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Abstract

For MCMC methods like Metropolis-Hastings, tuning the proposal distribution is
important in practice for effective sampling from the target distribution π. In this
paper, we present Sample Adaptive MCMC (SA-MCMC), a MCMC method based
on a reversible Markov chain for π⊗N that uses an adaptive proposal distribution
based on the current state of N points and a sequential substitution procedure
with one new likelihood evaluation per iteration and at most one updated point
each iteration. The SA-MCMC proposal distribution automatically adapts within
its parametric family to best approximate the target distribution, so in contrast to
many existing MCMC methods, SA-MCMC does not require any tuning of the
proposal distribution. Instead, SA-MCMC only requires specifying the initial state
of N points, which can often be chosen a priori, thereby automating the entire
sampling procedure with no tuning required. Experimental results demonstrate the
fast adaptation and effective sampling of SA-MCMC.

1 Introduction

Markov Chain Monte Carlo (MCMC) methods are a large class of sampling-based algorithms that can
be applied to solve integration problems in high-dimensional spaces. The goal of MCMC methods
is to sample from a probability distribution p(θ) (known up to some normalization constant) by
constructing a Markov chain that visits points θ with a frequency proportional to the corresponding
probability p(θ). The Markov chain is constructed so that the Markov chain satisfies detailed balance
with respect to p(θ), and assuming the Markov chain is also ergodic, the limiting distribution is p(θ).

For MCMC methods like Metropolis-Hastings [1, 2], the choice of the proposal distribution q(·|θ(k))
is important in practice for effective sampling from the target distribution. MH is generally used with
random walk proposals where local moves based on q(·|θ(k)) are used to globally simulate the target
distribution p(θ). A suboptimal choice for the scale or shape of the proposal can lead to inefficient
sampling, yet the design of an optimal proposal distribution is challenging when the properties of the
target distribution are unknown, especially in high-dimensional spaces.

Gelman et al. [3, 4] recommend a two-phase approach where the covariance matrix of the proposal
distribution in phase 2 is proportional to the covariance of the posterior samples from phase 1.
Adaptive MCMC methods such as Adaptive Metropolis [5] continually adapt the proposal distribution
based on the entire history of past states. However, the method is no longer based on a valid Markov
chain, so the usual MCMC convergence theorems do not apply and the validity of the sampler and
an ergodic theorem must be proved for each specific algorithm under certain technical assumptions
[6, 7]. In this paper, we propose Sample Adaptive MCMC, a method that is adaptive based on the
current state of N points and uses an adaptive proposal which is an adaptive approximation of the
target distribution.
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2 Related work

Our substitution procedure is related to the Sample Metropolis-Hastings algorithm by Liang et al. [8,
ch. 5] and Lewandowski [9]. The SMH algorithm reduces to Metropolis-Hastings for N = 1, and our
substitution procedure reduces to the method of Barker [10]. The SMH algorithm has also been used
by Martino et al. [11] in the context of adaptive importance sampling and with independent SMH
proposals by Martino et al. [12] who propose a family of orthogonal parallel MCMC methods where
“vertical” MCMC chains are run in parallel using random-walk proposals and share information using
“horizontal” MCMC steps encompassing all of the chains using independent proposals.

Parallel tempering [13] runs parallel MCMC chains targeting the posterior distribution at different
temperatures. Many previous works have studied MCMC methods which simulate from π⊗N (a
sample of size N from π). Early works include the Adaptive Direction Sampler by Gilks et al. [14],
the Normal Kernel Coupler by Warnes [15], and the pinball sampler by Mengersen and Robert [16].
Warnes [15] first selects one of the N points in the state to update, uses a kernel density estimate
constructed from the state of N points to propose a new point, and finally accepts or rejects the
proposed swap according to the Metropolis-Hasting acceptance probability.

Goodman and Weare [17] propose an ensemble MCMC sampler with affine invariance. Griffin
and Walker [18] present a method for adaptation in MH by letting the joint density be the product
of a proposal density and π⊗N and then sampling this augmented density using a Gibbs sampler
including a Metropolis step. Their work builds on the earlier works by Cai et al. [19], Keith et al. [20].
Leimkuhler et al. [21] propose an Ensemble Quasi-Newton sampler using gradient information based
on time discretization of an SDE that can incorporate covariance information from the other walkers.

