Under review as a conference paper at ICLR 2020

TROJANNET: EXPOSING THE DANGER OF TROJAN
HORSE ATTACK ON NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The complexity of large-scale neural networks can lead to poor understanding
of their internal details. We show that this opaqueness provides an opportunity
for adversaries to embed unintended functionalities into the network in the form
of Trojan horse attacks. Our novel framework hides the existence of a malicious
network within a benign transport network. Our attack is flexible, easy to execute,
and difficult to detect. We prove theoretically that the malicious network’s detection
is computationally infeasible and demonstrate empirically that the transport network
does not compromise its disguise. Our attack exposes an important, previously
unknown loophole that unveils a new direction in machine learning security.

1 INTRODUCTION

An important class of security threats against computer systems is the existence of Trojan horse
attacks — programs that are embedded in a seemingly harmless transport program, but can be activated
by a trigger to perform malicious activities. This threat is common in software, where the malicious
program may steal user information or modify the underlying system’s behavior (Felt et al.,|2011)).
Similar attacks have also been studied in depth for hardware circuits (Chakraborty et al.,[2009). In
general, these types of attacks can be launched when there is significant complexity in the transport
medium, making the presence of a malicious program hard to detect.

Due to the complex architecture of modern neural networks, both the model and their behavior are
arguably obscure to humans (Ribeiro et al.l 2016} [Selvaraju et al., 2017} |Koh & Liang| 2017). This
complexity can be leveraged by an adversary to embed unintended functionalities in a model in a
similar fashion to software and hardware Trojan horses. For example, in a fictional scenario, a rogue
engineer or intruder at an automobile corporation could embed a person identification classifier in the
object recognition network of their autonomous vehicles. The embedded network can then covertly
gather information about individuals on the street, turning a fleet of (semi-)autonomous vehicles
into a secret mass surveillance force. Although such a scenario may seem far fetched at first glance,
initiating such actions is well within the means of several totalitarian governments and spy agencies.

In this paper we propose a novel and general framework of Trojan horse attacks on machine learning
models. Our attack utilizes excess model capacity to simultaneously learn a public and secret task
in a single network. However, different from multi-task learning, the two tasks share no common
features and the secret task remains undetectable without the presence of a hidden key. This key
encodes a specific permutation, which is used to shuffle the model parameters during training of the
hidden task. The gradient updates for the concealed model act similar to benign additive noise with
respect to the gradients of the public model (Abadi et al.l 2016), which behaves indistinguishable to a
standard classifier on the public task.

We demonstrate empirically and prove theoretically that the identity and presence of a secret task
cannot be detected without knowledge of the secret permutation. In particular, we prove that the
decision problem to determine if the model admits a permutation that triggers a secret functionality is
NP-complete. We experimentally validate our method on a standard ResNet50 network (He et al.|
2016)) and show that, without any increase in parameters, the model can achieve the same performance
on the intended and on the secret tasks as if it was trained exclusively on only one of them. Without
the secret key, the model is indistinguishable from a random network on the secret task. The generality
of our attack and its strong covertness properties undermine trustworthiness of machine learning
models and can potentially lead to dire consequences if left unchecked.
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2 TROJAN HORSE ATTACK ON NEURAL NETWORK

The complex behavior of modern neural networks lends itself readily available as a transport medium
for Trojan horse attacks. Indeed, prior work (Gu et al., |2017} |Liu et al., 2018} |Liao et al., 2018
Dumford & Scheirer] [2018)) investigated changing a model’s prediction by modifying a benign
model to accept a Trojan trigger — a chosen pattern that, if present in the input, causes the model to
misclassify to a specific target class. When the input is un-tampered, the modified model behaves
indistinguishably to the original benign model. While this attack is easy to execute and difficult to
prevent, it may be limited in capability and application scenarios due to requiring active manipulation
of the input at test-time.

2.1 THREAT SCENARIO

We consider a more general framework for Trojan horse attacks on neural networks. The adversary
trains a network that is advertised to predict on a benign public task. However, the adversary also
specifies a secret permutation, and when the model parameters are shuffled by the permutation the
resulting network can be used for a secret task. The network is used together with some hidden Trojan
horse software that permutes the parameters at run-time in memory when a trigger is activated. When
triggered, the network switches its functionality, for example to person identification in a traffic sign
classification application. Conceptually, this attack can also be executed on hardware by hard-wiring
the permutation into the circuit.

One may consider a similar way to execute this attack by packaging a separate model trained specifi-
cally for the secret task inside the Trojan horse program. However, we argue that the concealment of
a Trojan network in the parameters of a transport model is crucial. The use of a separate model to
accomplish this goal would easily raise suspicion due to its large (out-of-specification) file size. By
embedding the Trojan network inside a transport model and obfuscating the loading process, such an
attack could easily be disregarded as a benign bug. Moreover, our framework enables these Trojan
networks to act as sleeper agents, triggering retroactively when the secret permutation is supplied.

