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ABSTRACT

Visual grounding of language is an active research field aiming at enriching text-
based representations with visual information. In this paper, we propose a new
way to leverage visual knowledge for sentence representations. Our approach
transfers the structure of a visual representation space to the textual space by us-
ing two complementary sources of information: (1) the cluster information: the
implicit knowledge that two sentences associated with the same visual content de-
scribe the same underlying reality and (2) the perceptual information contained
within the structure of the visual space. We use a joint approach to encourage
beneficial interactions during training between textual, perceptual, and cluster in-
formation. We demonstrate the quality of the learned representations on semantic
relatedness, classification, and cross-modal retrieval tasks.

1 INTRODUCTION

Building linguistic vectors that represent semantics is a long-standing issue in Artificial Intelligence.
Distributional Semantic Models (Mikolov et al., 2013; Peters et al., 2018) are well-known recent ef-
forts in this direction, making use of the distributional hypothesis (Harris, 1954) on text corpora
to learn word embeddings. At another granularity level, having high-quality general-purpose sen-
tence representations is crucial for all models that encode sentences into semantic vectors, such
as the ones used in machine translation (Bahdanau et al., 2014) or question answering (Sagara &
Hagiwara, 2014). Moreover, encoding semantics of sentences is paramount because sentences de-
scribe relationships between objects and thus convey complex and high-level knowledge better than
individual words, which mostly refer to a single concept (Norman, 1972).

Relying only on text can lead to biased representations and unrealistic predictions (e.g., text-based
models could predict that “the sky is green” (Baroni, 2016)). Besides, it has been shown that hu-
man understanding of language is grounded in physical reality and perceptual experience (Fincher-
Kiefer, 2001). To overcome this limitation, one emerging approach is the visual grounding of lan-
guage, which consists of leveraging visual information, usually from images, to enhance word rep-
resentations. Two methods showing substantial improvements have emerged: (1) the sequential
technique combines textual and visual representations that were separately learned (Bruni et al.,
2014; Silberer & Lapata, 2014), and (2) the joint method learns a common multimodal representa-
tion from multiple sources simultaneously (Lazaridou et al., 2015). In the case of words, the latter
has proven to produce representations that perform better on intrinsic and downstream tasks.

While there exist numerous approaches to learning sentence representations from text corpora only,
and to learning multimodal word embeddings, the problem of the visual grounding of sentences
is quite new to the research community. To the best of our knowledge, the only work in the field
is Kiela et al. (2018). The authors propose a sequential model: linguistic vectors, learned from a
purely textual corpus, are concatenated with grounded vectors, which were independently learned
from a captioning dataset. However, the two sources are considered separately, which might prevent
beneficial interactions between textual and visual modalities during training.

We propose a joint model to learn multimodal sentence representations, based on the assumption
that the meaning of a sentence is simultaneously grounded in its textual and visual contexts. In
our case, the textual context of a sentence consists of adjacent sentences in a text corpus. Within a
distinct dataset, the visual context is learned from a paired video and its associated captions. Indeed,
we propose to use videos instead of images because of their temporal aspect, since sentences often
describe actions grounded in time. The key challenge is to capture visual information. Usually, to
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transfer information from the visual space to the textual one, one space is projected onto the other
(Kiela et al., 2018; Lazaridou et al., 2015). However, as pointed out by Collell & Moens (2018),
projections are not sufficient to transfer neighborhood structure between modalities. In our work,
we rather propose to exploit the visual space by preserving the overall structure, i.e. conserving
the similarities between related elements across spaces. More precisely, we take visual context
into account by distinguishing two types of complementary information sources. First, the cluster
information, which consists in the implicit knowledge that sentences associated with the same video
refer to the same underlying reality. Second, the perceptual information, which is the high-level
information extracted from a video using a pre-trained CNN.

Regarding these considerations, we formulate three Research Questions (RQ):

• RQ1: Is perceptual information useful to improve sentence representations?

