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ABSTRACT

Designing accurate and efficient convolutional neural architectures for vast
amount of hardware is challenging because hardware designs are complex and
diverse. This paper addresses the hardware diversity challenge in Neural Archi-
tecture Search (NAS). Unlike previous approaches that apply search algorithms on
a small, human-designed search space without considering hardware diversity, we
propose HURRICANE that explores the automatic hardware-aware search over
a much larger search space and a multistep search scheme in coordinate ascent
framework, to generate tailored models for different types of hardware. Exten-
sive experiments on ImageNet show that our algorithm consistently achieves a
much lower inference latency with a similar or better accuracy than state-of-the-art
NAS methods on three types of hardware. Remarkably, HURRICANE achieves
a 76.63% top-1 accuracy on ImageNet with a inference latency of only 16.5 ms
for DSP, which is a 3.4% higher accuracy and a 6.35x inference speedup than
FBNet-iPhoneX. For VPU, HURRICANE achieves a 0.53% higher top-1 accu-
racy than Proxyless-mobile with a 1.49x speedup. Even for well-studied mo-
bile CPU, HURRICANE achieves a 1.63% higher top-1 accuracy than FBNet-
iPhoneX with a comparable inference latency. HURRICANE also reduces the
training time by 54.7% on average compared to SinglePath-Oneshot.

1 INTRODUCTION

Neural Architecture Search (NAS) is a powerful mechanism to automatically generate efficient Con-
volutional Neural Networks (CNNs) without requiring huge manual efforts of human experts to de-
sign good CNN models (Zoph & Le} 2016} Zoph et al) 2018} [Tan et al., 2019} |Guo et al.l 2019;
Bender et al., [2017). However, most existing NAS methods focus on searching for a single DNN
model of high accuracy but pay less attention on the performance of executing the model on hard-
ware, e.g., inference latency or energy cost. Recent NAS methods (Guo et al., |2019; |Chu et al.,
2019; ICa1 et al., [2019; [Stamoulis et al.l, 2018b; [Wu et al., [2019) start to consider model-inference
performance but they use FLOPs F_] to estimate inference latency or only consider the same type of
hardware, e.g., smartphones from different manufacturers but all ARM-based. However, the emerg-
ing massive smart devices are equipped with very diverse processors, such as CPU, GPU, DSP,
FPGA, and various Al accelerators that have fundamentally different hardware designs. Such a big
hardware diversity makes FLOPs an improper metric to predict model-inference performance and
calls for new trade-offs and designs for NAS to generate efficient models for diverse hardware.

To demonstrate it, we conduct an experiment to measure the performance of a set of widely used
neural network operators (a.k.a. operations) on three types of mobile processors: Hexagon™ 685
DSP, Snapdragon 845 ARM CPU, and Movidius™ MyriadTM X Vision Processing Unit (VPU).
Figure |1| shows the results and we make the following key observations. First, from Figure
we can see that even the operators have similar FLOPs, the same operator may have very different
inference latency on different processors. For example, the latency of operator SEP_5 is nearly 12x
higher than that of operator Choice_3 on the ARM CPU, but the difference on the VPU is less than
4x. Therefore, FLOPs is not the right metric to decide the inference latency on different hardware.
Second, the relative effectiveness of different operators on different processors is also different.
For example, operator SEP_3 has the smallest latency on the DSP, but operator Choice_3 has the

'In this paper, the definition of F'LO Ps follows (Zhang et al.}[2018), i.e., the number of multiply-adds.
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smallest latency on the VPU. Thus, different processors should choose different operators for the
best trade-off between model accuracy and inference latency. Furthermore, as shown in Figure[I(b)]
the computational complexity and latency of the same operator are also affected by the execution
context, such as input feature map shapes, number of channels, etc. Such a context is determined
by which layer the operator is placed on. As a result, even on the same hardware, optimal operators
may change at different layers of the network.
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(a) Latency and FLOPs on different hardware ~ (b) Latency in different feature map sizes on VPU

Figure 1: Performance of widely used operators in NAS (c.f Table[T). (a): Latency and FLOPs on
three types of hardware: (1) DSP (HexagonTM 685 DSP), (2) CPU (Snapdragon 845 ARM CPU),
(3) VPU (MovidiusTM MyriadTM X Vision Processing Unit). The input/output feature maps are all
the same, equal to 56 x 64. (b): Latency in different input feature map sizes on VPU.

