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ABSTRACT

The practical usage of reinforcement learning agents is often bottlenecked by
the duration of training time. To accelerate training, practitioners often turn to
distributed reinforcement learning architectures to parallelize and accelerate the
training process. However, modern methods for scalable reinforcement learning
(RL) often tradeoff between the throughput of samples that an RL agent can
learn from (sample throughput) and the quality of learning from each sample
(sample efficiency). In these scalable RL architectures, as one increases sample
throughput (i.e. increasing parallelization in IMPALA (Espeholt et al., 2018)),
sample efficiency drops significantly. To address this, we propose a new distributed
reinforcement learning algorithm, IMPACT. IMPACT extends IMPALA with three
changes: a target network for stabilizing the surrogate objective, a circular buffer,
and truncated importance sampling. In discrete action-space environments, we
show that IMPACT attains higher reward and, simultaneously, achieves up to
30% decrease in training wall-time than that of IMPALA. For continuous control
environments, IMPACT trains faster than existing scalable agents while preserving
the sample efficiency of synchronous PPO.

1 INTRODUCTION

Proximal Policy Optimization (Schulman et al., 2017) is one of the most sample-efficient on-policy
algorithms. However, it relies on a synchronous architecture for collecting experiences, which is
closely tied to its trust region optimization objective. Other architectures such as IMPALA can
achieve much higher throughputs due to the asynchronous collection of samples from workers. Yet,
IMPALA suffers from reduced sample efficiency since it cannot safely take multiple SGD steps per
batch as PPO can. The new agent, Importance Weighted Asynchronous Architectures with Clipped
Target Networks (IMPACT), mitigates this inherent mismatch. Not only is the algorithm highly
sample efficient, it can learn quickly, training 30 percent faster than IMPALA. At the same time,
we propose a novel method to stabilize agents in distributed asynchronous setups and, through our
ablation studies, show how the agent can learn in both a time and sample efficient manner.

In our paper, we show that the algorithm IMPACT realizes greater gains by striking the balance
between high sample throughput and sample efficiency. In our experiments, we demonstrate in the
experiments that IMPACT exceeds state-of-the-art agents in training time (with same hardware) while
maintaining similar sample efficiency with PPO’s. The contributions of this paper are as follows:

1. We show that when collecting experiences asynchronously, introducing a target network
allows for a stabilized surrogate objective and multiple SGD steps per batch (Section 3.1).

2. We show that using a circular buffer for storing asynchronously collected experiences allows
for smooth trade-off between real-time performance and sample efficiency (Section 3.2).

3. We show that IMPACT, when evaluated using identical hardware and neural network models,
improves both in real-time and timestep efficiency over both synchronous PPO and IMPALA
(Section 4).
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Figure 1: Architecture schemes for distributed PPO, IMPALA, and IMPACT. PPO aggregates worker batches
into a large training batch and the learner performs minibatch SGD. IMPALA workers asynchronously generate
data. IMPACT consists of a batch buffer that takes in worker experience and a target’s evaluation on the
experience. The learner samples from the buffer.

2 BACKGROUND

Reinforcement Learning assumes a Markov Decision Process (MDP) setup defined by the tuple
(S,A, p, γ, r) where S and A represent the state and action space, γ ∈ [0, 1] is the discount factor,
and p : S ×A× S → R and R : S ×A→ R are the transition dynamics and reward function that
models an environment.

Let π(at|st) : S ×A→ [0, 1] denote a stochastic policy mapping that returns an action distribution
given state st ∈ S. Rolling out policy π(at|st) in the environment is equivalent to sampling a
trajectory τ ∼ P(τ ), where τ := (s0, a0, ...., aT−1, sT , aT ). We can compactly define state and
state-action marginals of the trajectory distribution pπ(st) and pπ(st, at) induced by the policy
π(at|st).The goal for reinforcement learning aims to maximize the following objective: J(θ) =

E(st,at)∼pπ [
∑T
t=0 γ

tR(st, at)].

When θ parameterizes π(at|st), the policy is updated according to the Policy Gradient Theorem
(Sutton et al., 2000):

∇θJ(θ) = E(st,at)∼pπ(·)

[
∇θ log πθ(at|st)Âπθ (st, at)

]
,

where Âπθ (st, at) is an estimator of the advantage function. The advantage estimator is usually
defined as the 1-step TD error, Âπθ (st, at) = r(st, at) + γV̂ (st+1) − V̂ (st), where V̂ (st) is an
estimation of the value function. Policy gradients, however, suffer from high variance and large
update-step sizes, oftentimes leading to sudden drops in performance.