•RQ2: Are cluster and perceptual information complementary, and does their combination compete
with previous models based on projections between visual and textual spaces?

• RQ3: Is a joint approach better suited than a sequential one regarding the multimodal acquisition
of textual and visual knowledge?

Our contribution is threefold: (1) We propose a joint multimodal framework for learning grounded
sentence representations; (2) We show that cluster and perceptual information are complementary
sources of information; (3) To the best of our knowledge, obtained results achieve state-of-the-art
performances on multimodal sentence representations.

2 JOINT MULTIMODAL FRAMEWORK FOR SENTENCE REPRESENTATION

2.1 MODEL OVERVIEW

Our framework learns multimodal representations for sentences by jointly leveraging the textual and
visual contexts of a sentence. The textual resource is a large text corpus CT of ordered sentences.
The visual resource is a distinct video corpus CV , whose videos are associated with one or more
descriptive captions.

A sentence S is represented by s = Fθ(S) and its corresponding video VS by vs = Gθ′(VS),
where F (resp. G) is a sentence (resp. video) encoder parameterized by θ (resp. θ′). We propose
to use a joint approach where the sentence encoder Fθ is learned by jointly optimizing a textual
objective LT (θ) on CT and a visual objective LV(θ, θ′) on CV . So far, this method has only been
applied to words, with good results (Lazaridou et al., 2015; Zablocki et al., 2018). Note that CT and
CV are not parallel corpora but that θ is shared between both objectives; in other terms, sentence
representations are influenced by their distinct textual and visual contexts. Any sentence encoder Fθ
and textual objective LT can be used such as SkipTought (Kiros et al., 2015), FastSent (Hill et al.,
2016) or QuickThought (Logeswaran & Lee, 2018). In this paper, we focus on SkipThought, and
present evidences that our approach also improves over FastSent (section 4.3). In the following, we
introduce hypotheses and their derived objectives to tackle the modeling of LV .

2.2 LEVERAGING THE VISUAL CONTEXT

Most visual grounding works use projections between the textual space and the visual space (Kiela
et al., 2018; Lazaridou et al., 2015) to integrate visual information. However, when a cross-modal
mapping is learned, the projection of the source modality does not resemble the target modality,
in the sense of neighborhood topology (Collell & Moens, 2018). This suggests that projections
between spaces is not an appropriate approach to incorporate visual semantics. Instead, we propose
a new way to structure the textual space with the help of the visual modality.

Without even considering the content of videos, the fact that sentences describe or not a same un-
derlying reality is an implicit source of information that we name the cluster information. For
convenience, two sentences are said to be visually equivalent (resp. visually different) if they are
associated with the same video (resp. different videos), i.e. if they describe the same (resp. differ-
ent) underlying reality. We call cluster a set of visually equivalent sentences. Leveraging the cluster
information may be useful to improve the structure of the textual space: intuitively, representations
of visually equivalent sentences should be close, and representations of visually different sentences
should be separated. We thus formulate the following hypothesis (see red elements in Figure 1):
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Figure 1: Illustration of the cluster and perceptual hypotheses. Red circles indicate visual clusters.
Red arrows represent the gradient of the loss derived from the cluster hypothesis (C), which gathers visually
equivalent sentences. For clarity’s sake, the term in equation 1 that separates negative pairs is not represented.
The green arrow and angles illustrate the loss derived from the perceptual hypothesis (S), which requires cosine
similarities to correlate across the two spaces. The point at the center of each space is the origin.

Cluster Hypothesis (C): A sentence should be closer to a visually equivalent sentence than to a
visually different sentence.

We translate this hypothesis into the constraint cos(s, s+) ≤ cos(s, s−), where s+ (resp. s−) is a
visually equivalent (resp. different) sentence to s. Following Karpathy & Li (2015); Carvalho et al.
(2018), we use a max-margin ranking loss to ensure the gap between both terms is higher than a
fixed margin m:

LC =
∑

(s,s+)

∑
s−

max(0,m− cos(s, s+) + cos(s, s−)) (1)

where (s, s+) cover visually equivalent pairs; visually different sentences s− are randomly sampled.

