen &
Sheppard, 2019) and training methods (Morcos et al., 2019). In this sense, IMP can be a promising
tool in applications that involve knowledge transfer, such as transfer or meta learning.

Zhou et al. (2019) perform extensive experiments to re-evaluate and better understand the Lottery
Ticket Hypothesis. Relevant to this work is the fact that the authors propose a method to learn the
binary maskm in an end-to-end manner through SGD, instead of relying on magnitude-based pruning.
The authors show that learning only the binary mask and not the weights is sufficient to achieve
competitive performance, confirming that the learned masks are highly dependent on the initialized
values w0, and are also capable of encoding substantial information about a problem’s solution.

2.2 SPARSE NETWORKS

The core aspect of searching for a winning ticket is finding a sparse sub-network that attains high
performance relative to its dense counterpart. One way to achieve this is through pruning methods
(LeCun et al., 1990), which follow a strategy to remove weights from a trained network while
minimizing negative impacts on its performance. In Han et al. (2015), a network is iteratively trained
and pruned using parameter magnitudes as criterion: this iterative, two-stage algorithm is shown to
outperform “one-shot pruning”: training and pruning the network only once.

Other methods attempt to approximate `0 regularization on the weights of a network, yielding one-
stage procedures that can be fully described in the optimization framework. In order to find a sparse
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Algorithm 1 Iterative Magnitude Pruning (Frankle et al., 2019)

1: Initialize w ← w0 ∼ D and m← ~1d

2: Minimize L(f(x;m� w)) until wT is produced
3: Set mi = 0 for the active weights with smallest magnitudes (|wT,i| ≤ τ and mi = 1)
4: If satisfied, output ticket f(x;m� wk)
5: Otherwise, set w ← wk and go back to step 2

Algorithm 2 Iterative Stochastic Sparsification (inspired by Zhou et al. (2019))

1: Initialize w ← w0 ∼ D, s← ~s0
2: Minimize Em∼Ber(σ(s)) [L(f(x;m� w))] + λ ‖σ(s)‖1 until wT and sT are produced
3: If satisfied, output ticket f(x;m� wk), m ∼ Ber(σ(sT ))
4: Otherwise, set w ← wk, si ← −∞ for si,T < si,0, and go back to step 2

setting m ∈ {0, 1}d of a network f(x;m � w), Srinivas et al. (2016) and Louizos et al. (2017)
use a stochastic re-parameterization m ∼ Bernoulli(g(s)) with s ∈ Rd and g : R → [0, 1] applied
element-wise. First-order methods, coupled with gradient estimators, are then used to train both w
and s to minimize the expected loss. This approach performs continuous parameter removal during
training in an automatic fashion: any component si of s that assumes a value during training where
g(si) = 0 effectively removes wi from the network. Moreover, approximating `0 regularization has
the advantage of not requiring a pruning strategy, which might be arbitrarily complex.

3 METHOD

Designing a method to quickly find winning tickets requires an efficient way to sparsify networks:
ideally, sparsification should be done as early as possible in training, and the number of removed
parameters should be maximized without harming the model’s performance. In other words, sparsifi-
cation must be continuously maximized following a trade-off with the performance of the network.
This goal is not met by Iterative Magnitude Pruning: sparsification is done at discrete time steps, only
after fully training the network, and optimal pruning rates likely depend on the model’s performance
and current sparsity: factors which are typically not accounted for – note that these are inherent
characteristics of magnitude-based pruning.

In light of this, we turn to `0-regularization methods for learning sparse networks, which consist
of optimizing a clear trade-off between sparsity and performance. As we will see, performing
sparsification continuously is not only straightforward, but done automatically by the optimizer.

3.1 CONTINUOUS SPARSIFICATION BY LEARNING DETERMINISTIC MASKS

We first frame the search for sparse networks as a loss minimization problem with `0 regularization
(Louizos et al., 2017; Srinivas et al., 2016):

min
w∈Rd

L(f(x;w)) + λ · ‖w‖0 (1)

where λ ≥ 0 controls the sparsity of the solution, and, with a slight abuse of notation, L(f(x;w))
denotes the loss incurred by the network f(x;w) (e.g., the cross-entropy loss over a training set). As
`0 regularization is typically intractable, we re-state the above minimization problem as:

min
w∈Rd

m∈{0,1}d
L(f(x;m� w)) + λ · ‖m‖1 (2)

which uses the fact that, for m ∈ {0, 1}d, ‖m‖0 = ‖m‖1. The `1 term can be minimized with
subgradient descent, however the m ∈ {0, 1}d constraint makes the above problem combinatorial
and poorly suited for local search methods like SGD.
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Algorithm 3 Continuous Sparsification