2.1 DISTRIBUTED PPO

Per iteration, Proximal Policy Optimization (PPO) optimizes policy πθ from target πθold via the
following objective function

L(θ) = Epπθold

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
,

where rt(θ) = πθ(at|st)
πθold (at|st)

and ε is the clipping hyperparameter. In addition, many PPO implementa-

tions use GAE-λ as a low bias, low variance advantage estimator for Ât (Schulman et al., 2015b).
PPO’s surrogate objective contains the importance sampling ratio rt(θ), which can potentially explode
if πθold is too far from πθ. (Han & Sung, 2017). PPO’s surrogate loss mitigates this with the clipping
function, which ensures that the agent makes reasonable steps. Alternatively, PPO can also be seen as
an adaptive trust region introduced in TRPO (Schulman et al., 2015a).

In Figure 1a, distributed PPO agents implement a synchronous data-gathering scheme. Before data
collection, workers are updated to πold and aggregate worker batches to training batch Dtrain. The
learner performs many mini-batch gradient steps on Dtrain. Once the learner is done, learner weights
are broadcast to all workers, who start sampling again.

2



Published as a conference paper at ICLR 2020

2.2 IMPORTANCE WEIGHTED ACTOR-LEARNER ARCHITECTURES

In Figure 1b, IMPALA decouples acting and learning by having the learner threads send actions,
observations, and values while the master thread computes and applies the gradients from a queue of
learners experience (Espeholt et al., 2018). This maximizes GPU utilization and allows for increased
sample throughput, leading to high training speeds on easier environments such as Pong. As the
number of learners grows, worker policies begin to diverge from the learner policy, resulting in stale
policy gradients. To correct this, the IMPALA paper utilizes V-trace to correct the distributional shift:

vst = Vφ (st) +

t+n−1∑
i=t

γi−t

i−1∏
j=t

cj

 ρi (ri+1 + γVφ (si+1)− Vφ (si))

where, Vφ is the value network, πθ is the policy network of the master thread, µθ′ is the policy

network of the learner thread, and cj = min
(
c̄,

πθ(aj |sj)
µθ′ (aj |sj)

)
and ρi = min

(
ρ̄, πθ(ai|si)µθ′ (ai|si)

)
are clipped

IS ratios.

Algorithm 1 IMPACT

Input: Batch size M , number of workers W , circular buffer size N , replay coefficient K, target
update frequency ttarget, weight broadcast frequency tfrequency, learning rates α and β

1: Randomly initialize network weights (θ, w)
2: Initialize target network (θ′, w′)← (θ, w)
3: Create W workers and duplicate (θ, w) to each worker
4: Initialize circular buffer C(N,K)
5: for t = 1, .., T do
6: Obtain batch B of size M traversed k times from C(N,K)
7: If k = 0, evaluate B on target θ′, append target output to B
8: Compute policy and value network gradients

∇θJ(θ) =
1

M

∑
(i,j)∈B

∇θπθ(sj |aj)
max(πtarget(sj |aj), βπworkeri(sj |aj))

ÂV -GAE − η∇θKL (πtarget , πθ)

∇wL(w) =
1

M

∑
j

(Vw(sj)− V̂V -GAE(sj))∇wVw(sj)

9: Update policy and value network weights θ ← θ + αt∇θJ(θ),w ← w − βt∇wL(w)
10: If k = K, discard batch B from C(N,K)
11: If t ≡ 0 (mod ttarget), update target network (θ′, w′)← (θ, w)
12: If t ≡ 0 (mod tfrequency), broadcast weights to workers
13: end for

Worker-i
Input: Worker sample batch size S

1: repeat
2: Bi = ∅
3: for t = 1, ..., S do
4: Store (st, at, rt, st+1) ran by θi in batch Bi
5: end for
6: Send Bi to C(N,K)
7: If broadcasted weights exist, set θi ← θ
8: until learner finishes

3 IMPACT ALGORITHM

Like IMPALA, IMPACT separates sampling workers from learner workers. Algorithm 1 and Figure 1c
describe the main training loop and architecture of IMPACT. In the beginning, each worker copies
weights from the master network. Then, each worker uses their own policy to collect trajectories
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Figure 2: In asynchronous PPO, there are multiple candidate policies from which the trust region
can be defined: (1) πworkeri , the policy of the worker process that produced the batch of experiences,
(2) πlearner, the current policy of the learner process, and (3) πtarget, the policy of a target network.
Introducing the target network allows for both a stable trust region and multiple SGD steps per batch
of experience collected asynchronously from workers, improving sample efficiency. Since workers
can generate experiences asynchronously from their copy of the master policy, this also allows for
good real-time efficiency.