The cluster hypothesis ignores the structure of the visual space and only uses the visual modality as a
proxy to assess if two sentences are visually equivalent or different. Moreover, a ranking loss simply
drives visually different sentences apart in the representation space, even if their corresponding
videos are closely related.

To cope with this limitation, we suggest to take into account the structure of the visual space and
use the content of videos, and then propose a novel approach which does not require cross-modal
projections. The intuition is that the structure of the textual space should be modeled on the structure
of the visual one to extract visual semantics. We choose to preserve similarities between related
elements across spaces. We thus formulate the following hypothesis, illustrated with green elements
in Figure 1:

Perceptual hypothesis (P): The similarity between two sentences in the textual space should be
correlated with the similarity between their corresponding videos in the visual space.

We translate this hypothesis into the loss LP = −ρvis, where ρvis = ρ(cos(s, s′), cos(vs, vs′)) and
ρ is the Pearson correlation.

The final multimodal loss is a linear combination of the aforementioned objectives, weighted by
hyperparameters αT , αP and αC :

L(θ, θ′) = αT .LT (θ)︸ ︷︷ ︸
textual context

+αP .LP(θ, θ′) + αC .LC(θ)︸ ︷︷ ︸
visual context LV

(2)

2.3 VIDEO MODELING

To evaluate the impact of visual semantics on sentence grounding, we examine several types of
visual context. As done in Yao et al. (2016); Guo et al. (2016), visual features are extracted using
the penultimate layer of a pretrained CNN. A video is represented as a set of n images (Ik)k∈[1,n].
Let (ik)k∈[1,n] be the representations of these images obtained with the pre-trained CNN. We present
below three simple ways to represent a video V . Note that our model can be generalized to more
complex video representations (Ji et al., 2010; Simonyan & Zisserman, 2014b).

One Frame (F ): this simple setting amounts at keeping the first frame and ignoring the rest of the
sequence (any other frame might be used). The visual context vector is v = i1.
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Average (A): the temporal aspect is ignored, and the scene is represented by the average of the
individual frame features: v = 1

n

∑n
k=1 ik (Zha et al., 2015).

Temporal Grounding (T ): the intuition is that, in a video, not all frames are relevant to sentence
understanding. An attention mechanism allows us to focus on important frames. We set: v =∑n
k=1 βkik, where βk = softmax(<

∑
w uw, N.ik >). The sum ranges over the words w of the

sentence s, uw is the fixed pretrained word embedding of w, and N is a learned projection.

3 EVALUATION PROTOCOL

3.1 DATASETS

Textual dataset. Following Kiros et al. (2015); Hill et al. (2016), we use the Toronto BookCorpus
dataset as the textual corpus CT . This corpus consists of 11K books: this makes a total of 74M
ordered sentences, with an average of 13 words per sentence.

Visual dataset. We use the MSVD dataset (Chen & Dolan, 2011) as the visual corpus CV . This
video captioning dataset consists of 1970 videos and 80K English descriptions. On average, a video
lasts 10 seconds and has about 41 associated sentences.

3.2 BASELINES AND SCENARIOS

Model Scenarios. We test different variants of our multimodal model presented in section 2. We
note these variants MI

V (αT , αP , αC), which depend on:
• the initialization I ∈ {p,∅}: the sentence encoder Fθ is either pretrained using the textual objec-
tive LT (I = p), or initialized randomly (I = ∅).
• the visual representation V ∈ {F,A, T,R}: where F ,A or T are the video modelings described in
Section 2.3. We introduce a baseline R, where visual vectors are randomly sampled from a normal
distribution to measure the information brought by the video content.

Baselines. We propose two extensions of multimodal word embedding models to sentences:
• Projection (P): Inspired by Lazaridou et al. (2015), this baseline is projecting videos in the textual
space, while our model keeps both spaces separated. The visual loss is a ranking objective:

LV =
∑
s

∑
v−

max(0,m′ − cos(s,W.v−) + cos(s,W.vs)) (3)

where W is a trainable projection matrix and m′ a fixed margin. We note PIV (αT ) the variants of
this baseline using the global loss L = αT .LT + LV .