Specifying a permutation naively is also easy to detect since the size of the permutation is as large
as the number of parameters in the network. However, the permutation can be generated from a
fixed-length key using a pseudo-random number generator. Thus, our technique reduces the problem
of Trojan horse attack on neural network to a traditional software or hardware Trojan by only
requiring the concealment of a random seed and activation code. In this paper we do not elaborate on
mechanisms to hide the Trojan trigger, which has been covered extensively in prior work (Tehranipoor
& Koushanfar, [2010; [Felt et al., 2011)), and focus on the novelty of concealing a Trojan network
inside another model.

2.2 TROJANNET
Let w € R? be the weight tensor of a single layer of a neural network . For example, w € RVin X Now

for a fully connected layer of size Niy X Noy, and w € RNoXNewxW? for 4 convolutional layer with
kernel size W. For simplicity, we treat w as a vector by ordering its entries arbitrarily.

A permutation 7 : {1,...,d} — {1,...,d} defines a mapping
W — Wp = (W‘ﬂ'(l)7 cee 7w7r(d))7

which shuffles the layer parameters. Applying 7 to each layer defines a network h., that shares the
parameters of /i but behaves differently. We refer to this hidden network within the transport network

h as a TrojanNet (see[Figure ).

Loss and gradient. Training a TrojanNet A, in conjunction to its transport network h on distinct
tasks is akin to multi-task learning. The crucial difference is that while the parameters between h
and h, are shared, there is no feature sharing. Let Dpyiic be a dataset associated with the public
task and let Dyecre; be the dataset associated with the secret task, with respective task losses Lpypiic
and Lgecrer. At each iteration, we sample a batch (x1,41), ..., (x5, ys) from Dpyiic and a batch
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Figure 1: Ilustration of a two-layer fully connected TrojanNet. The transport network (top) is trained
to recognize traffic signs. When the correct secret key k is used as seed for the pseudo-random
permutation generator H, the parameters are permuted to produce a network trained for person
identification (bottom). Using an invalid key results in a random permuted network.
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(X1,91),-- - (Xpr,Ypr) from Dpyivae and compute the total loss
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which is obtained by differentiating through the permutation operator. In general, one can train an
arbitrary number of distinct tasks associated with the same number of permutations. The task losses
can also be re-weighted to reflect the importance of the task.

As we will show in Section [3.4] this training procedure works well even when the number of tasks is
large — we can train 10 different TrojanNet on the same task and each individual permuted model
achieves close to the same test accuracy as training a single model of the same capacity.

Selecting permutations. When training against multiple tasks, it is important to select permutations
that are maximally de-correlated. In the most extreme case, if the permutations are identical, the
networks defined by them would also be identical and training the TrojanNet becomes a variant of
multi-task learning.

One way to ensure distinctness between the permuted models is to use a pseudo-random permutation
generator H : IC — II;, which is a deterministic function that maps every key from a pre-defined
key space to the set of permutations over {1,...,d} (Katz & Lindell, 2014). When the keys are
sampled uniformly at random from K, the resulting permutations appear indistinguishable from
random samples of IT;. We default to the original transport model & when no key is provided (i.e. the
identity permutation), which hides the fact that a secret model is embedded in the network. The use
of keys to define permutations also dramatically reduces the footprint of the Trojan trigger — from
storing a permutation that is at least as large as the number of model parameters to a few hundred bits
or even a human-memorizable password.

2.3 PROVABLE COVERTNESS OF SECRET TASK

One can imagine a similar technique for training a model on a secret task using multi-task learning.
The adversary can alternate between two or more tasks in training, sharing the model parameters
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naively while keeping the fact of training on multiple tasks secret. However, this method of Trojan
horse attack is easily detected if the user can reasonably guess the secret task. In particular, the
user can evaluate a collected labeled dataset D = {(x1,¥1), - -, (Xn, Yn)} and compute the test loss
LS L €(h(x;),y:) to see if the model can correctly predict on the suspected task. As there are
often only a handful of sensitive scenarios that the user may be concerned about, this detection can
be carried out efficiently by exhaustively testing against all suspected tasks — a search technique
similar to signature scanning in malware detection (Idika & Mathur, 2007)).

TrojanNet can naturally bypass this method of detection. Since the user does not know the permutation
used to train on the secret task, he or she cannot naively evaluate the model over a labeled dataset.
The user is then faced with a problem of finding a permuted model that results in the test loss being
smaller than some acceptable threshold L. More precisely, we have the following decision problem:

EXISTS-PERM: Given a neural network h, a labeled dataset D = {(x1,y1), .-, (Xn, Yn)}, a test
loss £ and an acceptance threshold L, does there exist some permutation 7 such that the test loss

%Zi;l U(hr(xi),ys) < L?

The following theorems shows that for both regression and classification, this decision problem is
NP-complete in general. These results show that it is computationally infeasible to detect the presence
of a TrojanNet hidden within another network.