In addition, we observe that the existing NAS methods tends to handle all the layers equally. For
instance, the uniform sampling in one-shot NAS (Brock et all 2018} |Guo et al.| 2019) will give
the same sampling opportunities to every layer. However, not all the layers are the same: different
layers may have different impacts on inference latency and model accuracy. Indeed, some previous
works (D.Zeiler & Fergus, 2014} [Girish et al.| [2019) have revealed different behaviors between the
earlier layers (close to data input) and the latter layers (close to classification output) in CNN models.
The earlier layers extract low-level features from inputs (e.g., edges and colors), are computation in-
tensive and demands more data to converge, while the latter layers capture high-level class-specific
features but are less computation intensive. From these findings, we argue that exploring more ar-
chitecture selections in the latter layers may help find better architectures with the limited sampling
budget, and limiting the latency in the earlier layers is critical to search for low-latency models. To
this end, it is desirable to explore how to leverage this layer diversity for better architecture sampling
in NAS.

Motivated by these observations, we argue that there is no one-size-fits-all model for different hard-
ware, and thus propose and develop a novel hardware-aware method, called HURRICANE (Hard-
ware aware one-shot neUral aRchitecture seaRch In Coordinate AsceNt framEwork), to tackle the
challenge of hardware diversity in NAS. Different from the existing hardware-aware NAS methods
that use a small set of operators (e.g., 6 or 9) manually selected for a specific hardware platform,
HURRICANE is initialized with a large-size (32 in our implementation) candidate operators set to
cover the diversity of hardware platforms. However, doing so increases the search space by many
orders of magnitude and thus leads to unacceptable search and training cost and may even cause
non-convergence problem. To reduce the cost, we propose hardware-aware search space reduction
at both operator level and layer level. In the operator-level search space reduction, a toolkit is de-
veloped to automatically score every layer’s candidate operators on target hardware platforms, and
choose a sub-set of them with low latency for further utilization. In the layer-level search space re-
duction, we split the layers into two groups, the earlier group and the latter group according to their
locations in the network. Based on a coordinate ascent framework (Wright, 2015) (Appendix [A),
we propose a multistep search scheme, which searches the complete architecture by a sequence of
simpler searching of sub-networks. In each iteration (step), we alternatively fix one group of layers
and optimize the other group of layers to maximize the validation accuracy by a one-shot NAS
The searching of sub-networks is much easier to complete because of the much smaller size of

*In this paper we adopt the one-shot NAS because of its simplicity, however, our scheme could also be
combined with other NAS methods.



Under review as a conference paper at ICLR 2020

search space, and the better architectures are reached by a sequence of iterations. This layer-level
search space reduction is inspired by the layer diversity mentioned above. We choose most latency-
effective operators for earlier layers and allocate more sampling opportunities to latter layers. As a
result, we are able to search for models with both low latency and high accuracy.

We evaluate the effectiveness of our proposed approach on ImageNet 2012 dataset and a small OUI-
Adience-Age dataset with the above three mobile hardware platforms (DSP/CPU/VPU). Under all
the three platforms, HURRICANE consistently achieves the same level (or better) accuracy with
much lower inference latency than state-of-the-art hardware-aware NAS methods. Remarkably,
HURRICANE reduces the inference latency by 6.35x on DSP compared to FBNet-iPhoneX and
1.49x On VPU compared to Proxyless-mobile, respectively. Compared to Singlepath-Oneshot, on
average HURRICANE reduces the training time by 54.7% on ImageNet.

2 RELATED WORK

Neural Architecture Search (NAS). (Zoph & Le, 2016 Zoph et al., [2018)) first proposed to use
reinforcement learning (RL) to search for competitive architectures with low FLOPs. As a full
configurable architecture search space grows exponentially, early works (Liu et al., [2019; Zoph
et al.l 2018} Pham et al 2018} [Real et al.| [2018) search for a cell level structure as the building
block and the same cell is reused in all layers. However, many cell structures are very complicated
and fragmented, and thus are slow when deployed to a device. Recent methods (Tan et al., 2019; |Wu
et al., [2019; [Cai et al.| 2019} |Guo et al., 2019; |[Bender et al.l |2017) adopt a layer-level hierarchical
search space with a back-bone structure allowing different layer structures at different resolution
blocks of a network. The goal becomes searching operators for each layer so that the architecture
achieves competitive accuracy under given constraints. To search hardware efficient architectures,
the search spaces have been built on increasingly more efficient building blocks. MnasNet (Tan
et al., [2019), ProxylessNAS (Cai et al., 2019) and Single-path NAS (Stamoulis et al., [2018b)) built
upon the MobileNetV2 (Sandler et al.| 2018)) structure (MB_k_e¢). FBNet (Wu et al 2019) and
Singlepath-Oneshot (Guo et al.| 2019)) built search space by ShuffleNetV1 (Zhang et al., 2018) and
ShuffleNetV2 (Ma et al., 2018) (Choice_k). As these structures are primarily designed for mobile
CPU, the efficiency of such manually-designed search space is unknown for other hardware.