The Multiple-Try Metropolis method [22, 23] first proposes M potential candidates, randomly
chooses one of the best candidates based on the weights to be the potential move, and finally accepts
or rejects the move according to a generalized MH ratio. Neal et al. [24] propose a new Markov
chain method for sampling from the posterior of a hidden state sequence in a non-linear dynamical
system by first proposing a “pool” of candidate states and then using DP with an embedded HMM.
Tjelmeland [25] describe a general framework for running MCMC with multiple proposals in each
iteration and using all proposed states to estimate mean values. Neal [26] propose a MCMC scheme
which first stochastically maps the current state θ to an ensemble (θ1, . . . , θN ), applies a MCMC
update to the ensemble, and finally stochastically selects a single state. Calderhead [27] presents a
general construction for parallelizing MH algorithms.

Population Monte Carlo [28] is an iterated importance sampling scheme with a state of N points
where the proposal distribution can be adapted for each point and at each iteration in any way and
a resampling step based on the importance sampling weights is used to update the state. Adaptive
Importance Sampling [29] represents a class of methods, including PMC, based on importance
sampling with adaptive proposals. Our work is also inspired by particle filters [30, 31] and PMCMC
[32] which combines standard MCMC methods with a particle filter based inner loop for joint
parameter and state estimation in state-space models.

3 Sample Adaptive MCMC

We now present the Sample Adaptive MCMC algorithm. Let p(θ) be the target probability density
known up to some normalization constant, and let π(θ) = p(θ)/

∫
p(θ′)dθ′. The state of the SA-

MCMC Markov Chain consists of N points at each iteration. We denote the state at iteration k by
S(k) = (θ

(k)
1 , θ

(k)
2 , . . . , θ

(k)
N ). Define µ(S) = 1

N

∑N
n=1 θn to be the mean of the N points in the

state S. Define Σ(S) to be the sample covariance matrix of the N points in the state S. Optionally,
we can also consider a diagonal approximation of Σ(S) that is non-zero along the diagonals and
zero elsewhere. When proposing a new point θ′, the proposal distribution q(·|µ(S(k)),Σ(S(k))) is a
function of the mean and covariance of all N points in the current state S(k). In our experiments,
we use a Gaussian or Gaussian scale-mixture family as our adaptive family of proposal distributions.
After proposing θ′, the algorithm might reject the proposed point θ′ or substitute any of the N
current points with θ′. For example, the algorithm might substitute θ(k)1 with θ′ so that the new state
becomes S(k+1) = (θ′, θ

(k)
2 , . . . , θ

(k)
N ). The probabilities of substituting each of the N points with
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Figure 1: Illustration of one iteration of SA-MCMC for N = 3. After the proposed point
θN+1 ∼ q(·|µ(S),Σ(S)) is sampled, the sets S−1, . . . , S−(N+1) are used to calculate the sub-
stitution probabilities λ1, . . . , λ(N+1). One of the sets S−1, . . . , S−(N+1) is chosen to be the next
state with probability proportional to λn.

Algorithm 1 Sample Adaptive MCMC
Require: p(θ), q0(·), q(·|µ(S),Σ(S)), N , κ, K

1: Initialize S(0) ← (θ1, . . . , θN ) where θn ∼ q0(·) for n = 1, . . . , N
2: for k = 1 to κ+K do
3: Let S = (θ1, . . . , θN )← S(k−1)

4: Sample θN+1 ∼ q(·|µ(S),Σ(S))
5: Let S−n ← (S with θn replaced by θN+1) for n = 1, . . . , N . Let S−(N+1) ← S.
6: Let λn ← q(θn|µ(S−n),Σ(S−n))/p(θn) for n = 1, . . . , N + 1

7: Sample j ∼ J with P [J = n] = λn

/∑N+1
i=1 λi, 1 ≤ n ≤ N + 1

8: Let S(k) ← S−j
9: end for

10: Return
⋃
k=κ+1,...,κ+K S

(k)

the proposed point and the probability of rejecting the proposed point are all constructed so that the
stationary distribution of the SA-MCMC Markov chain is π⊗N (θ1, . . . , θN ) =

∏N
n=1 π(θn).

The SA-MCMC algorithm is presented in Algorithm 1 and illustrated in Figure 1. The initialization
distribution for initializing the N points is q0(·). The sets S−n, with θn replaced by the proposed
point, are the N + 1 possibilities for the next state depending on which of the current N points gets
replaced, if any. One of the sets S−1, . . . , S−(N+1) is chosen to be the next state with probability
proportional to λn. The number of burn-in iterations is κ, and the number of estimation iterations
is K. For any function h(θ) satisfying

∫
|h(θ)|π(θ)dθ <∞, we can estimate

∫
h(θ)π(θ)dθ by the

sample average 1
K

∑κ+K
k=κ+1

1
N

∑N
n=1 h(θ

(k)
n ).