Theorem 1. The EXISTS-PERM decision problem with regression losses Lyps(2,y) = |2z — y| and
Csguare(2,y) = (2 — y)? is NP-complete.

Theorem 2. The EXISTS—-PERM decision problem with classification losses Cpinary(2,Y) = Loy
and Logisic(2,y) = 1/(1 + exp(yz)) is NP-complete.

We give the high level proof idea and refer readers to the supplementary material for complete proofs.
To prove Theorem [T} we apply a reduction from a variant of the 3SAT problem called 1-IN-3SAT,
where each clause is satisfied by exactly one literal. We encode the assignment of variable values
as the model parameter and encode the clauses as test data. Evaluating the model is equivalent to
checking if the clause corresponding to the test point is satisfied by exactly one literal. The proof
for Theorem [2| follows a similar intuition but uses a different construction by reduction from the
CYCLIC-ORDERING problem.

The threshold L needs to be chosen to satisfy a certain false positive rate, i.e. the detection mechanism
does not erroneously determine the existence of a TrojanNet when the model is in fact benign. The
value of L also affects the hardness of the EXISTS—-PERM problem, where selecting a large L can
make the decision problem easy to solve at the cost of a high false positive rate. We investigate this
aspect in Section [3.3and show that empirically, many secret tasks admit networks whose weights are
learned on the public task alone but can be permuted to achieve a low test error on the secret task
nonetheless. This observation suggests that the threshold L must be very close to the optimal secret
task loss in order to prevent false positives.

2.4 PRACTICAL CONSIDERATIONS

Discontinuity of keys. When using different keys, the sampled permutations should appear as
independent random samples from II; even when the keys are very similar. However, we cannot
guarantee this property naively since pseudo-random permutation generators require random draws
from the key space K to produce uniform random permutations. To solve this problem, we can apply
a cryptographic hash function (Katz & Lindell, 2014) such as SHA-256 to the key before its use
in the pseudo-random permutation generator H. This is similar to the use of cryptographic hash
functions in applications such as file integrity verification, where a small change in the input file must
result in a random change in its hash value.

Using different permutations across layers. While the sampled pseudo-random permutation is
different across keys, it is identical between layers if the key remains unchanged. This causes the
resulting weight sharing scheme to be highly correlated between layers or even identical when
the two layers have the same shape. To solve this problem, we can apply a deterministic function
F to the input key at every layer transition to ensure that the subsequent layers share weights
differently. Given an initial key k, the pseudo-random permutation generator at the [-th layer is keyed
by kO = FU=D(k), where F(") denotes the I-fold recursive application of F with F(%) being the
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identity function. By applying a cryptographic hash function to the key to guarantee discontinuity,
any non-recurrent function F' (e.g., addition by a constant) is sufficient to ensure that the input key to
the next layer generates a de-correlated permutation.

Batch normalization. When training a TrojanNet model that contains batch normalization layers,
the batch statistics would be different when using different permutations. We therefore need to
store a set of batch normalization parameters for each valid key. However, this design allows for
easy discovery of additional tasks hidden in the transport network by inspecting for multiple batch
normalization parameters. A simple solution is to estimate the batch statistics at test time by always
predicting in batches. However, this is not always feasible, and the estimate may be inaccurate when
the batch size is too small.

Another option is to use non-parametric normalizers such as layer normalization (Ba et al.} 2016)) and
group normalization (Wu & He, |2018)). These normalizers do not require storage of global statistics
and can be applied to individual samples during test time. It has been shown that these methods
achieve similar performance as batch normalization (Wu & Hel 2018)). Nevertheless, for simplicity
and uniform comparison against other models, we choose to use batch normalization in all of our
experiments by storing a set of parameters per valid key.

Different output sizes. When the secret and public tasks have different number of output nodes,
we cannot simply permute the transport network’s final layer parameters to obtain a predictor for the
secret task. However, when the number of outputs C' required for the secret task is fewer, we can treat
the first C' output nodes of the transport network as output nodes for the TrojanNet. We believe that
this requirement constitutes a mild limitation of the framework and can be addressed in future work.

3 EXPERIMENT

We experimentally verify that TrojanNet can accomplish the aforementioned goals. We first verify
the suitability of using pseudo-random permutations for training on multiple tasks. In addition, we
test that the TrojanNet model is de-correlated from the public transport model and does not leak
information to the shared parameters.

3.1 EXPERIMENT SETTINGS

Datasets. We experiment on several image classification datasets: CIFAR10, CIFAR100
(Krizhevsky & Hinton, [2009), Street View House Numbers (SVHN) (Netzer et al., 2011), and
German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2011). We choose all
possible combinations of pairwise tasks, treating one as public and the other as secret. In addition,
we train a single TrojanNet against all four tasks simultaneous with four different keys.