Hardware aware NAS. Early NAS methods (Zoph & Le, 2016; Zoph et al., 2018)) adopt hardware-
agnostic metric FLOPs to measure the efficiency. However, architecture with lower FLOPs is not
necessarily faster (Stamoulis et al., 2018a)). Recently, many methods (Cai et al., 2019} [Stamoulis
et al., [2018b; Wu et al., 2019) adopt direct metrics such as measured latency but only for mobile
CPUs. (Cai et al., |2019) builds a latency prediction model, (Stamoulis et al., [2018b; Wu et al.,
2019) profiles every operator’s latency, and then the latency metric is viewed as regularization loss.
Such design is also not optimized for small mobile models because accuracy changes much more
dramatically with latency for small models, as (Howard et al., 2019)) pointed out.

One-Shot NAS. Starting from ENAS (Pham et al., [2018), weight sharing became popular as it ac-
celerates the search process and makes search cost feasible. Recent one-shot methods encode the
search space into an over-parameterized supernet, where each path is a stand-alone model. During
the supernet training, architectures are sampled by different proxies (e.g., reinforcement learning,
gradient-based) with weights updated. However, Singlepath-Oneshot (Guo et al.| (2019) and Fair-
NAS (Chu et al.l 2019) observe that such coupled architecture search and weight sharing could be
problematic to fairly evaluate the performance of candidate architectures. Our work is built upon
Singlepath-Oneshot (Guo et al.,|2019). It decouples the supernet training and evolution-based archi-
tecture search by uniform sampling.

3 METHODOLOGY

3.1 PROBLEM FORMULATION
In this paper, HURRICANE aims to search the following architectures for a given hardware platform
h (any of CPU, DSP, NPU, VPU, etc.) and the latency constant LatCy,:

max ACCyy(a)

1
s.t. Latency(a, h) < LatCy, b
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HURRICANE can find a architecture a that achieves the maximum accuracy ACCyy(a) on the
validation set and the inference latency Latency(a, k) is under the constraint LatCy,.

Without loss of generality, .4 denotes the network architecture search space. Like other recent
works (Guo et al.| 2019 [Wu et al, [2019; [Tan et al.l [2019; [Cai et al., 2019} |Chu et al., 2019), A is
constructed by a back-bone network architecture, n layers of which could be chosen from a set of

didat t .
candidate operators O A={alal]l €OL1<1<n) @)

Here a[l] denotes the I-th layer of architecture a, and O; is the set of candidate operators specialized
for [-th layer according to its context (e.g. input shape, number of channels).

3.2 ALGORITHM OVERVIEW

Algorithm (1| briefs the hardware aware one-shot neural architecture search in coordinate ascent
framework. We employ the same back-bone architecture with (Guo et al.,|2019) but a much bigger
collection of candidate operators from the primary blocks of off-the-shelf networks. The set of
candidate operators () contains up to 32 operators detailed in Section [3.3]

Algorithm 1 Hardware aware one-shot NAS in coordinate ascent framework

Require: h (hardware platform), LatC}, (latency constraint), O (candidate operators)
Require: I (number of iterations), ¢, e (hyper parameter)
> Operator level search space reduction
1: for [ < 1tondo
2: O] +SORT(O,) in the descending order of SCORE(O;, h)
3 O < {0)[0],..., 013}
4. if / > n — 4 then
5 Of <+ O} U{0Oj[e]}, e is index of extra exploring operator and e > 4
> Layer level search space reduction and coordinate ascent
6: Initialize winning architecture ain With @win[k] < O%[0],1 <k <n
7: fori < 1to I do
8: Lactive < [t + 1,n] if 7 is odd else [1, ¢]
9: A; < {a | a[l] € O;,l € Lactive; a[l] < amin[l],l & Lactive }
10: W, = argmingy, E,or, (a,) [L(N (a, W(a)))]
11: Qwin = argmax,cr, (4,) ACCvat(N(a, Wa, (a)))

12: Retrain awin

Firstly, we leverage the hardware performance to reduce the search space on operator level. We
develop a toolkit to automatically score the candidate operators ; on different hardware platforms.
The toolkit profiles the real performances (including but may not limited to inference latency), and
give a comprehensive score for every candidate operator. Then we select top 4 or 5 operators (O})
in the non-increasing order of scores for /-th layer.