• Sequential (SEQ): Inspired by Collell Talleda et al. (2017), we learn a linear regression model
(W, b) to predict the visual representation from the SkipThought representations. The multimodal
sentence embedding is the concatenation of the original SkipThought vector and its predicted repre-
sentation: ST⊕WST + b, projected into a lower-dimensional space using PCA. This baseline can
also be seen as a simpler variant of the model in Kiela et al. (2018).

3.3 TASKS AND MEASURES

In line with previous works on sentence embeddings (Kiros et al., 2015; Hill et al., 2016), we con-
sider several benchmarks to evaluate the quality of our learned multimodal representations:

Semantic relatedness: We use two well-known semantic similarity benchmarks: STS (Cer et al.,
2017) and SICK (Marelli et al., 2014), which consist of pairs of sentences that are associated with
human-labeled similarity scores. STS is subdivided in three textual sources: Captions contains
sentences with a strong visual content, describing everyday-life actions, whereas the others contain
more abstract sentences: news headlines in News and posts from users forum in Forum. Correlations
(Spearman/Pearson) are measured between the cosine similarity of our learned sentence embeddings
and human-labeled scores. Hyperparameters are tuned on SICK/trial (results on SICK/train+test are
reported in tables).

Classification benchmarks: We use six sentence classification benchmarks: paraphrase identifi-
cation (MSRP) (Dolan et al., 2004), opinion polarity (MPQA) (Wiebe & Cardie, 2005), movie
review sentiment (MR) (Pang & Lee, 2005), subjectivity/objectivity classification (SUBJ) (Scott
et al., 2004), question-type classification (TREC) (Voorhees, 2001) and customer product reviews
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Table 1: RQ1: Validation of the semantic hypothesis by comparing video modelings on semantic
relatedness. We use model Mp

•(0, 1, 0). Correlation results are given in the form ρSpearman/ρPearson.

Model STS/All STS/Cap. STS/News STS/For. SICK
Text-only ST 40/41 44/42 38/42 21/22 52/55

Visual info.

R 51/53 62/62 39/43 23/24 56/57
F 57/59 75/75 41/46 24/26 60/61
A 58/60 75/75 41/45 23/26 59/63
T 57/60 76/76 41/46 25/27 60/63

(CR) (Hu & Liu, 2004). For each dataset, a logistic regression classifier is learned from the extracted
sentence embeddings; we report the classification accuracy.

Cross-modal retrieval on COCO: We consider the image search/annotation tasks on the MS COCO
dataset (Lin et al., 2014). A pairwise triplet-loss is optimized in order to bring corresponding
sentences and images closer in a multimodal latent space. Evaluation is performed using Recall@K.

Structural measures: To analyze the quality of the textual space, we report some measures (com-
puted in %) defined on the MSVD test set:
• ρvis measures if the similarities between sentences correlate with the similarities between videos.
• Eintra = Evs=vs′ [cos(s, s

′)] measures the homogeneity of each cluster, by measuring the average
similarity of sentences within a cluster.
• Einter = Evs 6=vs′ [cos(s, s

′)] measures how well clusters are separated from each other (i.e. aver-
age similarity between sentences of two different clusters).

3.4 IMPLEMENTATION DETAILS

Videos are sampled at a 3 frames per second rate; afterwards, frames are processed using a pretrained
VGG network (Simonyan & Zisserman, 2014a). The multimodal loss L is optimized with Adam
optimizer (Kingma & Ba, 2014) and a learning rate λ = 8.10−4. Hyperparameters are tuned using
the Pearson correlation measure on SICK trial: m = m′ = 0.5, µ = 2.5.10−4, and mini-batch size
of 32 for LV . We perform extensive experiments with LT based on the SkipThought model, using
an embedding size of 2400 and the same network hyperparameters as in Kiros et al. (2015).