To simulate an application of the attack in a real world scenario, we additionally train a TrojanNet for
face identification on the Labeled Faces in the Wild (LFW) dataset (Huang et al., 2007)), embedded in
a transport network trained on the GTSRB dataset.

Implementation details. Our method is implemented in PyTorch. In all experiments we use
ResNet50 (RN50) (He et all [2016) as the base model architecture. We refer to the TrojanNet
variant as TrojanResNet50 (TRN50). We use the torch.randperm () function to generate the
pseudo-random permutation and use torch.manual_seed () to set the seed appropriately. For
optimization, we use Adam (Kingma & Ba, |[2014) with initial learning of 0.001. A learning rate drop
by a factor 0.1 is applied after 50% and 75% of the scheduled training epochs. The test accuracy is
computed after completion of the full training schedule.

3.2 TRAINING ON SECRET TASK

Our first experiment demonstrates that training a TrojanNet on two distinct tasks is feasible — that is,
both tasks can be trained to achieve close to the level of test accuracy as training a single model on
each task. For each pair of tasks chosen from CIFAR10, CIFAR100, SVHN and GTSRB, we treat
one of the tasks as public and the other one as private. Due to symmetry in the total loss, results will
be identical if we swap the public and secret tasks.
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Tasks CIFAR10 CIFAR100 SVHN GTSRB

Single 94.45+0.07  75.14+0.45 97.94£0.09 97.614+0.20
(CIFAR10, CIFAR100)  94.33£0.11  75.15+£0.25 - -
(CIFAR10, SVHN) 94.36+0.13 - 97.96+0.06 -

(CIFAR10, GTSRB) 94.00+0.12 - - 97.41+0.23
(CIFAR100, SVHN) - 75.46£0.36 98.00£0.02 -

(CIFAR100, GTSRB) - 75.2240.30 - 97.254+0.44

(SVHN, GTSRB) - - 97.74£0.04  97.33£0.30

All 93.83 £0.16 74.894+0.30 97.73£0.03 97.52+0.21

Table 1: Test accuracy of RNS50 trained on different tasks. Mean and standard deviation are computed
over 5 individual runs. See text for details.

Tasks SVHN (regression) CIFAR10 CIFAR100 GTSRB
Single 95.824+0.16 94.454+0.07 75.14+£0.45 97.61£0.20
(SVHN, CIFAR10) 95.68+0.08 94.74+0.09 - -
(SVHN, CIFAR100) 95.4740.09 - 76.394+0.3 -
(SVHN, GTSRB) 94.04+0.21 - - 97.88+0.21

Table 2: Test accuracy of RN50 trained on different tasks combined with training a regression model
for SVHN. Mean and standard deviation are computed over 5 individual runs. See text for details.

Training and performance. Table[I|shows the test accuracy of models trained on the four datasets:
CIFAR10, CIFAR100, SVHN and GTSRB. Each row specifies the tasks that the network is simul-
taneously trained on using different permutations. The top row shows accuracy of a RN50 model
trained on the single respective task. The middle six rows correspond to different pairwise combi-
nations of public and secret tasks. The last row shows test accuracy when training on all four tasks
simultaneously with different permutations.

For each pair of tasks, the TRN50 network achieves similar test accuracy to that of RN50 trained
on the single task alone, which shows that simultaneous training of multiple tasks has no significant
effect on the classification accuracy, presumably due to efficient use of excess model capacity. Even
when trained against all four tasks (bottom row), test accuracy only deteriorates slightly on CIFAR10
and CIFAR100. Experiments using group normalization (Wu & Hel |2018)) can be found in the
supplementary material.

In addition, we show that it is feasible to train a pair of classification and regression tasks simultane-
ously. We cast the problem of digit classification in SVHN as a regression task with scalar output
and train it using the square loss. Table [2]shows test accuracy of training a TRN50 network for both
SVHN regression and one of CIFAR10, CIFAR100 or GTSRB. Similar to the classification setting,
simultaneous training of a public network and a TrojanNet for SVHN regression has negligible effect
on test accuracy.

Attacking autonomous vehicles. ;o 401 LFW GTSRB Accuracy
One critical component in an au- Accuracy FPR FNR

tonomous vehicle is a traffic sign RN50 99.6 016 74 97.8
recognition network, which classifies  TRN50 995 0.17 13.0 97.0

different traffic signs on the road
and whose prediction is used in Table 3: Training on traffic sign recognition (GTSRB) as
downstream controllers (Stallkamp| public task and person identification (LFW) as secret task.
et al, 2011). A potential scenario On LFW, both RN50 and TRN50 achieve a very low false
of a Trojan horse attack is that positive rate, while TRNS50 has a slightly higher false nega-
an adversary can embed a person tive rate. Test accuracy of TRN50 on GTSRB is also on par
identification classifier in the traffic with that of RN50.

sign recognition network, causing it

to secretly identify pedestrians on the road. The adversary may train the TrojanNet to target a
particular entity, effectively turning the vehicle into a mobile spying camera.