Secondly, we reduce the search space on layer level. At the beginning of coordinate ascent, we
setup the winning architecture with the operators of highest scores in every layer. In first iteration,
we mark the latter n — ¢ layers as active and the earlier ¢ layers as non-active. The non-active layers
are fixed to the corresponding layer structures of current winning architecture, while the active layers
will be chosen from the 4 highest scored operators (an extra operator for exploring is added in the
last 4 layers) (Lineand Line E]) The one-shot NAS method itself is similar to the work (Guo et al.,
2019)), except that we constraint the search space with a hardware latency [’| other than FLOPs.

' (A) = {a € Aand Latency(a, h) < LatCj } (3)

We encode all candidate architectures of search space A into a over parameterized supernet (and its
weights 1), and sample a specific architecture a (and its weights W (a)). The sampled network is
denoted by N'(a, W (a)). For every mini batch B in training dataset Dy,., the supernet weights T is
updated by the gradient (VLg(N (a, W;(a)))) of the training loss of network A (a, W (a)) (Brock
et al., 2018; |Guo et al.| 2019). After the supernet is trained (only once), all candidate architectures
a inherit weights from the supernet W4, and thus weight W 4(a) is used to approximate the opti-
mal weight of architecture a. The weights will not be updated during the process of architecture

3To do this, we build a latency-prediction model and details can be found in Appendix@
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searching. We adopt evolutionary search (Guo et al.,|[2019) to find the winning architecture with the
highest validation accuracy (Line|[TT).

After a complete process of one-shot NAS, a new winning architecture would be generated. The
new winning architecture would remain the same structure in the non-active layers and update to
new operators in the active layers. A new iteration is started with the new winning architecture until
the termination test is satisfied.

3.3 GLOBAL SEARCH SPACE

Candidate Operator Pool O. As is known, the computation complexity (e.g., FLOPs) and memory
access cost of an architecture are key factors in hardware latency efficiency (Ma et al., [2018). To
cover the hardware diversity, our initial search space consists of 32 candidate operators (detailed
structures are in Appendix Figure |3)) that leverage different computation and memory complexity.
They are built upon the following 4 basic structures from current efficient models:

e SEP: depthwise-separable convolution. Following DARTS (Liu et al., 2019), we applied
the depthwise-separable convolution twice. We allow choosing kernel size & of 3, 5 or 7 for
the depthwise convolution and generate 3 operators SEP_k. This rule with different kernel
size for depthwise convolution also applies to other operator generation. SEP _k has a larger
FLOP count than others, but less memory access complexity.

e MB: mobile inverted bottleneck convolution in MobileNetV2 (Sandler et al.l 2018). It’s
widely used in recent one-shot NAS (Chu et al., [2019; (Cai et al., [2019). We generate 9
operators MB_k_e based on it, that we allow choosing k of 3, 5, 7 and channel expansion
rate e of 1, 3, 6. MB_k_e has a medium memory access cost due to its shortcut and add
operation. Its computation complexity is decided by the kernel size k and expansion rate e.

e Choice: basic building block in ShuffieNetV2 (Ma et al., 2018). We construct 3 opera-
tors Choice_k (k=3, 5, 7). Following (Guo et al., |2019), we also adds a similar operator
ChoiceX. Choice_k and ChoiceX have much smaller FLOPs than the others, but the mem-
ory complexity is high due to the channel split and concat operation.

e SE: squeeze-and-excitation network (Hu et al., 2017). To balance the impacts in latency
and accuracy, we follow the settings in MobileNetV3 (Howard et al., 2019). We set the
reduction ratio r to 4, and replace the original sigmoid function with a hard version of swish

hswish|x] = mw. We apply SE module to the above operators and generate new
16 operators. The computation complexity of SE is decided by its insert position, while the
memory access cost is relatively lower.

As a result, our global search space consists of 1n/91=2032 (n=20 layers) candidate architectures,
which is exponentially larger than current one-shot NAS. For each searchable layer, there are total
of 32 operators to choose: SEP_k, SEP_k_SE,MB_k_e, MB_k_e_SE, Choice_k,Choice_k_SE,ChoiceX,
ChoiceX_SE, where k=3,5,7, and e=1,3,6.