4 EXPERIMENTS AND RESULTS

4.1 VALIDATION OF THE PERCEPTUAL HYPOTHESIS (RQ1)

The perceptual hypothesis holds that the information within videos is useful to ground sentence rep-
resentations. In our model, this hypothesis translates into the perceptual loss L = LP (i.e. model
Mp
. (0, 1, 0)). Since the perceptual loss is the only component exploiting video content, we compare,

in Table 1, the different video encoders on intrinsic evaluation benchmarks, namely semantic relat-
edness. The first observation is that our model M outperforms the purely textual baseline ST for
all video encoders, which shows that perceptual information from videos is useful to improve repre-
sentations. We also observe that using random visual anchors (R) improves over ST. This validates
our cluster hypothesis, since grouping visually equivalent sentences improves representation – even
when anchors bear no perceptual semantics. We further observe that F,A, T > R, which shows
that the perceptual information from videos brings a more semantically meaningful structure to the
representation space. Finally, regarding the different ways to encode a video, we observe that lever-
aging more than one frame can be slightly beneficial to learn grounded sentence representations,
e.g. A obtains +3.3% average relative improvement over F on ρSICK

Pearson. Selecting relevant frames
(T ) in the video rather than considering all frames with equal importance (A) improves the quality
of the embeddings.

It is worth noting that discrepancies between the modeling choices F , A, T are relatively low.
This could be explained by the fact that videos from the MSVD dataset are short (10 seconds on
average) and contain very few shot transitions. Thus, nearly all frames can provide a relevant visual
context for associated sentences. We believe that higher differences would be exhibited for a dataset
containing longer videos. In the remaining experiments, we therefore select A as the video model,
since it offers a good balance between effectiveness (T ) and efficiency (F ).
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Table 2: RQ2: Influence of visual hypotheses on the structure of the representation space.

ρ
A
vi
s Ein

tr
a

Ein
te
r

STS/All
STS/Cap.

STS/News

STS/For.

SICK

Model Structural measures Semantic relatedness
Text-only ST 16 43 25 40/41 44/42 38/42 21/22 52/55
Projection P Pp

A(0) 37 63 06 62/67 82/84 43/48 29/31 61/75
Cluster Mc Mp

A(0, 0, 1) 38 66 01 62/66 83/84 41/46 22/24 62/76
Perceptual Mp Mp

A(0, 1, 0) 53 44 18 58/60 75/75 41/45 23/26 59/63
Both combined Mb Mp

A(0, 0.1, 1) 46 63 02 64/68 84/85 44/49 27/29 62/76

4.2 COMPLEMENTARITY OF CLUSTER AND PERCEPTUAL INFORMATION (RQ2)

We study here the influence of perceptual and cluster information on the embedding space structure.
To do so, we report, in Table 2, the structural measures on three versions of our model – Mc (cluster
information), Mp (perceptual information) and Mb (combination of both), as well as on baselines
ST and P. For M and P, we discard the textual loss to isolate the effect of the different hypotheses.
As expected, solely using cluster information leads to the highest Eintra and lowest Einter, which
suggests that Mc is the most efficient model at separating visually different sentences. Using only
perceptual information in Mp logically leads to highly correlated textual and visual spaces (highest
ρAvis), but the local neighborhood structure is not well preserved (lowest Eintra and highest Einter).
Mb and P are optimized for both forming well-separated clusters and capturing the perceptual infor-
mation within the representation space. This translates into a high Eintra and low Einter. However,
the main difference lies in the fact that Mb is better at preserving the geometry of the visual space
(higher ρAvis). This difference results in better performances for our model Mb in terms of semantic
relatedness compared to P. It reinforces our claim that both visual and perceptual information com-
plement each other for sentence representation. Therefore, in the remaining experiments, we use the
combined model M•A(αT , .1, 1), that we note M•A(αT ) for clarity’s sake.