1: Initialize w ← w0 ∼ D, s← s0, β ← β0
2: Minimize L(f(x;σ(β · s)� w)) + λ ‖σ(βs)‖1 while increasing β, producing wT , sT , and βT
3: If satisfied, output ticket f(x; b(sT )� wk)
4: Otherwise, set s← min(βT · sT , s0), β ← β0, (optionally, w ← w0), and go back to step 2
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Figure 1: Illustration of our proposed re-parameterization m = σ(βs), where σ(z) = 1
1+e−z is the

sigmoid function and β acts as a temperature. As β increases, σ(βz) approaches b(z), which can can
be used to frame a `0-regularized problem (Equation 4). Note that the gradients of σ(βs) vanish as β
increases, suggesting that β should be annealed slowly during training.

We can avoid the binary constraint m ∈ {0, 1}d by re-parameterizing m as a function of a newly-
introduced variable s ∈ Rd. For example, Louizos et al. (2017) propose a stochastic mapping s 7→ m
and use gradient methods to minimize the expected total loss, while using estimators for the gradients
of s (since m is still binary). Having a stochastic mask (or, equivalently, a distribution over sub-
networks) poses an immediate challenge for the task of finding tickets, as it is not clear which ticket
should be chosen once a distribution overm is learned. Moreover, relying on gradient estimators often
causes gradients to have high variance, requiring longer training to reach optimality. Alternatively,
we consider a deterministic parameterization m = b(s), where s ∈ Rd6=0 and b : R 6=0 → {0, 1} is
applied element-wise:

b(z) =

{
1, if z > 0

0, if z < 0
(3)

Applying this re-parameterization to Equation 2 yields:

min
w∈Rd

s∈Rd
6=0

L(f(x; b(s)� w)) + λ · ‖b(s)‖1 (4)

Clearly, the above problem is again intractable, as it is still equivalent to the original `0 problem in
Equation 1. More specifically, the step function b(z) is non-convex, and having zero gradients make
gradient-based optimization ineffective. Instead, we consider the following smooth relaxation of b(·):

m := σ(β · s) (5)

where β ∈ R>0, and σ is the sigmoid function σ(z) = 1
1+e−z , applied element-wise. By controlling

β, which acts as a temperature parameter, we effectively interpolate between σ(s), a smooth function
well-suited for SGD, and limβ→∞ σ(β · s) = b(z), our original goal, which brings computational
hardness to the problem. Figure 1 illustrates this behavior. Note that, if L(f(x;w)) is continuous in
w, then:
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min
w∈Rd

s∈Rd
6=0

lim
β→∞

L(f(x;σ(βs)� w)) + λ · ‖σ(βs)‖1 = min
w∈Rd

s∈Rd
6=0

L(f(x; b(s)� w)) + λ · ‖b(s)‖1 (6)

Although gradient methods will become ineffective as β →∞ due to vanishing gradients of s, we
can increase β while optimizing s and w with gradient descent. That is, our loss at each iteration will
be a function of β as follows:

Lβ(w, s) = L(f(x;σ(βs)� w)) + λ · ‖σ(β · s)‖1 (7)

How does the soft mask m = σ(β · s) behave as we minimize Lβ(w, s) while increasing β? As
β →∞, every negative component of s will be mapped to 0, effectively removing its correspondent
weight parameter from the network. While analytically the weights will never truly be zeroed-out,
limited numerical precision has the fortunate side-effect of causing actual sparsification to the network
during training, as long as β is increased to a large enough value.

In a nutshell, we learn sparse networks by minimizing Lβ(w, s) for T parameter updates with gradient
descent while jointly annealing β: producing wT , sT and βT , which is ideally large enough such that,
numerically 1, σ(βT · sT ) = b(sT ). In case m is truly required to be binary (as in the task of finding
tickets), the dependence on numerical imprecision can be avoided by directly outputting m = b(sT )
at the end of training.