3.4 HARDWARE AWARE ONE-SHOT NEURAL ARCHITECTURE SEARCH IN COORDINATE
ASCENT FRAMEWORK

Hardware aware profiling and sorting. As shown in Figure the real performances of opera-
tors vary significantly on different hardware platforms. Without loss of generality, the scoring func-
tion should consider both representation capacity and real hardware performance. There are many
methods to approximate the scoring function, such as a customized weighted product of FLOPs and
number of parameters (#Params)

(FLOPs x #Params”)® x Latency 4)

where « and [ are non-negative constants.

Construct search space with high scored operators. For each layer, we filter out the top 4 opera-
tors with highest scores first. This make the search space reduced to a comparable size with previous
works, but specialized for the target platform. Another exploring operator is added to the candidate
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Output shape | Layer DSP CPU VPU

562 x 64 14 SEP_3, Choice_3 Choice_3, Choice_3_SE Choice_3, Choice_5

MB_3_1, ChoiceX MB_3_1, ChoiceX Choice_7, SEP_3
282 % 160 5.3 Choice_3, ChoiceX Choice_3, ChoiceX Choice_3, Choice_5
MB_3_1, Choice_3_SE Choice_5, MB_3_1 Choice_7, ChoiceX
142 % 320 9-16 ChoiceiS, Choice_3_SE Cho%cej, Cho%cej,SE Choi.cej, Choif:ej
ChoiceX, MB_3_1 Choice_5 ,Choice_5_SE Choice_7, ChoiceX
Choice_3, Choice_3_SE Choice_3, Choice_5 Choice_3, Choice_5

72 X 640 17-20

ChoiceX ,MB_3_1, MB_3_.3 | Choice_3_SE, Choice_7, MB_5_1 Choice_7, MB_3_1, MB_7_1

Table 1: Hardware-aware search space for each mobile hardware. For layer at 1-16, it contains 4
operators for selection, for layer 17-20, each layer has 5 operators.

operator set of the last 4 layers. Only adding to the last layers is because (1) the latency degra-
dations of these layers are acceptable due to their smallest feature size; (2) sophisticated operators
could help these layers better capture high-level class-specific patterns.

Hyper-parameters. There are two important hyper-parameters in Algorithm I} the layer grouping
boundary ¢ and the number of iterations I. We set ¢ = 8 (only searchable layers counted) according
to the natural resolution changes of the supernet (Table 4] in Appendix). Experiment discussed in
Appendix [C] shows the rationality of it. For simplicity, we tested the simplest one-iteration case
(I = 1) and adding an extra iteration (I = 2).

4 EVALUATION

4.1 HARDWARE PLATFORMS AND MEASUREMENTS

Diverse hardware platforms. HURRICANE targets three representative mobile hardware that is
widely used for CNN deployment: (1) DSP (Qualcomm’s HexagonTM 685 DSP), (2): CPU (Qual-
comm’s Snapdragon 845 ARM CPU), (3): VPU (Intel’s Movidius™ MyriadTM X Vision Process-
ing Unit ). To make full utilization of these hardware at inference, we use the particular inference
engine provided by the hardware vendor. Specifically, DSP and CPU latency are measured by Snap-
dragon Neural Processing Engine SDK (Qualcomm, |2019), while VPU latency is measured by Intel
OpenVINO™ Toolkit (Intel, 2019).

Operators profiling and sorting. Table [1]lists the top scored operators on different hardware plat-
forms when o = 0. The hardware-aware search space constructed by scoring the operators on target
hardware platforms and then selecting the best 4 operators (layer 17-20 has another extra exploring
operator with e = 10). We share new important insights from hardware profiling: (i) depthwise
convolutions with kernel size £ < 3 are well optimized on HexagonTM 685 DSP. As a result, all
the operators are of k=3 in search space. (ii) SE module is not supported by the Al accelerator of
Myriad™ X VPU, and thus rolled back to relatively slow CPU execution. (iii) Even with complex
memory operator, C'hoice_3 (i.e., ShuffleNetV2 unit) is the most efficient operator on VPU and CPU
due to its much smaller FLOPs count.