4.3 PERFORMANCE OF SCENARIOS AND BASELINES (RQ2 AND RQ3)

Table 4.3 reports the effectiveness of the sentence embeddings obtained from our scenarios and
baselines on semantic relatedness and classification tasks. We first observe that multimodal mod-
els generally outperform the text-only baseline ST on both semantic relatedness and classification
benchmarks. Interestingly, we notice that the STS/Captions benchmark gives the highest discrep-
ancies compared to the text-only baseline, probably because these sentences have a highly visual
content. Second, we notice that a high αT leads to high classification scores, whereas a low αT
leads to high semantic relatedness scores. There is a trade-off between semantic relatedness and
classification scores, that we can set properly by tuning αT . Indeed, properly weighting the textual
contribution in the global loss L is task-dependent, for every grounding model. This echoes the
problem reported in Faruqui et al. (2016) in the context of word embeddings: there is no strong cor-
relation between the semantic relatedness scores and extrinsic evaluation (e.g. classification) scores.

As a qualitative analysis, we illustrate in Table 3 that, due to our multimodal model, concrete knowl-
edge acquired via visual grounding can be transferred to abstract sentences. To do so, we manually
build abstract sentence queries using words with low concreteness (between 2.5 and 3.5) from the
USF dataset (Nelson et al., 2004). Then, nearest neighbors are retrieved from all sentences of the
MS COCO training set. We see that our multimodal model is more accurate than the purely textual
model to capture visual meaning, even for sentences that are not inherently visual. For example,
on the first line of Table 3, ST’s sentence contradicts the query by depicting the man as “smil-
ing”, whereas M’s sentence gives a concrete vision of horror: “grabs his head while screaming”.
The observation that perceptual information propagates from concrete sentences to abstract ones is
analogous to findings made in previous research on word embeddings (Hill & Korhonen, 2014).

Table 3: Qualitative analysis: finding the nearest neighbor of a given query in the textual space.
Query ST Mp

A(0, 0.1, 1)
A man is horrified An older man in a suit is smiling The man is holding his face and screaming
This is a tragedy I think this is a huge food court View from the survivor of a motorcycle accident

Two people are in love Two people are out in the ocean kitesurfing A couple of people that are next to each other
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Table 4: RQ2,3: Semantic relatedness and classification performances. M(αT ) stands for
M(αT , 0.1, 1). Note that, in all models, sentence vectors have the same dimension (2400).

STS/All
STS/Cap.

STS/News

STS/For.

SICK
MSRP

MPQA
MR SUBJ

TREC
CR

Model Semantic relatedness Classification

B
as

el
in

es

Text-only ST 40/41 44/42 38/42 21/22 52/55 71.6 86.2 75.9 92.1 89.4 82.5
Sequential SEQ 47/44 70/59 37/44 29/24 58/69 70.0 86.1 75.8 92.2 89.2 81.9