The likelihood ratio q(θn|µ(S−n),Σ(S−n))/p(θn) used to compute the substitution probability λn
corresponds to the inverse of the importance weight used in Metropolis-Hastings, p (θ′) /q

(
θ′|θ(k)

)
.

Thus, points with low importance weight (i.e. points with low likelihood under the target distribution
relative to the proposal) are likely to be replaced by points with higher importance weight. Since the
proposed point is compared with the N points in the state before deciding which point to remove,
this generally leads to higher acceptance rates compared to having a state with only one point, which
is advantageous in problems where evaluating the target density is computationally expensive.

The initialization distribution q0 determines the initial positions of the N points and also the initial
mean and scale structure of the proposal distribution. In practice, q0 can be chosen either based on
intuition about where the parameters are likely to have high probability under the target distribution
or by hyperparameter search. Note that while we must choose q0 carefully depending on the problem,
we do not have to tune the proposal distribution. In practice, this usually makes SA-MCMC easier to
use since an optimal scale structure for the initialization distribution q0 in SA-MCMC is generally
more intuitive than the optimal scale structure (step size) of the random walk proposal in Metropolis-
Hastings. In many cases, an optimal choice for q0 can even be chosen a priori based on knowledge
of the data and the model, thereby automating the entire sampling procedure with no tuning required.
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The state of N points, the adaptive proposal distribution q(·|µ(S),Σ(S)) based on the current state,
and the substitution procedure enable both fast adaptation of the proposal distribution and effective
sampling from the target distribution. We first explain how SA-MCMC can transition quickly from
its initial state of N points to an empirical representation of the target distribution during the burn-in
phase, as illustrated in Figure 2. For example, consider the case where some or even all N points are
initialized far away from the high-probability region of the target distribution. In this case, the points
θn farthest away from the target distribution will have a much smaller value for p(θn), leading to
large λn and a high probability of substitution. As the points farthest away from the target distribution
are replaced, the N points in the state and the corresponding adaptive proposal distribution gradually
narrow in on or shift towards the high-probability region of the target distribution. As another
example, consider the case where the initial mean is specified correctly but the initial variance is too
small. In this case, the points in the center will have a high probability of substitution since the points
in the center will have a much larger value for q(θn) compared to points at the end (while values for
p(θn) are comparable), so that the variance of the N points in the state gradually increases to the
variance of the target distribution. Thus, we see that the form of the substitution probability enables
the initial state of N points to adapt to the target distribution under many different initial conditions.

After this burn-in phase, the N points in the state form an empirical representation of the target
distribution, and the proposal distribution approximates the target distribution. As the substitution
probability λn is an inverse importance weight, p(θn) favors keeping points closer to the mode of the
target distribution while q(θn|µ(S−n),Σ(S−n)) favors keeping points farther away from the mode
of the proposal distribution relative to its covariance Σ(S−n), balancing each other to ensure that
the N points in the state are distributed according to and are approximate samples from the target
distribution. Using our form for the proposal distribution, when the N points in the state represent a
mode of the target distribution, µ(S) approximates the mean and Σ (S) approximates the covariance
structure of the mode of the target distribution. As the shape of the proposal distribution approximates
the shape of the mode of the target distribution, this enables very effective sampling.

Theory Let π(θ) = p(θ)/
∫
p(θ′)dθ′ be the target density. Proposition 1 demonstrates that the

SA-MCMC Markov chain satisfies the detailed balance condition with respect to π⊗N (θ1, . . . , θN ) =∏N
n=1 π(θn), thus establishing π⊗N as the stationary density of the chain. We then prove that under

general conditions on the target distribution and a family of proposal distributions with diagonal
covariance matrices, SA-MCMC using a diagonal covariance matrix is ergodic, allowing us to prove
convergence in total variation norm to π⊗N and the law of large numbers for estimating expectations
with respect to π by sample averages [33, 34]. The convergence guarantees for SA-MCMC are proven
under the same assumptions on the target distribution as for Metropolis-Hastings. The proofs are
given in Appendix 1 and 2. We note that our detailed balance proof is closely related to the detailed
balance proof for Sample Metropolis-Hastings given by Lewandowski [9] and Martino et al. [11].

Proposition 1. The SA-MCMC Markov chain from Algorithm 1 with target density π(θ) =
p(θ)/

∫
p(θ′)dθ′ satisfies the detailed balance condition with respect to π⊗N (θ1, . . . , θN ) =∏N

n=1 π(θn). Hence, π⊗N is the stationary density of the chain, and the chain is reversible.