Latency predictor. To avoid measuring the latency of every candidate architecture, we build a
latency-prediction model with high accuracy: the RMSE (root mean square error) of prediction
model is 0.82ms, 21.84ms, and 0.03ms on DSP, CPU, VPU, respectively, which means an average
4.7%, 4.2%, and 0.08% latency estimated error for DSP, CPU and VPU. It suggests the latency
prediction model can be used to replace the expensive direct hardware measurement with little error
introduced. More details of latency predictor is in Appendix

4.2 EXPERIMENT SETUP - ONE-SHOT NEURAL ARCHITECTURE SEARCH

Latency constraints. As discussed in Appendix[B] the latency constraint on a given platform should
be in a meaningful range. For better comparison with other works, we set the latency constraints
to be smaller than the best latency of models from other works, which are 310 ms (CPU), 17 ms
(DSP) and 36 ms (VPU).

Over-parameterized Supernet and Architecture Search. HURRICANE is built on top of
Singlepath-Oneshot (Guo et al [2019; Research, 2019). The supernet architecture (in Appendix
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Supernet training
Model FLOPs Acc (%) DSP (ms) CPU (ms) VPU (ms) Time Reduction (%)
I=1/1=2"°

FBNet-iPhoneX 322M 73.20 105.0 313.0 45.6 -

FBNet-S8 293M 73.27 293.0 369.6 45.1 -
Proxyless-R (mobile) 333M 74.60 534.6 616.5 53.1 -
Singlepath-Oneshot™ 319M 74.30 270.6 455.8 38.7 0
HURRICANE (DSP) | 709M 76.63 16.5 576.7 454 61.4(76.57)136.4 (76.63)
HURRICANE (CPU) | 327M 74.59 80.1 301.3 38.9 57.7 (74.59) 1 33.9 (74.59)
HURRICANE (VPU) | 409M 75.13 390.8 645.3 35.6 45.0 (74.63) /1 20.8 (75.13)

Table 2: Comparisons with various state-of-the-art efficient NAS on ImageNet. We measure all the
model latency on our hardware platforms. *: For fair comparison, we use the block search model
instead of the block search+ channel search. ': In the form ”’x(y)”, where ”x” means the training
time reduction and ’y”” means the accuracy achieved.

Table ) consists of stem layers and n=20 searchable layers. Once the supernet training finishes,
we perform a 20-iterations evolution search for total 1,000 architectures as Singlepath-Oneshot. For
better fairness, the supernet is re-initialized randomly before every iteration

4.3 SEARCHING ON IMAGENET DATASET

Dataset. Following (Cai et al., 2019), we randomly split the original training set into two parts:
50,000 images for validation (50 images for each class exactly) and the rest as the training set. The
original validation set is used for testing, on which all the evaluation results are reported.

Training Details. We follow most of the training settings and hyper-parameters used in Singlepath-
Oneshot (Guo et al.| 2019)), with two exceptions: (i) For supernet training, the epochs change with
different hardware-aware search spaces (listed in Table [T), and we stop at the same level training
loss as Singlepath-Oneshot. (ii) For architecture retraining, we change linear learning rate decay to
cosine decay from 0.4 to 0. The batch size is 1,024. Training uses 4 NVIDIA V100 GPUs.

Results and Search Cost Analysis. Table[2]summarizes our experiment results on ImageNet. HUR-
RICANE surpasses state-of-the-art models, both manually and automatically designed: compared to
MobileNetV2 (top-1 accuracy 72.0%), HURRICANE improves the accuracy by 2.59% to 4.03% on
all target hardware platforms. Compared to models searched automatically, HURRICANE demon-
strates that it’s essential to leverage hardware diversity in NAS to achieve the best efficiency on
different hardware platforms. Specially, compared to the most efficient models searched by NAS,
HURRICANE (DSP) reaches a 6.35 x inference speedup than FBNet-iPhoneX with 3.43% accuracy
improvement, HURRICANE (CPU) achieves 1.39% higher accuracy with 11.7ms latency reduc-
tion, HURRICANE (VPU) achieves 0.83% higher accuracy with 3.1ms latency reduction. Remark-
ably, HURRICANE is the only hardware-aware NAS method that searches the better accuracy with
much lower latency on all diverse hardware platforms.

To compare the search cost, we report supernet training time reduction compared with Singlepath-
Oneshot instead of exact GPU search days as (Cai et al.l [2019; (Wu et al.| [2019) for two reasons:
(i): the GPU search days are highly relevant with the experiment environments (e.g., different GPU
hardware) and the code implementation (e.g., ImageNet distributed training). (ii): The primary
time cost comes from supernet training in Singlepath-Oneshot, as the evolution search is fast that
architectures only perform inference. Table [2] shows that our method reduces an average 54.7%
time if executes one step search in coordinate ascent (I = 1), which is almost a 2x training time
speedup. In addition, HURRICANE already achieves better classification accuracy than other NAS
methods at this step. It demonstrates the effectiveness of exploring more architecture selections in
the latter layers. With one more step search, HURRICANE usually search better architectures but
takes longer tme. Results suggest our method can still save an average 30.4% time (I = 2).