Projection

Pp
A(500) 41/39 57/47 38/43 19/19 54/59 73.1 86.2 76.7 92.5 88.8 81.3

Pp
A(100) 46/46 64/60 38/43 18/18 54/61 72.9 86.4 77.0 92.6 89.8 81.0

Pp
A( 10 ) 54/57 76/76 38/44 20/20 59/69 72.2 86.3 77.0 92.9 88.8 81.4

Pp
A( 1 ) 58/62 81/82 40/46 22/22 62/74 71.3 86.3 76.0 92.2 89.6 81.2

Pp
A( 0 ) 62/67 82/84 43/48 29/31 61/75 70.8 86.0 71.6 88.2 87.4 77.8

O
ur

m
od

el
s From scratch

M∅
A(500) 50/51 71/69 37/43 20/19 60/70 72.2 86.3 77.2 93.0 90.4 81.0

M∅
A(100) 54/56 78/76 38/44 23/22 64/75 72.9 86.6 77.3 92.8 89.0 81.7

M∅
A( 10 ) 54/56 77/76 39/44 24/23 64/73 71.2 86.4 76.0 92.6 87.2 81.3

M∅
A( 1 ) 55/59 77/79 40/46 26/25 64/71 71.1 86.3 76.0 92.2 89.6 81.1

M∅
A( 0 ) 58/60 83/83 45/50 37/34 60/72 65.3 76.2 60.4 71.2 69.0 65.9

Pretrained

Mp
A(500) 44/43 61/54 39/44 19/19 54/60 74.4 86.1 76.3 92.6 88.8 81.3

Mp
A(100) 49/50 70/66 38/43 17/17 56/65 73.2 86.2 76.8 92.5 89.2 81.5

Mp
A( 10 ) 56/59 79/78 38/44 19/19 61/73 72.6 86.7 76.2 92.4 88.6 81.5

Mp
A( 1 ) 60/64 82/83 40/46 22/23 63/76 71.6 86.2 76.0 92.0 88.8 81.1

Mp
A( 0 ) 64/68 84/85 44/49 27/29 62/76 70.1 85.9 72.7 89.6 86.8 78.0

To further answer RQ2, we compare our model M with the projection baseline P. Our model obtains
higher results than P on semantic relatedness tasks and comparable ones on classification tasks. For
example, Mp has 5%/3% average relative improvement over P on semantic relatedness tasks. This
suggests that preserving the structure of the visual space is more effective than learning cross-modal
projections, as outlined in section 4.2. Indeed, this statement is strengthened by the fact that our
model also improves over a sequential state-of-the-art model (Kiela et al., 2018). Since their textual
baseline is weaker than ours (due to differences in the encoder and the dimensionality), we do not
report their results in Table 4.3. However, we compare, between both approaches, the discrepancy ∆
between the best multimodal model and the respective text-only baseline, while keeping dimension-
ality constant. On the benchmarks MPQA, MR, SUBJ and MSRP, our ∆ is higher than theirs. For
example, ∆Kiela et al.

MSRP = 0.7 and ∆
Mp

A(500)
MSRP = 74.4− 71.6 = 2.8.

To answer RQ3, we compare joint and sequential approaches. We notice that joint models M and P
globally perform better than the sequential baseline SEQ on classification and semantic relatedness
tasks. For instance, M∅

A(500) has 5%/9% average relative improvement (resp. 1%) over SEQ on
semantic relatedness (resp. classification benchmarks). Therefore, the joint approach shows supe-
rior performances to the sequential one, confirming results reported for grounded word embeddings
(Zablocki et al., 2018). Finally, our models trained from scratch perform slightly better than pre-
trained ones. This might be due to the fact that visual and textual information are integrated in a
joint manner from the beginning of training, which leads to better interactions between visual and
textual modalities.

To further evaluate the quality of the embeddings, we perform cross-modal retrieval experiments on
the COCO dataset (Lin et al., 2014). In Table 5, we report the results of our best performing models,
which corroborates our previous statements on semantic relatedness and classification.

Finally, we probe that our model is independent from the choice of the textual encoder and objective
LT , we use the FastSent model (Hill et al., 2016) instead of the SkipThought model. We observe
similar improvements in performances (e.g. ∆STS = 4/4 and ∆SICK = 7/7 for the best performing
model Mp

A(0)), confirming that our visual grounding strategy applies to any textual model.

Table 5: Model performances on COCO cross-modal retrieval task. R@k is the recall at k metric.
R@1 R@5 R@10 R@1 R@5 R@10

Model Image Search Image Annotation
ST 31.8 66.5 79.9 25.0 58.0 73.4

PA(0) 30.9 65.4 79.0 24.5 57.3 73.3
Mp
A(0) 32.1 67.0 80.1 24.5 58.1 74.3

Mp
A(1) 33.2 67.0 79.9 25.0 58.7 73.9
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5 RELATED WORK