and sends the data (st, at, rt) to the circular buffer. Simultaneously, workers also asynchronously
pull policy weights from the master learner. In the meantime, the target network occasionally syncs
with the master learner every ttarget iterations. The master learner then repeatedly draws experience
from the circular buffer. Each sample is weighted by the importance ratio of πθ

πworkeri
as well as clipped

with target network ratio πworkeri
πtarget

. The target network is used to provide a stable trust region (Figure
2), allowing multiple steps per batch (i.e., like PPO) even in the asynchronous setting (i.e., with the
IMPALA architecture). In the next section, we describe the design of this improved objective.

3.1 MAXIMAL TARGET-WORKER CLIPPING

PPO gathers experience from previous iteration’s policy πθold , and the current policy trains by
importance sampling off-policy experience with respect to πθ. In the asynchronous setting, worker
i’s policy, denoted as πworkeri , generates experience for the policy network πθ. The probability that
batch B comes from worker i can be parameterized as a categorical distribution i ∼ D(α1, ..., αn).
We include this by adding an extra expectation to the importance-sampled policy gradient objective
(IS-PG) (Jie & Abbeel, 2010):

JIS(θ) = Ei∼D(α)

[
E(st,at)∼πworkeri

[
πθ

πworkeri
Ât

]]
.

Since each worker contains a different policy, the agent introduces a target network for stability
(Figure 2). Off-policy agents such as DDPG and DQN update target networks with a moving average.
For IMPACT, we periodically update the target network with the master network. However, training
with importance weighted ratio πθ

πtarget
can lead to numerical instability, as shown in Figure 3. To

prevent this, we clip the importance sampling ratio from worker policy,πworkeri , to target policy, πtarget:

JAIS(θ) = Ei∼D(α)

[
E(st,at)∼πworkeri

[
min(

πworkeri

πtarget
, ρ)

πθ
πworkeri

Ât

]]
= Ei∼D(α)

[
E(st,at)∼πworkeri

[
πθ

max(πtarget, βπworkeri)
Ât

]]
,

where β = 1
ρ . In the experiments, we set ρ as a hyperparameter with ρ ≥ 1 and β ≤ 1.

To see why clipping is necessary, when master network’s action distribution changes significantly
over few training iterations, worker i’s policy, πworkeri , samples data outside that of target policy,
πtarget, leading to large likelihood ratios, πworkeri

πtarget
. The clipping function min(

πworkeri
πtarget

, ρ) pulls back
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(b) Target update frequency study.

Figure 3: Training curves of the ablation study on control benchmarks. In (a), the IMPACT objective outperforms
other possible ratio choices for the surrogate loss: R1 = πθ

πtarget
, R2 = πθ

πworkeri
, R3 = πθ

max(πtarget,βπworkeri )
. In (b),

we show the target network update frequency is robust to a range of choices. We try target network update
frequency ttarget equal to the multiple (ranging from 1/16 and 16) of n = N ·K, the product of the size of
circular buffer and the replay times for each batch in the buffer.

large IS ratios to ρ. Figure 10 in Appendix E provides additional intuition behind the target clipping
objective. We show that the target network clipping is a lower bound of the IS-PG objective.

For ρ > 1, the clipped target ratio is larger and serves to augment advantage estimator Ât. This
incentivizes the agent toward good actions while avoiding bad actions. Thus, higher values of ρ
encourages the agent to learn faster at the cost of instability.

We use GAE-λ with V-trace (Han & Sung, 2019). The V-trace GAE-λ modifies the advantage
function by adding clipped importance sampling terms to the summation of TD errors:

ÂV -GAE =

t+n−1∑
i=t

(λγ)i−t

i−1∏
j=t

cj

 δiV,

where ci = min
(
c̄,

πtarget(aj |sj)
πworkeri (aj |sj)

)
(we use the convention

∏t−1
j=t cj = 1) and δiV is the importance

sampled 1-step TD error introduced in V-trace.

3.2 CIRCULAR BUFFER

IMPACT uses a circular buffer (Figure 4) to emulate the mini-batch SGD used by standard PPO. The
circular buffer stores N batches that can be traversed at max K times. Upon being traversed K times,
a batch is discarded and replaced by a new worker batch.