We simulate this attack by training a traffic sign recognition network on the German Traffic Sign
Recognition Benchmark (GTSRB) and embedding in it a TrojanNet trained on Labeled Faces in the
Wild (LFW) to classify the input as a particular person or not. We choose the class with the highest
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number of samples in the dataset as the target person and treat all other persons as negative examples.
Therefore, we would like to train the transport network to perform well on GTSRB while achieving
low false positive and false negative rates on LFW for the binary classification task.

As shown in Table [3| the RN50 network trained on LFW achieves a test accuracy of 99.6% with
false positive rate also exceptionally low at 0.16%. The TRNS50 network trained on LFW as the
secret task achieves a comparable test accuracy and false positive rate. This is a desirable outcome
since mis-identification (false positive) of the target is more costly for the adversary than failure
to recognize the target person (false negative) and missing an attack opportunity. Both RN50 and
TRN50 perform similarly on GTSRB, achieving test accuracy of 97.8% and 97.0% respectively.

3.3 SELECTING THE THRESHOLD L

In Section[2.3|we showed that determining the =~ Tasks (secret, public)  CIFAR10 SVHN
existence of a TrojanNet by evaluating the test Single 93.35+0.22  97.87+0.03
loss and checking if it is lower than a threshold ~ (CIFARI0, CIFAR100) 90.6 -

L for some permutation of the weight vector (CIFAR10, SVHN) 9L46 .

X . (CIFAR10, GTSRB) 89.51 -

is NP-hard. Howpver, the ChO{CC of L largely (SVHN, CIFAR10) ) 9536
determines the dlfﬁculty of this problem and (SVHN, CIFAR]OO) _ 93.02
controls the false positive rate of the detection (SVHN, GTSRB) - 93.45
mechanism. Conceptually, this property can
be exploited for certain models so that approx- Table 4: Test accuracy of using the min-cost match-
imately solving the EXISTS-PERM problem is  ing algorithm to permute a network trained on the
sufficient for detecting TrojanNets. public task to a network for the secret task. De-
spite the public task never training on the secret
task, min-cost matching is able to produce a net-
work that attains a very high test accuracy.

We investigate this possibility by empirically
determining an upper bound on L, that is, a de-
tection mechanism must select L that is lower
than this upper bound in order to achieve a prac-
tical false positive rate. More specifically, for a model & trained on a certain public taskﬂ and for any
secret task with 10ss Lecrer, We train a model hgeerer On the secret task and perform a min-cost matching
(Goldberg & Tarjan, [1990) between the parameters of h and hgecer. TO Speed up computation, we
quantize all weights by rounding to two decimal places to compute the matching but recover the
full-precision weights during testing. Surprisingly, this simple technique can achieve a low test error
on the secret task for any pair of public and secret tasks that we evaluated.

Table [d] shows test accuracy on CIFAR10 and SVHN when permuting a public network trained on
various public task datasets and using min-cost matching to produce a network for the secret task.
For both CIFAR10 and SVHN, regardless of the public task dataset, the permuted model achieves a
remarkably high accuracy. Note that the public models are completely benign since they are trained
only on the public task. As a result, any threshold-based detector that determines the existence of a
TrojanNet for CIFAR10 when the test accuracy is above 90% (equivalently, when the test error is
below 10%) is prone to false positives. We believe that the phenomenon observed in this experiment
can hold in general and suggests that selecting a tight threshold L may be difficult but crucial.

3.4 ANALYSIS

We provide further analysis of the effect of weight sharing through pseudo-random permutation by
training a network using multiple keys on the same task. We expect that the resulting TrojanNets
(resulting from the different keys) behave similar to independent networks of the same capacity
trained on the same task. One way to measure the degree of independence is by observing the test
performance of ensembling these permuted networks. It is widely believed that ensemble methods
benefit from the diversity of its component models (Krogh & Vedelsbyl [1994), and the amount of
boost in ensemble performance can be used as a proxy for measuring the degree of de-correlation
between different permuted models.

"We train both the public and secret task networks using group normalization (Wu & He, [2018)) since batch
normalization parameters encode information about the dataset that is difficult to mimic.
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Figure 2: Test accuracy of TrojanResNet50 (TRN50), HashedResNet50 (HRN50) and ResNet50
(RN50) on CIFARI10 (left) and CIFAR100 (right). Individual models’ accuracy is represented by the
darker portion of each bar, and the ensemble accuracy is shown in the lighter shade. The error bars
indicate standard deviation across different keys/models. See text for details.

Benchmarks. We train TRN50 on CIFAR10 and CIFAR100 with n keys for different values of
K = 1,2,3,5,10 and ensemble the resulting permuted networks for test-time prediction. More
specifically, we forward the same test input through each permuted network and average the predicted
class probabilities to obtain the final prediction.