Sentence representations: Several approaches have been proposed over the last years to build se-
mantic representations for sentences. On the one hand, supervised techniques produce task-specific
sentence embeddings. For example, in a classification context, they are built using recurrent net-
works with LSTM (Hochreiter & Schmidhuber, 1997), recursive networks (Socher et al., 2013),
convolutional networks (Kalchbrenner et al., 2014), or self-attentive networks (Lin et al., 2017).
On the other hand, unsupervised methods aim at producing more general and task-independent sen-
tence representations. Closer to our contribution, SkipThought (Kiros et al., 2015) and FastSent
(Hill et al., 2016) are based on the distributional hypothesis (Harris, 1954) applied to sentences, i.e.
sentences that appear in similar contexts should have similar meanings. In the SkipThought model,
a sentence is encoded with a GRU network, and two GRU decoders are trained to reconstruct the
adjacent sentences. In FastSent, the embedding of a sentence is the sum of its word embeddings; the
learning objective is to predict all words in the adjacent sentences using a negative sampling loss.
The present paper extends these works by integrating visual information.

Language grounding: To understand the way language conveys meaning, the traditional ap-
proach consists of considering language as a purely symbolic system based on words and syntactic
rules (Chomsky, 1980; Burgess & Lund, 1997). However, Fincher-Kiefer (2001); W. Barsalou
(1999) insist on the intuition that language has to be grounded in the real world and perceptual
experience. The importance of real-world grounding is stressed in Gordon & Van Durme (2013),
where an important bias is reported: the frequency at which objects, relations, or events occur in
natural language are significantly different from their real-world frequency. Thus, leveraging visual
resources, in addition to textual resources, is a promising way to acquire common-sense knowledge
(Lin & Parikh, 2015; Yatskar et al., 2016) and cope with the bias between text and reality.

Following this intuition, Multimodal Distributional Semantic Models have been developed to cope
with the lack of perceptual grounding in Distributional Semantic Models (Mikolov et al., 2013;
Pennington et al., 2014). Two lines of work can be distinguished. First, the sequential approach
separately builds textual and visual representations and combines them, via concatenation (Kiela &
Bottou, 2014; Collell Talleda et al., 2017), linear weighted combination (Bruni et al., 2011), and
Canonical Correlation Analysis (Loeub & Reichart, 2016). Second, the joint approach is intuitively
closer to the way humans learn language semantics by hearing words and sentences in perceptual
contexts. The advantage is that the visual information of concrete words is transferred to more ab-
stract words that do not necessarily have associated visual data (Hill et al., 2014). Closer to our con-
tribution, Lazaridou et al. (2015) presents the Multimodal Skip-Gram model, where the Word2vec
objective (Mikolov et al., 2013) is optimized jointly with a max-margin ranking objective aiming
at bringing concrete word vectors closer to their corresponding visual features. Similarly, Zablocki
et al. (2018) show that not only the visual appearance of objects is important to word understand-
ing, but also their context in the image, i.e. surroundings and neighboring objects. However, these
models learn word representations while our model is intended to learn sentence representations.

Very recently, Kiela et al. (2018) have set ground for multimodal sentence representations. The
authors propose a sequential method: language-only representations obtained from a text corpus
(Toronto BookCorpus) are concatenated to grounded sentence vectors obtained from a caption
dataset (MS COCO). A LSTM sentence encoder is trained to predict the representation of the corre-
sponding image using a ranking loss and/or to predict other captions depicting the same image. Our
work is different in several ways from theirs: we use a joint approach instead of a sequential one,
and we distinguish and exploit cluster and perceptual information; moreover, we use videos instead
of sentences and our framework is applicable to any textual sentence representation model.

6 CONCLUSION

In this paper, we proposed a joint multimodal model to learn sentence representations and our
learned grounded sentence embeddings show state-of-the-art performances. Besides, our main find-
ings are the following: (1) Both perceptual and cluster information are useful to learn sentence
representations, in a complementary way. (2) Preserving the structure of the visual space, by mod-
eling textual similarities on visual ones, outperforms a strategy based on projecting one space into
the other. (3) A joint approach is more appropriate than a sequential method to learn multimodal
representation for sentences. As future work, we would investigate the contribution of the temporal
knowledge contained in videos for sentence grounding.
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