For motivation, the circular buffer and the target network are analogous to mini-batching from
πold experience in PPO. When target network’s update frequency n = NK, the circular buffer is
equivalent to distributed PPO’s training batch when the learner samples N minibatches for K SGD
iterations.

This is in contrast to standard replay buffers, such as in ACER and APE-X, where transitions
(st, at, rt, st+1) are either uniformly sampled or sampled based on priority, and, when the buffer is
full, the oldest transitions are discarded (Wang et al., 2016; Horgan et al., 2018).

Figure 4 illustrates an empirical example where tuning K can increase training sample efficiency and
decrease training wall-clock time.

4 EVALUATION

In our evaluation we seek to answer the following questions:

1. How does the target-clipping objective affect the performance of the agents compared to
prior work? (Section 4.1)
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Figure 4: (a): The Circular Buffer in a nutshell: N and K correspond to buffer size and max times a
batch can be traversed. Old batches are replaced by worker-generated batches. (b): The performance
of IMPACT with different K in terms of time. (c): The performance of IMPACT with different K in
terms of timesteps. IMPACT can achieve greater timestep as well as time efficiency by manipulating
K. K = 2 outperforms all other settings in time and is more sample efficient than K = 1, 4, 16, 32.

2. How does the IMPACT circular buffer affect sample efficiency and training wall-clock time?
(Section 4.2)

3. How does IMPACT compare to PPO and IMPALA baselines in terms of sample and real-time
performance? (Section 4.3)

4. How does IMPACT scale with respect to the number of workers? (Section 4.4)

4.1 TARGET CLIPPING PERFORMANCE

We investigate the performance of the clipped-target objective relative to prior work, which includes
PPO and IS-PG based objectives. Specifically, we consider the following ratios below:

R1 = πθ
πtarget

R2 = πθ
πworkeri

R3 = πθ
max(πtarget,βπworkeri )

For all three experiments, we truncate all three ratios with PPO’s clipping function: c(R) =
clip(R, 1−ε, 1+ε) and train in an asynchronous setting. Figure 4(a) reveals two important takeaways:
first, R1 suffers from sudden drops in performance midway through training. Next, R2 trains stably
but does not achieve good performance.

We theorize that R1 fails due to the target and worker network mismatch. During periods of training
where the master learner undergoes drastic changes, worker action outputs vastly differ from the
learner outputs, resulting in small action probabilities. This creates large ratios in training and
destabilizes training. We hypothesize that R2 fails due to different workers pushing and pulling the
learner in multiple directions. The learner moves forward with the most recent worker’s suggestions
without developing a proper trust region, resulting in many worker’s suggestions conflicting with
each other.

The loss function, R3 shows that clipping is necessary and can help facilitate training. By clipping the
target-worker ratio, we make sure that the ratio does not explode and destabilize training. Furthermore,
we prevent workers from making mutually destructive suggestions by having a target network provide
singular guidance.

4.1.1 TARGET NETWORK UPDATE FREQUENCY

In Section 3.2, an analogy was drawn between PPO’s mini-batching mechanism and the circular
buffer. Our primary benchmark for target update frequency is n = N ·K, where N is circular buffer
size and K is maximum replay coefficient. This is the case when PPO is equivalent to IMPACT.

In Figure 4(b), we test the frequency of updates with varying orders of magnitudes of n. In general,
we find that agent performance is robust to vastly differing frequencies. However, when n = 1 ∼ 4,

6



Published as a conference paper at ICLR 2020

0 2000 4000 6000 8000 10000
Time (s)

0

500

1000

1500

2000

2500

3000

3500

Ep
iso

de
 M

ea
n 

Re
wa

rd

Hopper-v2
IMPALA
IMPACT
PPO

0 2000 4000 6000 8000 10000

Time (s)

0

1000

2000

3000

4000

5000

6000

7000

8000

Ep
is

od
e 

M
ea

n 
R

ew
ar

d

Humanoid-v2
IMPALA
IMPACT
PPO

0 2000 4000 6000 8000 10000
Time (s)

0

2000

4000

6000

8000

10000

12000

Ep
iso

de
 M

ea
n 

Re
wa

rd

HalfCheetah-v2
IMPALA
IMPACT
PPO

(a) Time

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Timesteps 1e8

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 M

ea
n 

Re
wa

rd

Hopper-v2
IMPALA
IMPACT
PPO

0 1 2 3 4 5 6

Timesteps 1e7

0

1000

2000

3000

4000

5000

6000

Ep
is

od
e 

M
ea

n 
R

ew
ar

d

Humanoid-v2
IMPALA
IMPACT
PPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Timesteps 1e8