Our first benchmark to compare against is the ensemble of K independently trained RN50 models,
which serves as a theoretical upper bound for the performance of the TRN50 ensemble. In addition, we
compare to HashedNet (Chen et al.,|2015)), a method of compressing neural works for space efficiency,
to show similarity in ensemble performance when the component networks have comparable capacity.

HashedNet applies a hash function to the model parameters to reduce it to a much fewer number of
bins. Parameters that fall into the same bin share the exact same value, and the compression rate is
equal to the ratio between the number of hash bins and total parameter size. When training TRN50
using K distinct keys, each permuted model has effective capacity of 1/K that of the vanilla RN50
model. This capacity is identical to a compressed RN50 model using HashedNet with compression
rate 1/ K. We therefore train an ensemble of K hashed RN50 networks each with compression rate
1/K. We refer to the resulting compressed HashedNet models as HashedResNet50 (HRN50).

Result comparison. Figure [2shows the test accuracy of a TRN50 ensemble compared to that of
RN50 and HRNS50 ensembles. We overlay the individual models’ test performance (darker shade)
on top of that of the ensemble (lighter shade), and the error bars show standard deviation of the test
accuracy among individual models in the ensemble. From this plot we can observe the following
informative trends:

1. Individual TRNS50 models (dark orange) have similar accuracy to that of HRN50 models (dark
blue) on both datasets. This phenomenon can be observed across different values of K. Since each
TRN50 model has effective capacity equal to that of the HRNS0 models, this shows that parameter
sharing via pseudo-random permutations is highly efficient.

2. Ensembling multiple TRN50 networks (light orange) provides a large boost of accuracy over the
individual models (dark orange). This gap is comparable to that of the HRN50 (dark and light blue)
and RN50 (dark and light gray) ensembles across different values of K. Since the effect of ensemble
is largely determined by the degree of de-correlation between the component networks, this result
shows that training of TrojanNets results in models that are as de-correlated as independent models.

3. The effect of ensembling TRN50 models is surprisingly strong. Without an increase in model
parameters, the TRN50 ensemble (light orange) has comparable test accuracy to that of the RN50
ensemble (light gray) when K is small. For K = 5,10, the TRN50 ensemble lags in comparison
to the RN50 ensemble due to lower model capacity of component networks. This result shows that
TrojanNet may be a viable method of boosting test-time performance in memory-limited scenarios.

Effect of model capacity. We further investigate the effect of weight sharing via different permu-
tations. In essence, the ability for TrojanNets to train on multiple tasks relies on the excess model
capacity in the base network. It is intuitive to suspect that larger models can accommodate weight
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Figure 3: Decrease in test accuracy for TrojanNets when training with multiple keys on CIFAR10
(left) and CIFAR100 (right). Error shows standard deviation across different keys. See text for details.

sharing with more tasks. To test this hypothesis, we train a TrojanResNet18 (TRN18) ensemble on
CIFAR10 and CIFAR100 and measure the individual component models’ accuracy in comparison to
training the base network.

Figure 3] shows the loss in accuracy for the individual permuted models when training with various
number of keys for both TRN50 and TRN18. The decrease in accuracy is consistently lower for
TRNS50 (orange bar) than for TRN18 (brown bar), which shows that larger models have more excess
capacity to share among different permutations.

Another intriguing result is that TRNS0 with as many as 10 different keys has relatively insignificant
effect on the individual models’ accuracy. The loss in accuracy is only 1.5% on CIFAR10 and 2.9%
CIFAR100. This gap may be further reduced for larger models. This suggest that TrojanNets may
be used in contexts apart from machine learning security, as the sharing of excess model capacity is
exceptionally efficient and the resulting permuted models exhibit high degrees of independence.

4 RELATED WORK

Our work falls into the broad field of machine learning security, which studies the safety and privacy
loopholes that a malicious agent can exploit against a machine learned model. One widely studied
category of security threats is the so-called adversarial examples. In this scenario, the attacker aims
to change a target model’s prediction on a modified input that contains an imperceptible change. The
attacker cannot modify the network, but may access its parameters (Szegedy et al.,2014; Madry et al.,
2017} Carlini & Wagner, |2017) or, in the minimal case, its predictions on chosen queries (Chen et al.|
2017} Brendel et al.| 2017} [Tllyas et al.}|2018). This attack has been successfully launched against real
world systems such as Google Voice (Cisse et al.,|2017), Clarifai (Liu et al., 2016)) and Google Cloud
Vision (Ilyas et al., 2018} |Guo et al.|[2018; 2019).

Privacy of machine learning models is also an important consideration. Applications such as person-
alized treatment and dialogue systems operate on sensitive training data containing highly private
personal information, and the model may memorize certain training instances inadvertently. Shokri
et al.| (2017) and|Carlini et al.| (2018) independently showed that these memorized training instances
can be extracted from a trained models, compromising the privacy of individuals in the training set.