Finally, note that minimizing Lβ while increasing β is not generally equivalent to minimizing the
original `0-regularized problem. Informally, the former aims to solve limβ→∞minw,s Lβ(w, s),
while the `0 problem is minw,s limβ→∞ Lβ(w, s).

3.2 TICKET SEARCH THROUGH CONTINUOUS SPARSIFICATION

The method presented above offers a direct alternative to magnitude-based pruning when performing
ticket search, but a few considerations must follow. Most importantly, when searching for winning
tickets, there is a strict constraint that the learned mask m be binary: otherwise, one can also learn
the magnitude of the weights, defeating the purpose of finding sub-networks that can be trained from
scratch. To guarantee that the output mask satisfies this constraint regardless of numerical precision,
we always output b(sT ) instead of σ(βT · sT ).
Additionally, we also incorporate two techniques from successful methods for learning sparse
networks and searching for winning tickets. First, motivated by Han et al. (2015), where it is shown
that iteratively pruning a network yields improved sparsity compared to pruning it only once, we
enable “kept” weights – those whose corresponding component of s is positive after many iterations –
to be removed from the network at a later stage. More specifically, when β becomes large after T
gradient descent updates, the gradients of s vanish and weights will no longer be removed from the
network. To avoid this, we set s← min(βT · sT , s0), effectively resetting the soft mask parameters
for the remaining weights while at the same time not interfering with weights that have been removed.
This is followed by a reset on the temperature, β ← β0, to allow training of s once again.

Second, we perform parameter rewinding, following Frankle & Carbin (2019), which is a key
component of Iterative Magnitude Pruning. More specifically, after T gradient descent steps, we
reset the weight values back to an earlier stage w ← wk, where k � T . Even though experimental
results in Frankle & Carbin (2019) suggest that rewinding is necessary for successful ticket search,
we leave rewinding as an optinal component of our algorithm: as we will see empirically, it turns out
that ticket search is possible without rewinding weights. Our proposed algorithm to find winning
tickets is presented as Algorithm 3, and referred simply as “Continuous Sparsification”.

1We observed in our experiments that a final temperature of 500 is sufficient for iterates of s when training
with SGD with 32-bit precision. The required temperature is likely to depend on the how s is numerically
represented, as in reality our method relies on numerical imprecision.

5



Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

Our experiments aim at comparing different methods on the task of finding winning tickets in neural
networks, hence our evaluation focuses on the generalization performance of each ticket (sub-network)
when trained from scratch (or from an iterate in early-training). Additionally, we measure the cost of
the search procedure: the number of training epochs to find tickets with varying performance and
sparsity.

Besides comparing our proposed method to Iterative Magnitude Pruning (Algorithm 1), we also
design a baseline method, Iterative Stochastic Sparsification (ISS, Algorithm 2), motivated by the
procedure in Zhou et al. (2019) to find a binary mask m with gradient descent in an end-to-end
fashion. More specifically, ISS uses a stochastic re-parameterization m ∼ Bernoulli(σ(s)) with
s ∈ Rd, and trains w and s jointly with gradient descent and the straight-through estimator (Bengio
et al., 2013). When ran for multiple iterations, all components of the mask parameters s which
have decreased in value from initialization are set to −∞, such that the corresponding weight is
permanently removed from the network. While this might look arbitrary, we observed empirically
that ISS was unable to remove weights quickly without this step unless λ was chosen to be large – in
which case the model’s performance decrease in exchange for sparsity. The hyperparameters used
in this section were chosen based on analysis presented in Appendix (...), where we study how the
pruning rate affects IMP, and how λ, s0 and βT interact in CS.

4.1 CONVOLUTIONAL NEURAL NETWORKS

We train a neural network with 6 convolutional layers on the CIFAR-10 dataset (Krizhevsky, 2009),
following Frankle & Carbin (2019). The network consists of 3 blocks of 2 resolution-preserving
convolutional layers followed by 2× 2 max-pooling, where convolutions in each block have 64, 128
and 256 channels, a 3× 3 kernel, and are immediately followed by ReLU activations. The blocks
are followed by fully-connected layers with 256, 256 and 10 neurons, with ReLUs in between. The
network is trained with Adam (Kingma & Ba, 2015) with a learning rate of 0.0003 and a batch size
of 60.