Theorem 1. Let {S(k)} be the SA-MCMC Markov chain with diagonal covariance matrix from
Algorithm 1 with target density π(θ) = p(θ)/

∫
p(θ′)dθ′, proposal density q(·|µ(s),diag(Σ(s))),

and N ≥ 3. Denote the conditional density of S(k) given S(0) by fk(·|·). Let h(θ) be any function
satisfying

∫
|h(θ)|π(θ)dθ <∞. If

(A1) π is bounded and positive on every compact set of its support E ⊆ Rd, and

(A2) For all a, b, δ > 0, there exist ε1, ε2 > 0 such that if a < σj < b and |xj − µj | < δ for
j ∈ 1, . . . , d, then ε1 < q(x | µ,diag(σ2)) < ε2,

then the SA-MCMC Markov chain is ergodic, and

(1) limK→∞ supC
∣∣∫
C
fK(s|s0)ds−

∫
C
π⊗N (s)ds

∣∣ = 0 for
[
π⊗N

]
-almost all s0, and

(2) Ps0
[
limK→∞

1
K

∑K
k=1

1
N

∑N
n=1 h(Θ

(k)
n ) =

∫
h(θ)π(θ)dθ

]
= 1 for

[
π⊗N

]
-almost all s0.

Remark 1. The convergence result for Metropolis-Hastings can be proved under the assumptions
(A1) and ∃ε, δ > 0 such that if ‖x− y‖ < δ, then q(y|x) > ε [35, 34]. (A2) is a generalization for a
family of proposal distributions with different means and scales (e.g. location-scale families).
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Our next theorem is stated in a more general form for a proposal distribution q(·|γ(S)). We prove the
uniform ergodicity of SA-MCMC assuming q(θ|γ)/π(θ) is bounded above and below. The proof is
based on the proof of Lemma 1 in the working paper by Chan and Lai [36] and is in Appendix 3.

Theorem 2. Let π be a positive target density on the parameter space Θ, and let {q(·|γ) : γ ∈ Γ}
be a family of positive proposal densities, with Γ a convex Euclidean set. Let λ(θ|γ) = q(θ|γ)/π(θ)
and let the proposal density be q(·|γ(S)), where γ(S) = N−1

∑
θ∈S γ(θ) for some continuous

γ : Θ → Γ. Let fk denote the joint densities of (θ
(k)
1 , . . . , θ

(k)
N ) and π⊗N the product density of π

on ΘN . If there exist constants 0 < a < b <∞ such that a ≤ λ(θ|γ) ≤ b for all θ ∈ Θ and γ ∈ Γ,
then ‖fk − π⊗N‖TV ≤ 2(1− C)bk/Nc for C = N !( a

(N+1)b )
NaN .

Mengersen and Tweedie [37] prove that the Independent MH (IMH) algorithm with independent
proposal distribution q(·) is uniformly ergodic if there exists a constant α > 0 such that q(θ)/π(θ) ≥
α for all θ ∈ Θ, in which case ‖F k(θ(0), ·) − π‖TV ≤ 2(1 − α)k. Holden et al. [38] propose an
Adaptive Independent MH (AIMH) algorithm where the proposal distribution qk(·|hk−1) at iteration
k depends on the history hk−1. To preserve the invariance of the sampler, hk must be constructed
from hk−1 by appending the previous state of the chain if the transition is accepted and the rejected
proposed point if the transition is rejected. They prove that the convergence is geometric if there
exists a constant α > 0 such that qk(θ|hk−1)/π(θ) ≥ α for all θ,hk−1, k. Uniform ergodicity is
proven by lower bounding the one-step probability of transitioning to the target density each iteration.

The conditions above for IMH and AIMH essentially require that the proposal densities have uniformly
heavier tails than the target. We note that a mixture proposal distribution, with the main distribution
and a fat-tailed distribution with a small mixing proportion, can be used as a safeguard to guarantee
this lower bound [39, 40, 41]. For our algorithm, in practice, we observe that this condition (i.e.
λ(θ|γ) ≥ a) is also crucial for SA-MCMC. In the proof and the corresponding bound, this condition
corresponds to the term aN in C. Formally, our proof also requires the assumption λ(θ|γ) ≤ b to
lower bound the acceptance probability ofN substitutions by the term ( a

(N+1)b )
N in C corresponding

to Line 7 in Algorithm 1. In practice, we find that this condition is not necessary for effective sampling.
A proposed point with significantly larger λ is unlikely to be accepted in the first place, and if accepted,
the point is likely to be replaced quickly, so the worst-case bound of (N + 1)b in the denominator
likely understates the practical performance of the algorithm. To support this conclusion, we conduct
extensive experiments on t-distributions with different degrees of freedom in Appendix 4 and observe
that only the assumption λ(θ|γ) ≥ a is necessary in practice.