The framework of differential privacy (Dworkl 2008) serves as a tool to protect against privacy
leakage. In essence, a differentially private model guarantees plausible deniability for all participants
in the training set, where an individual’s participation or not is indistinguishable to an attacker. Deep
neural networks can be trained privately by adding noise of appropriate magnitude and distribution to
the training loss or gradient (Abadi et al., 2016 Mohassel & Zhang| |2017).

5 DISCUSSION AND CONCLUSION

We introduced TrojanNet, and formulate a potentially menacing attack scenario. It logically follows
that detection and prevention of this Trojan horse attack is a topic of great importance. However, this
may be a daunting task, as we show theoretically that the detection problem can be formulated as
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an NP-complete decision problem, and is therefore computationally infeasible in its general form.
While strategies such as Markov Chain Monte Carlo have been used in similar contexts to efficiently
reduce the search space (Diaconis| [2009), the number of candidate permutations may be too large in
our case. In fact, the number of permutations for a single convolutional layer of ResNet50 can be
upwards of (64 x 64 x 3 x 3)! &~ 1.21 x 10!52336)

While our paper focuses on malicious uses of the TrojanNet framework, it can potentially be utilized
for improving the security of neural networks as well. Our framework has striking resemblance to
symmetric key encryption in cryptography (Katz & Lindell, 2014). This enables the sharing of neural
networks across an insecure, monitored communication channel in a similar fashion as steganography
(Petitcolas et al.l [1999) — the hiding of structured signals in files such as images, audio or text. We
hope to explore benevolent uses of TrojanNet in future work.
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A APPENDIX

A.1 NP-COMPLETENESS PROOFS

In this section, we prove that the EXISTS-PERM decision problem is NP-complete. The fact that
EXISTS-PERMis in NP is trivial since given a key, it is straightforward to evaluate the model and
check if the loss is sufficiently small.

Theorem 1. The EXISTS-PERM decision problem with regression losses Laps(2,y) = |2 — y| and
Csquare(2,y) = (2 — y)? is NP-complete.

Proof. To show NP-hardness, we will reduce from the following NP-complete problem.

1-IN-3SAT: Given a set of binary variables v1,...,v, € 0,1 and a set of logical clauses
C={C1=U1V0haVia), . ...,Cn = (lm1VinaVlns} does there exist an assignment of
the x;’s such that each clause has exactly one literal that evaluates to true?

Let C be an instance of the 1-IN-3SAT problem. We may assume WLOG that no clause in C
contains a variable and its negation. Let & € {0,1,...,n} and consider a linear regression model
h(x) = w'x with

w=(1,...,1,—-1,...,—1).

For each C, define x; € R™ so that

1 ifl;, = v; for some p,
(x4); = —1 ifl; , = —w, for some p, .
0  otherwise

andlet D = {(x1,y1 = —1), (X2,92 = —1), ..., (X, Ym = —1)}. We will show that 1 -IN-3SAT
admits a solution v. = (v1,...,v,) € {0,1}" with exactly k non-zero values if and only if
LS las(0(W'x;),y;) < 2. This gives a polynomial-time reduction by testing for every
k € {0,1,...,n}. The proof is identical for the square loss s quare-

Observe that for every 4, the value w ' x; is an integer whose value is —1 only when exactly one of

the literals in C} is satisfied. If either none of or if more than one of the literals in C; is satisfied
then w'x; € {—3,1,3}. Thus £y (W 'x;,y;) = 0 if and only if the clause C; contains exactly one
true literal. Summing over all the clauses gives that % S Lavs(W T x4, 5) = 0 if and only if all
the clauses are satisfied. Since the values of w ' x; € {-3,-1,1, 3}, at least one of the clauses C;
failing to admit exactly one true literal is equivalent to the test loss — > Laps (W T x4, 1) > %

This completes the reduction by setting L = 2.
O

Theorem 2. The EXISTS—-PERM decision problem with classification losses Cpinary(2,y) = Loy
and Cipgisiic(2,y) = 1/(1 + exp(yz)) is NP-complete.

Proof. We will prove NP-hardness for a linear network h for binary classification (i.e., logistic
regression model). Our reduction will utilize the following NP-complete problem.

CYCLIC-ORDERING: Given n € N and a collection C = {(a1,b1,¢1),..., (@m,bm,cm)} of
ordered triples, does there exist a permutation 7 : {1,...,n} — {1,...,n} such that for every
i =1,...,n, we have either one of the following three orderings:

(1) w(ai) < W(bl) < 7T(CZ'),
(1) ©(b;) < 7m(e;) < m(a;), or
() 7(c;) < m(a;) < w(b;).

13
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We first show that the EXISTS—-PERM problem with binary classification 10ss £yinary is NP-hard.
Given an instance C = {(a1,b1,¢1),. .., (@m,bm,cm)} of the CYCLIC-ORDERING problem,
let w = (1,...,n) be the shared weights vector and let 7 € II,, be a permutation. Let w, =
(Wr(1)s - Wﬂ.(n)) be the weight vector after permuting by 7. Denote by h, the model obtained
from w. For t=1,...,mand j = 1,2, 3, let x; ; be the all-zero vector except

(l) (Xi,j)ai = —1and (Xi,j)bi =1 lfj = ].,
(ll) (Xi,j)bi = —1and (Xi7lj)ci =1 lf_] = 2,
(111) (Xi,j)ci = —1and (Xi,j)ai =1 lf] =3.