Learning a Supermask: As a first baseline, we consider the task of learning a “supermask” (Zhou
et al., 2019): a binary mask m that, when applied to a network with randomly initialized weights,
yields performance competitive to that of training its weights. This task is equivalent to pruning a
randomly-initialized network, or learning an architecture that performs well prior to training with
a fixed initialization. We compare ISS and CS , where each method is run for a single iteration
composed of 100 epochs. When ran for a single iteration, ISS is equivalent to the algorithm proposed
in Zhou et al. (2019) to learn a supermask, referred here as simply Stochastic Sparsification. We
control the sparsity of the learned masks by varying s0 between−5 and 5 for Stochastic Sparsification
(which showed to be more effective than varying λ), while for Continuous Sparsification we vary λ
between 10−11 and 10−7 (which results in stable and consistent training, unlike varying s0). SS uses
SGD with a learning rate of 100 to learn its mask parameters, while CS uses Adam with 3× 10−4.

Results are presented in Figure 2: CS outperforms SS in terms of both training speed and the quality
of the learned mask. In particular, CS finds masks with over 75% sparsity that yield over 75%
test accuracy, while the performance of masks found by SS decrease when sparsity is over 50%.
Moreover, CS makes faster progress in training, showing that optimizing a deterministic mask is
indeed faster than learning a distribution over masks through stochastic re-parameterizations.

Finding Winning Tickets: We run IMP and ISS for a total of 30 iterations, each consisting of 40
epochs. Parameters are trained with Adam (Kingma & Ba, 2015) with a learning rate of 3×10−4, fol-
lowing Frankle & Carbin (2019). For IMP, we use pruning rates of 15%/20% for convolutional/dense
layers. We initialize the Bernoulli parameters of ISS with s0 = ~1, and train them with SGD and a
learning rate of 20, along with a `1 regularization of λ = 10−8. For CS , we anneal the temperature
from β0 = 1 to β0 = 250 following an exponential schedule (βt = 250

t
T ), training both the weights

and the mask with Adam and a learning rate of 3× 10−4.

To test whether our method is capable of finding winning tickets in a limited amount of time, we limit
each run of CS to 4 iterations only, in contrast with IMP and ISS which are run for 30. We perform 6
runs of CS , each with a different value for the mask initialization s0: −0.05, −0.03, −0.02, −0.01,
−0.005, 0, keeping λ = 10−10, such that sparsification is not enforced during training, but heavily
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Figure 2: Learning a binary mask with weights frozen at initialization with Stochastic Sparsification
(SS, Algorithm 2 with one iteration) and Continuous Sparsification (CS), on a 6-layer CNN on CIFAR-
10. Left: Training curves with hyperparameters for which masks learned by SS and CS were both
approximately 50% sparse. CS learns the mask significantly faster while attaining similar early-stop
performance. Right: Sparsity and test accuracy of masks learned with different settings for SS
and CS: our method learns sparser masks while maintaining test performance, while SS is unable to
successfully learn masks with over 50% sparsity.
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Figure 3: Test accuracy of tickets found by different methods on CIFAR-10. Error bars depict
variance across 3 runs. Left: Performance of tickets found on a 6-layer CNN, when trained from
scratch. Right: Performance of tickets found on a ResNet 20, when rewinded to the second training
epoch. In both experiments, tickets found by CS outperform ones found by IMP. In most cases,
CS successfully finds winning tickets in 2 iterations (purple curves).

biased at initialization. In order to evaluate how consistent our method is, we repeat each run with 3
different random seeds so that error bars can be computed.

Figure 3 (left) presents the quality of tickets found by each method, measured by their test accuracy
when trained from scratch. To illustrate the quality of the tickets that can be found by Continuous
Sparsification, we plot the Pareto curve (green) of the tickets founds with the 6 different values for
s0. With s0 = −0.03, in only 2 iterations CS finds a ticket with over 77% sparsity (first marker of
purple curve) which outperforms every ticket found by IMP in its 30 iterations. The Pareto curve of
CS strictly dominates IMP for tickets with more less than 97% sparsity, where ticket performance is
superior or similar to the original dense network.