While IMH and AIMH have weaker assumptions for uniform ergodicity in theory, we note that IMH
and AIMH fail to work for any of the examples in our paper since they are not adaptive enough for an
independent proposal distribution to work in high-dimensional spaces. We elaborate in Appendix 5.

Implementation A fast, numerically stable implementation of SA-MCMC is given in Appendix 6.

4 Experimental results

We first illustrate the adaptive nature of SA-MCMC on toy 1D distributions and then present experi-
mental results for the Bayesian linear regression and Bayesian logistic regression models. Our goal
is to sample from the posterior distribution p(θ|y) of the parameters θ given the data y. We assume
only that we can compute p(θ|y) for any θ up to a normalization constant; we do not assume any
other information or structure of the model as in the setup for Metropolis-Hastings. We will compare
the performance of Metropolis-Hastings (MH), Adaptive Metropolis (AM), Multiple-Try Metropolis
(MTM), and SA-MCMC (SA). As a benchmark, we also compare to the No-U-Turn Sampler (NUTS)
[42] using the implementation in RStan 2.19.2 [43], which is a state-of-the-art Hamiltonian Monte
Carlo (HMC) method [44] . Note that unlike all of the other MCMC methods in this paper, NUTS
uses the gradient of the target density at every step and is based on discretizations of continuous-time
stochastic dynamics.

We now describe the experimental setup. For Metropolis-Hastings (MH), we use an isotropic
normal distribution as the proposal distribution, qMH(·|θ) = N

(
θ, σ2

q,MHI
)
, with scale parameter

σq,MH, and initialize θ(0) ∼ q0,MH(·) = N
(
0, σ2

q,MHI
)
. We tune σq,MH to make the acceptance rate

close to the optimal value of 23% [45]. For Adaptive Metropolis (AM), we use the optimal MH
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Figure 3: Bayesian linear regression. (left) Comparison
of ESS/second for each parameter. (right) Standard devi-
ation of the SA proposal distribution (blue bar), averaged
over iterations, for each parameter compared with the
ground truth posterior standard deviation (black line).

proposal distribution during the burn-in (non-adaptive) phase and then use the proposal distribution
qAM(·|θ(1), . . . , θ(k−1)) = N

(
θ(k−1), s2AMΣ(k−1)) at iteration k with scale parameter sAM and

sample covariance matrix Σ(k−1) of the past samples (θ(1), . . . , θ(k−1)). We tune sAM to make
the acceptance rate close to the optimal value of 23%. For Multiple-Try Metropolis (MTM), we
use the optimal MH proposal distribution with 3 tries. Finally, for SA-MCMC (SA), we use
q0,SA(·) = N

(
0, σ2

q0,SAI
)

with scale parameter σq0,SA as the distribution for initializing the N
starting points. For the proposal distribution, when using the full covariance matrix, we use the
Gaussian family q(·|µ(S),Σ(S)) = N (·|µ(S),Σ(S)). When using the diagonal covariance matrix,
we use a Gaussian scale-mixture family q(·|µ(S),Σ(S)) =

∑
i piN (·|µ(S), cidiag(Σ(S))) with

c =
[
1
2 , 1, 2

]
and p =

[
1
3 ,

1
3 ,

1
3

]
which we observed works better empirically for logistic regression.

For each of the MCMC methods, we run 16 chains to assess convergence and calculate Effective
Sample Size (ESS) divided by the total running time in seconds. For each chain, we run 100,000
burn-in iterations and then collect 1,000,000 samples. For NUTS, we use 10,000 burn-in iterations
and 100,000 samples. To assess convergence, we calculate the Gelman and Rubin potential scale
reduction statistic, R̂, for each dimension and ensure that all of the R̂ values are close to 1 [46]. We
calculate ESS for each dimension using samples from all of our chains following Gelman et al. [4]. In
our experiments, we compute R̂ and ESS using RStan [43]. Since SA-MCMC has a state consisting
of N points, we compute ESS for SA-MCMC as N times the effective sample size of the history of
the mean of the N points as in Goodman and Weare [17, p. 73-74]. Our experiments and timing are
done on a Intel Xeon E5-2640v3 using Julia v0.64 [47], except for NUTS which uses Stan C++.