Table 2] also indicates that HURRICANE (DSP) achieves the highest accuracy than other hardware,
but with much more latency speedup. The contributions mainly come from the larger computation

“We also test different reset methods (a) re-initialized randomly, (b) reset the same random values every
time, (c) keep the values and continue training. The results show no noticeable differences.
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Singlepath-Oneshot HURRICANE HURRICANE

I=1 I=2
Task Acc Train Acc Train Acc Train
(%) iters (#) (%) iters(#) | (%) iters (#)
FLOPs constrained (OUI) 86.41 235,800 86.44 112,660 | 86.90 133,620
FLOPs constrained (ImageNet) 73.72 144,360 74.01 72,180 74.16 105,864

latency constrained for DSP (OUI) | 87.22 569,850 86.56 128,380 | 87.62 150,650
latency constrained for CPU (OUI) | 87.02 476,840 86.75 144,100 87.33 168,990
latency constrained for VPU (OUI) | 86.99 524,000 86.93 133,620 | 87.07 157,200

Table 3: Comparisons with Singlepath-Oneshot by different search spaces. We list out the training
iterations on ImageNet (batchsize=1,024) and OUI (batchsize=64) for search cost comparison.

FLOPs (higher accuracy) and the DSP hardware characteristics leverage in search space (lower
latency). It also demonstrates again that FLOPs is an improper metric for hardware aware NAS.

4.4 EFFECTIVENESS ANALYSIS OF HURRICANE

To further demonstrate the effectiveness HURRICANE, we compare it with recent work (Guo et al.}
2019) on a sequence of tasks. These tasks include the original FLOPs (330M) constrained architec-
ture search in (Guo et al.| 2019), the hardware latency constrained architecture search for different
hardware platforms described in this paper. We do the experiments on ImageNet and also the OUI-
Adience-Age (OUI) for simplicity. For the fairness, we let the methods use the same search space
for a single task. For the FLOPs constrained tasks, we use the original search space of (Guo et al.,
2019)). For those hardware latency constrained tasks, we let the methods use our specialized search
space listed in Table T]

Dataset and Training Details. OUI-Adience-Age (Eldinger et al.,|[2014) is a small 8-class dataset
consisting of 17,000 face images. We split the images into training and testing test by 8:2 for
architecture retraining. For architecture search, we randomly split the training set into two parts:
5,567 images for validation and the rest as the training set for supernet. We adopt the same hyper-
parameter settings as Singlepath-Oneshot, except that we reduce the initial learning rate from 0.5 to
0.1, and the batch size reduced from 1024 to 64. Supernet trains until converge. For the architecture
retraining, we train for 400 epochs and change the original linear learning rate decay to Cyclic
decay (Smith, 2017) with a [0, 1] bound. We use 1 NVIDIA Telsa P100 for training.

Results and Search Cost Analysis. Table [3] summarizes experiment results. The searched models
outperform the manual designed light-weight models, such as MobileNetV2 (top-1 acc: 72.00% on
ImageNet, 85.67% on OUI-Adience-Age). For every row of the table, the proposed method could
achieve not only higher accuracy but also better hardware efficiency for all the tasks. As shown in the
column of Singlepath-Oneshot, our hardware-aware search space could also improve the accuracy
(0.6%-0.8% on OUI-Adience-Age dataset).

To illustrate the cost of supernet training, we listed the number of iterations consumed. As shown in
Table[3] in most tasks, only one iteration (I = 1) of HURRICANE could achieve a comparable top-1
accuracy (or even better in some tasks), but the number of training iterations is significantly reduced
(50%-77.5%). If the computation budget (e.g. training time) allows, HURRICANE can benefit from
another iteration (I = 2). The accuracy is improved by 0.15%-1.06% with an additional cost of only
4.0%-23.3% of training iterations.