In terms of computational time, the total cost to run CS with the 6 different values for s0 is lower
than performing a single run of IMP for 30 iterations, even though CS takes 15% extra time per
epoch due to the mask parameters. This shows the potential of our model even in the setting where a
specific sparsity is desired for the tickets. When run in parallel, CS takes less wall-clock time to find
all tickets in the Pareto curve than to run IMP for 5 iterations.
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4.2 FINDING WINNING TICKETS IN RESIDUAL NETWORKS WITHOUT REWINDING

Searching for tickets in realistic models is not as straightforward as finding tickets in a small CNN,
and might require new strategies. Frankle et al. (2019) show that IMP fails at finding winning tickets
in ResNets (He et al., 2016) unless the learning rate is smaller than the recommended value, leading to
worse overall performance and defeating the purpose of ticket search. However, the authors propose
a slight modification to IMP that enables search for winning tickets to be successful on complex
networks: instead of training from scratch, tickets are initialized with weights from early training.

With this in mind, we evaluate how Continuous Sparsification performs in the time-consuming task
of finding winning tickets in a ResNet-20 2 (He et al., 2016) trained on CIFAR-10: a setting where
IMP might take over 10 iterations (850 epochs) to succeed. We follow the setup in Frankle & Carbin
(2019) and Frankle et al. (2019): in each iteration, the network is trained with SGD, a learning rate of
0.1, and a momentum of 0.9 for a total of 85 epochs, using a batch size of 128. The learning rate is
decayed by a factor of 10 at epochs 56 and 71, and a weight decay of 0.0001 is applied to the weights
(for CS , we do not apply weight decay to the mask parameters s). The two skip-connections that
perform 1× 1 convolutions and the output layer are not removable: for IMP, their parameters are not
pruned, while for CS their weights do not have a correspondent mask m nor mask parameters s.

When training the returned tickets in order to evaluate their performance, we initialize their weights
with the iterates from the end of epoch 2 (780 parameter updates), similarly to Frankle et al. (2019).
Unlike when searching for winning tickets in the 6-layer CNN, IMP performs global pruning,
removing 20% of the remaining parameters with smallest magnitude, ranked globally (across different
layers). IMP runs for a total of 30 iterations, while CS is limited to only 5 iterations for each
run. The sparsity of the tickets found by CS is controlled by varying the mask initialization s0 ∈
{−0.3,−0.2,−0.1,−0.05,−0.03, 0, 0.03, 0.05, 0.1, 0.2, 0.3} (a total of 11 values). To allow for
even faster ticket search, we run CS without parameter rewinding: that is, the weights w are
transferred from one iteration to another, removing the need to re-train the network as the method
progresses through iterations. For both CS and IMP, each run is repeated with 3 different random
seeds.

The results presented in Figure 3 (right) show that CS is able to successfully find winning tickets
with varying sparsity in under 5 iterations. Once again, the Pareto curve strictly dominates IMP, and
variance across runs is smaller than IMP’s. Most notably, CS is capable of quickly sparsifying the
network in a single iteration (first marker of each purple curve), and typically finds better tickets than
IMP after only 2 rounds (compare blue curve and second marker of each purple curve), regardless
of sparsity. When run in parallel, 2 iterations suffice for CS to find tickets that outperform the ones
found by IMP.

We observed that not performing rewinding caused the performance of tickets with high sparsity to
quickly degrade after 2 or more iterations of CS. We speculate that, when rewinding is not performed
between iterations, the distance between wk and the parameter iterates produced by gradient descent
wt increase significantly with the number of iterations. This in turn can result in the learned mask
mT to be highly sub-optimal for weight values wk (k � T ) which are used to re-train the ticket. This
suggests that in order to avoid re-training the network and hence make the search for winning tickets
more efficient, rewinding should not be performed between iterations. In this case, the search must
complete quickly, before performance degradation occurs due to “overtraining”, requiring optimal
ways to perform sparsification without negatively impacting the model’s performance.

4.3 PRUNING VGG

Our experiments show that Continuous Sparsification is capable of finding tickets quickly and consis-
tently, and we attribute its success to its deterministic re-parameterization of the binary mask. Here, we
evaluate our method a pruning technique, to better assess whether our proposed re-parameterization
is advantageous only in terms of training time, or also in respect to the quality of the learned masks.