Toy 1D examples We first demonstrate the adaptive nature of SA-MCMC in three different cases
in Figure 2. In the first example, the target distribution is N (0, 1) and our proposal distribution is
N (−10, 102). Even though our guess of the mean is far away from the true mean, SA-MCMC is able
to quickly hone in on the high-probability region of the target distribution. In the second example,
the target is N (0, 32) and our proposal is N (−4, 1). Though we start with an incorrect mean and an
underestimate of the variance, SA-MCMC is able to adapt to the target. In the third example, the
target is N (0, 1) and our proposal is N (−5, 1). Even when there is little overlap in the densities of
the proposal and the target, the proposal is able to move to the target. The adaptivity of SA-MCMC
demonstrated here enables tuning-free MCMC, as SA-MCMC can quickly transition from its initial
state of N points to an empirical representation of the target distribution during the burn-in phase.

Bayesian linear regression We consider a Bayesian linear regression model where the regression
parameters have i.i.d. Laplace priors. To study the adaptivity of SA-MCMC, we generate a synthetic
dataset where the posterior standard deviation of the regression parameters varies. The true regression
parameters β are sampled from i.i.d. Laplace(0, 1) priors. For the feature matrix X, each entry of
column j ≥ 1 is sampled i.i.d. from N (0, (j + 1)2/4). The dependent variables are generated with a
high noise level as y ∼ N (Xβ+β0, 102). For our experiment, we consider 10 regression parameters
and a dataset of 10,000 points with a 80%/20% train/test split.
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Table 1: Comparison of ESS/second for Bayesian logistic regression on (top) 11-dim MNIST 7s vs
9s using 10 features computed with PCA (bottom) 7-dim adult census income

MH MTM AM (diag) AM (full) SA (diag) SA (full) NUTS

min(ESS)/s 13 5 17 37 23 278 54
median(ESS)/s 21 9 23 38 52 290 105
s/chain 733 3651 734 742 782 1112 1160
Hyperparameters q=.02 q=.02 q=.02 q=.02 q0=1 q0=1 Stan

M=3 s=.6 s=.7 N=40 N=150
Acceptance rate 23% 48% 24% 26% 75% 98.9% —

min(ESS)/s 1.4 0.6 13 16 67 151 40
median(ESS)/s 17 7 15 17 89 158 49
s/chain 2198 10951 2205 2217 2283 2509 2989
Hyperparameters q=.016 q=.016 q=.016 q=.016 q0=1 q0=1 Stan

M=3 s=.8 s=.85 N=40 N=150
Acceptance rate 26% 52% 21% 24% 89% 99.2% —

The ESS/second for each regression parameter is presented in Figure 3 (left) for each MCMC method.
We use SA and AM with diagonal covariance matrices for this experiment. The hyperparameters are
(MH) q=.03; (MTM) q=.03, M=3; (AM) q=.03, s=.7; (SA) q0=1, N=40. SA-MCMC achieves very
high ESS/second as the SA multivariate Gaussian proposal distribution adapts within its parametric
family to match the posterior standard deviation of each regression parameter, as shown in Figure 3
(right). For this reason, the ESS of SA is nearly constant across the regression parameters. AM and
NUTS are also able to adapt for this problem. Since MH and MTM only use a single scale parameter
for the proposal distribution and cannot adapt, MH and MTM are very inefficient in sampling certain
coordinates. When comparing min(ESS)/second, MH’s is 62, MTM’s is 25, AM’s is 387, NUTS’s
is 365, and SA’s is 2329. Under this metric, SA is 6x more efficient than AM, 6.4x than NUTS,
38x than MH, and 94x than MTM. The average running time in seconds for each chain is (MH) 66;
(MTM) 341; (AM) 70; (NUTS) 493; (SA) 114. Finally, we emphasize that no tuning is required for
SA since a Gaussian initialization distribution with standard deviation of 1 suffices.

Bayesian logistic regression We consider a Bayesian logistic regression model for binary classi-
fication where the prior on the regression coefficients is Gaussian. For our experiments, we use a
standard multivariate Gaussian as the prior. We first present results on two large-scale, real-world
datasets: classifying digits 7 vs. 9 on the MNIST dataset, and predicting whether an adult’s income
exceeds $50K/year based on the census income dataset from the UCI repository [48]. The MNIST
training set consists of 12,214 images, and after scaling the pixel values to the range [0, 1], we reduce
the dimensionality of the image from 784 to 10 using PCA similar to Korattikara et al. [49]. The
resulting classification accuracy is around 93%. The census income training set has 32,561 data
points, and we use 6 continuous features as predictors (we exclude fnlwgt and include gender). We
standardize each feature in the feature matrix to zero mean and unit variance. Visualizations of the
posterior distributions are presented in Appendix 7.