5 CONCLUSION

In this paper, we propose HURRICANE to address the challenge of hardware diversity in NAS. By
exploring hardware-aware search space and a multistep search scheme based on coordinate ascent
framework, our solution achieves better accuracy and much lower latency on three hardware plat-
forms than state-of-the-art hardware-aware NAS. And the searching cost (searching time) is also
significantly reduced. For future work, we plan to support more diverse hardware and speed up
more NAS methods.
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A COORDINATE DESCENT (ASCENT) ALGORITHMS

Coordinate descent (CD, or coordinate ascent, CA) (Wright, 2015) are optimization algorithms
to find the minimum (or maximum) of a function by successively performing approximate mini-
mization (maximization) along coordinate directions or coordinate hyperplanes. They are iterative
methods, in which we optimize along a selected coordinate direction or hyperplane at a time while
keeping all others fixed. Though not sophisticated, the CD or CA methods could be surprisingly
efficient and scalable in many real world scenarios. As it’s extremely difficult to an optimal layer-
sampling rates sequence with respect to different layers’ importance for final accuracy, CA algorithm
is much easier to achieve competitive results with careful implementations.

B ADJUSTMENT ACCORDING FOR DIFFERENT LATENCY CONSTRAINTS

In the body of this paper, we assume that the latency constraint should be in a meaningful range,
which means the constraint should neither be too small to achieve nor too great to make the problem
degraded to an unbounded optimization for accuracy only. The proposed solution doesn’t guarantee
the performance in case that the latency constraint is out of the meaningful range. However, this
could be patched by

o for those constraints too small to achieve, we could reduce the number of layers by adding
a skip operator to some of the layers.

o for those constraints too big, we could adjust the scoring function to let the algorithm cares
more about representation capacity other than latency, or even add additional layers.

C SELECTION OF HYPER-PARAMETER t

As illustrated in Section 3] we group the 20 layers into earlier ¢ layers and latter 20-¢ layers. As the
changes of resolution are natural boundary due to the feature map size changes, we split the groups
at the second resolution downsampling and set ¢=8. Figure 2]also demonstrates that HURRICANE
achieves comparable accuracy on OUI-Adience-Age with MobileNetV2 when ¢=8, with 74.4% time
reduction of supernet training.

88
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Figure 2: Accuracy vs. supernet training reduced time of HURRICANE-iter] by different ¢ on
OUI-Adience-Age for DSP. When ¢t < 8, HURRICANE-iterl achieves a same level accuracy with
MobileNetV2.

D LATENCY PREDICTOR

In a constrained optimization problem, it is often required to check whether an architecture exceeds
the latency constraint. To reduce the cost and complexity of connecting hardware frequently, we
developed the latency predictor, which consists of multiple independent hardware specific predic-
tors. Each predictor takes the sequence of operators in all the layers as the input and predict the real
latency of the whole architecture on the target hardware platform.

To build the latency prediction model, we uniformly sample 2,000 candidate architectures from our
three hardware-aware search space, where 80% of them are used to build the latency model and
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the rest are used for test. We encode the architectures into a 84-dimension binary vector, where
the binary value indicates the occurrence of a corresponding operator. Different regression models
are selected for latency prediction on diverse hardware. Specifically, We build GaussianProcess-
Regressor with Matern kernel (length_scale=1.5, nu=0.35) (Rasmussen & Williams| 2005)), Lasso
Regression model (alpha=0.01) (Tibshirani, |1994) and Bayesian Ridge Regression (Bishop), [2006)
models for DSP, CPU and VPU, respectively.

E SUPERNET BACK-BONE ARCHITECTURE

Input shape Block channels repeat stride

2242x3 3 x 3 conv 16 1 2
1122x16 TBS 64 4 2
562x64 TBS 160 4 2
282x160 TBS 320 8 2
142x320 TBS 640 4 2
72x640 1 x1 conv 1024 - -
72x1024 GAP - 1 1

1024 fc 1000 1 1

Table 4: Supernet architecture. Column-"Block” denotes the block type. "TBS” means layer type
needs to be searched. The “stride” column represents the stride of the first block in each repeated
group. In our paper, we search the operations for total 20 layers.

F THE STRUCTURES OF OPERATIONS IN OUR SEARCH SPACE
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Figure 3: Operations in Section[3] SE* indicates the position to add squeeze-and-excitation block.
When SE* is enabled, the operations are Choice_k_SE, ChoiceX_SE, SEP k_SE, MB_k_e_SE. k
indicates kernel size, where & = 3,5, 7. e indicates the expansion rate, where e = 1, 3, 6.
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G STRUCTURES OF SEARCHED ARCHITECTURES ON IMAGENET
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Figure 4: Structures of searched architectures on ImageNet in Table 2]
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