For this task, we train a VGG (Simonyan & Zisserman, 2015) on the CIFAR-10 dataset, following the
protocol in Frankle & Carbin (2019): the network is trained with SGD and an initial learning rate of
0.1, which is decayed by a factor of 10 at epochs 80 and 120. After 160 training epochs, the network

2We used the same network as Frankle & Carbin (2019) and Frankle et al. (2019), where it is referred as a
ResNet 18.
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is sparsified and then fine-tuned for 40 epochs with a learning rate of 0.001. We evaluate previously
described methods when executed for a single iteration (one-shot pruning): Continuous Sparsification,
Magnitude Pruning (IMP with 1 iteration) (Han et al., 2015), and Stochastic Sparsification (ISS with
1 iteration), which is similar to methods in Zhou et al. (2019), Srinivas et al. (2016), and Louizos
et al. (2017).

100.0 51.4 26.5 13.7 7.1 3.7 1.9 1.0 0.5 0.3 0.2 0.1
Percentage of weights remaining (%)

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y 
(%

)

Magnitude Pruning
Continuous Sparsification
Stochastic Sparsification

Figure 4: Performance of different methods when
performing one-shot pruning on VGG. CS main-
tains over 90% test accuracy after removing 99.7%
of the weights, while other methods fail to success-
fully remove more than 98% of the parameters.

At the sparsification step, IMP performs global
pruning, ISS fixes the binary mask m to be
the maximum likelihood one under Ber(σ(s))
(which performed better than sampling from the
distribution), and CS changes the parameteriza-
tion of the mask from σ(βs) to b(s) (or, equiv-
alently, weights wi where si < 0 are removed).
We use a momentum of 0.9, a weight decay of
0.0001 (not applied to s), and a batch-size of 64.
Following Frankle & Carbin (2019), sparsifica-
tion is not applied to batch normalization nor
the final linear layer.

To evaluate each method when finding masks
with different sparsity levels, we run IMP with
global pruning rates 50%, 75%, 80%, 85%,
90%, 95%, 97.5%, 98%, 98.5%, 99%, 99.5%,
99.75%, and ISS and CS with initial mask val-
ues −0.3, −0.25, −0.2, −0.15, −0.1, −0.05,
−0.01, −0.005, −0.001, 0. Results are shown
in Figure 4: both magnitude pruning and
stochastic `0 regularization (Stochastic Sparsifi-
cation) fail at removing over 98% of the weights without severely degrading the performance of the
model. On the other hand, Continuous Sparsification successfully removes 99.7% of the parameters
in the convolutional layers while still yielding over 90% test accuracy. When taken to the extreme,
our method is capable of removing 99.85% of the weights and still yield over 83% accuracy.

The dramatic performance difference between stochastic and continuous sparsification shows that our
proposed deterministic re-parameterization is key to achieve superior results in both network pruning
and ticket search. The fact that it outperforms magnitude pruning, a standard technique in the pruning
literature, suggests that further exploration of `0-based methods could yield significant advances in
pruning techniques.

5 DISCUSSION

With Frankle & Carbin (2019), we now realize that sparse sub-networks can indeed be successfully
trained from scratch, putting in question the belief that overparameterization is required for proper
optimization of neural networks. Such sub-networks, called winning tickets, can be potentially used
to significantly decrease the required resources for training deep networks, as they are shown to
transfer between different, but similar, tasks (Mehta, 2019; Soelen & Sheppard, 2019).

Currently, the search for winning tickets is a poorly explored problem, where Iterative Magnitude
Pruning (Frankle & Carbin, 2019) stands as the only algorithm suited for this task, and it is unclear
whether its key ingredients – post-training magnitude pruning and parameter rewinding – are the
correct choices for the task. Here, we approach the problem of finding sparse sub-networks as
an `0-regularized optimization problem, which we approximate through a smooth, parameterized
relaxation of the step function. Our proposed algorithm for finding winning tickets, Continuous
Sparsification, removes parameters automatically and continuously during training, and can be fully
described by the optimization framework. We show empirically that, indeed, post-training pruning
might not be a sensible choice for finding winning tickets, raising questions on how the search for
tickets differs from standard network compression. With this work, we hope to further motivate the
problem of quickly finding tickets in overparameterized networks, as recent work suggests that the
task might be highly relevant to transfer learning and mobile applications.
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APPENDIX

A HYPERPARAMETER ANALYSIS

A.1 CONTINUOUS SPARSIFICATION

In this section, we study how the hyperparameters of Continuous Sparsification affect its performance
in terms of sparsity and performance of the found tickets. More specifically, we consider the following
hyperparameters:

• Final temperature βT : the final value for β, which controls how smooth the parameterization
m = σ(βs) is.
• `1 penalty λ: the strength of the `1 regularization applied to the soft mask σ(βs), which

promotes sparsity.
• Mask initial value s0: the value used to initialize all components of the soft maskm = σ(βs),

where smaller values promote sparsity.