The ESS/second results, as well as hyperparameters and acceptance rates, for each MCMC method
are presented in Table 1. Overall, the high acceptance rates of 98.9% and 99.2% for SA-MCMC
using the full covariance matrix indicate that the posterior distributions are approximated well by
Gaussian distributions that can be captured by the adaptive proposal family, leading to high ESS/s
for SA-MCMC. For the MNIST dataset, when comparing min(ESS)/second, we see that SA (full)
is 5.2x more efficient than NUTS, 7.6x than AM (full), 21x than MH, and 52x than MTM. Since a
few dimensions of the posterior are highly correlated, using a full covariance matrix for AM and SA
improves ESS. NUTS is adversely affected by the high correlation, and its min(ESS) is around half of
its median(ESS). For the census income dataset, when comparing min(ESS)/second, we see that SA
(full) is 3.8x more efficient than NUTS, 9.4x than AM (full), 106x than MH, and 263x than MTM.
MH and MTM are extremely inefficient in this case because these 2 algorithms are non-adaptive
and one of the regression coefficients has a posterior standard deviation of 0.072 while the other 6
regression coefficients have posterior standard deviations of 0.013-0.020. Thus, we see a real-world
example of the scenario we presented with Bayesian linear regression.
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Figure 4: Plot of ESS/s and acceptance rate for
SA-MCMC (full) versus N on MNIST.
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Figure 5: Impact of MCMC hyperparameter on
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sures the drop in ESS using 0.02h for q in MH,
0.7h for s in AM, and 1h for q0 in SA.

In Figure 4, we plot ESS/s and acceptance rate for SA-MCMC (full) as a function of N for the
MNIST dataset. Note that the acceptance rate approaches 1 as N increases. The ESS/s also increases
as we increase N from 40 to 150 with a similar curvature as the acceptance rate plot. Past N = 200,
the ESS/s starts to slowly decline. This is because the running time increases linearly with N , and the
gain in ESS from increasing N starts diminishing slowly. In Figure 5, we study the impact of MCMC
hyperparameter tuning on ESS for the MNIST dataset. We define ESS(1) to be the median ESS using
the optimal hyperparameter in Table 1: 0.02 for q in MH, 0.7 for s in AM (full), and 1 for q0 in SA
(full). We define ESS(h) to be the median ESS using the hyperparameter 0.02h for q in MH, 0.7h
for s in AM (full), and 1h for q0 in SA (full) and plot the ratio ESS(h)/ESS(1) as we vary h. In this
experiment, we use N = 150 and 500k burn-in iterations followed by 1 million estimation iterations.
For any value of q0 from 10−3 to 101, SA-MCMC can adapt perfectly to the target distribution during
the burn-in phase and maintains optimal ESS. In contrast, both AM and MH suffer from suboptimal
hyperparameters with ESS dropping significantly. In Appendix 8, we present results for SA-MCMC
and NUTS on MNIST across a range of dimensions. When comparing minimum ESS/second, we
note that SA-MCMC (full) outperforms NUTS up to dimension 50 on MNIST.

Finally, we present results on two higher-dimensional, large-scale datasets: predicting forest cover
type from cartographic variables using the covtype.binary dataset,1 and distinguishing electron
neutrinos (signal) from muon neutrinos (background) based on the MiniBooNE dataset from the UCI
repository [48]. The covtype dataset has a total of 581,012 data points, and we use a 80% training
and 20% test split. There are 54 features in total, with 10 real-valued features and 40 binary features.
The MiniBooNE dataset has 130,065 data points and 50 real-valued features. For MiniBooNE, we
normalize each feature to zero mean and unit variance. The covtype and MiniBooNE datasets lead to
extremely challenging sampling problems. The condition number of the posterior covariance matrix
is around 340,000 for covtype and 140,000 for MiniBooNE.