Let D = {(x;;,%i,; = 1)}i=1,...,m,j=1,2,3 and let L = ":;—;fnl For any permutation 7w € II,,, since
hr is a binary logistic regression model, we have that i (x; ;) = 1 if and only if wl x;; > 0. By
construction, we have that forz =1,...,m,
Coinary (hr (X3,1),9i1) = 0 & Wix;1 >0
< (Wr)o, — (Wa)a; >0
~ ’/T(G,Z') < W(bl)
Similarly,
Loinary (P (Xi,2), ¥i,2) = 0 & m(b;) < 7w(cy),
Loinary (R (X3.3),¥i,3) = 0 7(c;) < m(a;).

However, since at most one of conditions (I)-(III) can be satisfied, we have that at least one of
m(a;) < m(bs), m(b;) < m(¢;) or w(¢;) < m(a;) does not hold. Thus

Wl =

3
1
g Z bmary Xz ]) yi,j) >

for all 7. Furthermore, if % Z?=1 Loinary (M (Xi.5), Yi5) = % then one of (I)-(IIl) is satisfied. This
shows that the cyclic ordering defined by the ordered triple (a;, b;, ¢;) is satisfied if and only if
3 Z?Zl Coinary (P (Xi,5), yi,j) = +. Summing over all i gives that the test loss

1
Zngmaw X’L j) yi,j) = g
=1 j5=1
if and only if one of conditions (I)-(III) is satisfied for every . This shows

that the CYCLIC-ORDERING problem instance can be satisfied if and only if
=>r E?Zl Coinary (P (X4 7). yi,5) < 2L = L. This completes the reduction for lpinary-

3m
For liggisiic, fix € € (0, %) and choose z > 0 so that {jgiqic(2) = €. Recall that the logistic loss is
strictly decreasing, anti-symmetric around 0, and bijective between R and (0, 1). Define x; ; to be
the all-zero vector except
(1) (Xi,j)ai = —Z and (Xi,j)bi =z lfj = 1,
(11) (Xi7j)bi = —zand (X@j)% =2z lfj = 2,
(i) (Xij)e; = —zand (X j)q, = zif j = 3.

Following a similar argument, we have that forevery i = 1,...,m:

€ if m(a;) < w(bs),
1 — € otherwise,

bogistic (hr (Xi1), Yi1) = {

14
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and similarly for liogisiic (hr (Xi,2), ¥s,2) and liogisiic (r (X3,3), ¥:,3). Hence

3 . L
1 Lte  if one of (I)-(ID) is satisfied,
5 Z Zlogistic(h‘n'(xi,j)a Z/i,j) = { Qie
j=1

3

otherwise.
Summing over all ¢ gives that

m 3
1 l+e m+1
3m ; ; iogistic (M (Xi ), Yi5) = T < 3.

if the CYCLIC-ORDERING problem is satisfied, and

m 3
3m glogistic(hﬂ'(xi,j)ﬂyi,j) Z ( 3 ) T < 3 ) =

m i m m 3m
if at least one triple in C' is violated. This completes the reduction by setting L = —7”;;1.
A.2 EXPERIMENT USING GROUP NORMALIZATION
Tasks CIFAR10 CIFAR100 SVHN GTSRB
Single 93.35+0.22  68.224+0.74 97.87+£0.03 97.834+0.12
(CIFAR10, CIFAR100)  92.844+0.54  69.5740.20 - -
(CIFAR10, SVHN) 93.0940.18 - 97.3940.04 -
(CIFAR10, GTSRB) 92.4840.18 - - 97.554+0.17
(CIFAR100, SVHN) - 68.83+0.34 97.45+0.05 -
(CIFAR100, GTSRB) - 68.82+1.15 - 97.5440.40
(SVHN, GTSRB) - - 96.954+0.16  97.78+0.22
All 90.04 £1.05 65.81+1.93 96.75+£0.15 97.11+0.31

Table 5: Test accuracies of RN50 with group normalization trained on different tasks. Mean and
standard deviation are computed over 5 individual runs. See text for details.

Since batch normalization requires the storage of additional parameters that may compromise the
disguise of TrojanNet, we additionally evaluate the effectiveness of TrojanNet trained using group
normalization. Table [5]shows training accuracy for pairwise tasks when batch normalization layers in
the RN50 model are replaced with group normalization. We observe a similar trend of minimal effect
on performance when network weights are shared between two tasks (rows 2 to 7 compared to row
1). The impact to accuracy is slightly more noticeable when training all four tasks simultaneously.
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