Our setup is as follows: to analyze how each of the 3 hyperparameters impact the performance
of Continuous Sparsification, we train a ResNet 20 on CIFAR-10 (following the same protocol
from Section 4.2), varying one hyperparameter while keeping the other two fixed. To capture how
hyperparameters interact with each other, we repeat the described experiment with different settings
for the fixed hyperparameters.

Since different hyperparameter settings naturally yield vastly distinct sparsity and performance for
the found tickets, we report relative changes in accuracy and in sparsity.

In Figure 5, we vary λ between 0 and 10−8 for three different (s0, βT ) settings: (s0 = −0.2, βT =
100), (s0 = 0.05, βt = 200), and (s0 = −0.3, βT = 100). As we can see, there is little impact on
either the performance or the sparsity of the found ticket, except for the case where s0 = 0.05 and
βT = 200, for which λ = 10−8 yields slightly increased sparsity.
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Figure 5: Impact on relative test accuracy and sparsity of tickets found in a ResNet 20 trained on
CIFAR-10, for different values of λ and fixed settings for βT and s0.

Next, we consider the fixed settings (s0 = −0.2, λ = 10−10), (s0 = 0.05, λ = 10−12), (s0 =
−0.3, λ = 10−8), and proceed to vary the final temperature βT between 50 and 200. Figure 6
shows the results: in all cases, a larger temperature of 200 yielded better accuracy. However, it
decreased sparsity compared to smaller temperature values for the settings (s0 = −0.2, λ = 10−10)
and (s0 = −0.3, λ = 10−8), while at the same time increasing sparsity for (s0 = 0.05, λ = 10−12).
While larger temperatures appear beneficial and might suggest that even higher values should be
used, note that, the larger βT is, the earlier in training the gradients of s will vanish, at which point
training of the mask will stop. Since the performance for temperatures between 100 and 200 does not
change significantly, we recommend values around 150 or 200 when either pruning or performing
ticket search.
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Figure 6: Impact on relative test accuracy and sparsity of tickets found in a ResNet 20 trained on
CIFAR-10, for different values of βT and fixed settings for λ and s0.
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Figure 7: Impact on relative test accuracy and sparsity of tickets found in a ResNet 20 trained on
CIFAR-10, for different values of s0 and fixed settings for βT and λ.

Lastly, we vary the initial mask value s0 between −0.3 and +0.3, with hyperpameter settings
(βT = 100, λ = 10−10), (βT = 200, λ = 10−12), and (βT = 100, λ = 10−8). Results are given in
Figure 7: unlike the exploration on λ and βT , we can see that s0 has a strong and consistent effect
on the sparsity of the found tickets. For this reason, we suggest proper tuning of s0 when the goal
is to achieve a specific sparsity value. Since the percentage of remaining weights is monotonically
increasing with s0, we can perform binary search over values for s0 to achieve any desired sparsity
level. In terms of performance, lower values for s0 naturally lead to performance degradation, since
sparsity quickly increases as s0 becomes more negative.
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Figure 8: Performance of tickets found by Iterative Magnitude Pruning in a ResNet 20 trained on
CIFAR, for different pruning rates.

A.2 ITERATIVE MAGNITUDE PRUNING

Here, we assess whether the running time of Iterative Magnitude Pruning can be improved by
increasing the amount of parameters pruned at each iteration. The goal of this experiment is to
evaluate if Continuous Sparsification offers faster ticket search only because it prunes the network
more aggressively than IMP, or because it is truly more effective in how parameters are chosen to be
removed.

Following the same setup as the previous section, we train a ResNet 20 on CIFAR-10. We run
IMP for 30 iterations, performing global pruning with different pruning rates at the end of each
iteration. Figure 8 shows that the performance of tickets found by IMP decays when the pruning rate
is increased to 40%. In particular, the final performance of found tickets is mostly monotonically
decreasing with the number of remaining parameters, suggesting that, in order to find tickets which
outperform the original network, IMP is not compatible with more aggressive pruning rates.
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