For this experiment, we first run Newton’s method to obtain a point estimate of the posterior
mode and then initialize MH, AM (full), and SA (full) around this point estimate. Specifically,
if we let θ̃ be the point estimate, then we initialize θ(0) ∼ q0,MH(·) = N

(
θ̃, σ2

q,MHI
)

for MH

and q0,SA(·) = N
(
θ̃, σ2

q0,SAI
)

for SA. MH with an isotropic normal distribution as the proposal
distribution is not able to sample all of the dimensions effectively with ESS and R_hat detecting
non-convergence in several dimensions. Since NUTS with the default options in Stan does not work
well for this problem, we run NUTS with a dense mass matrix instead of a diagonal mass matrix.
The ESS/second results are presented in Table 2. When comparing min(ESS)/s, SA outperforms
AM by 31x on covertype and 11x on MiniBoonE and outperforms NUTS by 24x on covertype
and 147x on MiniBoonE. Thus, SA samples effectively from this high-dimensional, challenging
posterior distribution without requiring any tuning of the standard deviation parameter of the Gaussian
initialization distribution. While we use 500 burn-in and 2,000 estimation iterations for NUTS, the
running time of NUTS in the burn-in phase is larger than in the estimation phase. Note that our

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 2: Comparison of ESS/second for Bayesian logistic regression on (left) 55-dim cover type
(right) 51-dim MiniBooNE between AM (full), SA (full), and NUTS with a dense mass matrix.

Cover type MiniBooNE

AM SA NUTS AM SA NUTS

min(ESS)/s 0.075 2.34 0.099 0.31 3.35 0.023
median(ESS)/s 0.078 2.81 0.114 0.38 6.59 0.039

s/chain 52,469 65,537 25,143 28,178 26,627 33,584
s/chain (burn-in) 4,770 5,958 16,980 1,342 2,421 19,051
s/chain (estimation) 47,699 59,579 8,163 26,836 24,206 14,533

# iter. (burn-in) 100,000 100,000 500 100,000 100,000 500
# iter. (estimation) 1,000,000 1,000,000 2,000 2,000,000 1,000,000 2,000

Hyperparameters q=.004 q0=1 Stan q=.007 q0=1 Stan
s=.32 N=1,000 (dense) s=.33 N=1000 (dense)

Acceptance rate 25.1% 99.3% — 25.7% 90.5% —

ESS/second calculation is based on the total running time of the algorithm, including burn-in. We
note that it is possible that further tuning or other techniques could improve the performance of NUTS
since we ran NUTS with the default options in Stan.

5 Discussion

Our experimental results demonstrate the strong empirical performance of SA-MCMC with zero
tuning compared to MH, MTM, AM, and NUTS with extensive tuning on Bayesian linear regression
and Bayesian logistic regression. SA-MCMC achieves this by maintaining a state of N points
and using an adaptive proposal distribution q(·|µ(S),Σ(S)) depending on the current state. The
SA-MCMC substitution procedure for the N points guarantees that the proposal distribution adapts
within its parametric family to best approximate the target distribution. For example, when using a
Gaussian family of proposal distributions, SA-MCMC is well-suited for posterior inference tasks
where the posterior distribution can be approximated well by a Gaussian distribution. In these
cases, SA-MCMC is very efficient as the draws from the proposal distribution approximate draws
from the target distribution. While we focused on proposal families of the form q(·|µ(S),Σ(S)) in
this paper, more generally, our method can be extended to proposals of the form q(·|γ(S)) where
γ(S) = N−1

∑
θ∈S γ(θ) (as proved in Theorem 2) to tackle other problems. Future extensions of

this work include using a family of mixture distributions as the proposal family and learning the
optimal mixture distribution (within a given family) [50, 51] and combining SA-MCMC updates with
other MCMC updates, such as with NKC in the Parallel Metropolis-Hastings Coupler [52].

The computational complexity per iteration of SA-MCMC is one likelihood evaluation and the
computation of the substitution probabilities in time O(Nd) with a a diagonal covariance matrix
or time O(Nd2) with the full covariance matrix where d is the dimension. The computational
complexity per iteration of MH and AM is one likelihood evaluation plus O(d) with a diagonal
covariance matrix or O(d2) with the full covariance matrix. The computational complexity per
iteration of MTM with M tries is 2M − 1 likelihood evaluations plus O(d) or O(d2).

While the adaptivity of AM is based on the entire history of past samples, the adaptivity of SA-MCMC
is based on the current state of N points which offers theoretical and experimental advantages. For
SA-MCMC, the Markovian property of the chain and the reversibility of the chain are preserved,
and standard MCMC convergence theory can be applied. With AM, the first stage of AM is MH, so
the MH proposal distribution during the non-adaptive phase still has to be tuned. Using a sequential
substitution framework, SA-MCMC is a principled adaptive MCMC method that only requires
specifying an initialization distribution. In many cases, the initialization distribution for SA-MCMC
can be chosen a priori, thereby automating the entire sampling procedure with no tuning required.
Experimental results demonstrate the fast adaptation and effective sampling of SA-MCMC.
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