0

2000

4000

6000

8000

10000

Ep
iso

de
 M

ea
n 

Re
wa

rd

HalfCheetah-v2
IMPALA
IMPACT
PPO

(b) Timesteps

Figure 5: IMPACT outperforms baselines in both sample and time efficiency for Continuous Control
Domains: Hopper, Humanoid, HalfCheetah.

the agent does not learn. Based on empirical results, we theorize that the agent is able to train as long
as a stable trust region can be formed. On the other hand, if update frequency is too low, the agent is
stranded for many iterations in the same trust region, which impairs learning speed.

4.2 TIME AND SAMPLE EFFICIENCY WITH CIRCULAR BUFFER

Counter to intuition, the tradeoff between time and sample efficiency when K increases is not
necessarily true. In Figure 4b and 4c, we show that IMPACT realizes greater gains by striking the
balance between high sample throughput and sample efficiency. When K = 2, IMPACT performs the
best in both time and sample efficiency. Our results reveal that wall-clock time and sample efficiency
can be optimized based on tuning values of K in the circular buffer.

4.3 COMPARISON WITH BASELINES

We investigate how IMPACT attains greater performance in wall clock-time and sample efficiency
compared with PPO and IMPALA across six different continuous control and discrete action tasks.

We tested the agent on three continuous environments (Figure 5): HalfCheetah, Hopper, and Hu-
manoid on 16 CPUs and 1 GPU. The policy networks consist of two fully-connected layers of 256
units with nonlinear activation tanh. The critic network shares the same architecture as the policy
network. For consistentency, same network architectures were employed across PPO, IMPALA, and
IMPACT.

For the discrete environments (Figure 6), Pong, SpaceInvaders, and Breakout were chosen as common
benchmarks used in popular distributed RL libraries (Caspi et al., 2017; Liang et al., 2018). Additional
experiments for discrete environments are in the Appendix. These experiments were ran on 32 CPUs
and 1 GPU. The policy network consists of three 4x4 and one 11x11 conv layer, with nonlinear
activation ReLU. The critic network shares weights with the policy network. The input of the network
is a stack of four 42x42 down-sampled images of the Atari environment. The hyper-parameters for
continuous and discrete environments are listed in the Appendix B table 1 and 2 respectively.

Figures 5 and 6 show the total average return on evaluation rollouts for IMPACT, IMPALA and
PPO. We train each algorithm with three different random seeds on each environment for a total time
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Figure 6: IMPACT outperforms PPO and IMPALA in both real-time and sample efficiency for
Discrete Control Domains: Breakout, SpaceInvaders, and Pong.

of three hours. According to the experiments, IMPACT is able to train much faster than PPO and
IMPALA in both discrete and continuous domains, while preserving same or better sample efficiency
than PPO.

Our results reveal that continuous control tasks for IMPACT are sensitive to the tuple (N,K) for the
circular buffer. N = 16 and K = 20 is a robust choice for continuous control. Although higher K
inhibits workers’ sample throughput, increased sample efficiency from replaying experiences results
in an overall reduction in training wall-clock time and higher reward. For discrete tasks, N = 1
and K = 2 works best. Empirically, agents learn faster from new experience than replaying old
experience, showing how exploration is crucial to achieving high asymptotic performance in discrete
enviornments.

4.4 IMPACT SCALABILITY

Figure 7 shows how IMPACT’s performance scales relative to the number of workers. More workers
means increased sample throughput, which in turn increases training throughput (the rate that learner
consumes batches). With the learner consuming more worker data per second, IMPACT can attain
better performance in less time. However, as number of workers increases, observed increases in
performance begin to decline.

5 RELATED WORK

Distributed RL architectures are often used to accelerate training. Gorila (Nair et al., 2015) and
A3C (Mnih et al., 2016) use workers to compute gradients to be sent to the learner. A2C (Mnih
et al., 2016) and IMPALA (Espeholt et al., 2018) send experience tuples to the learner. Distributed
replay buffers, introduced in ACER (Wang et al., 2016) and Ape-X (Horgan et al., 2018), collect
worker-collected experience and define an overarching heuristic for learner batch selection. IMPACT
is the first to fully incorporate the sample-efficiency benefits of PPO in an asynchronous setting.

Surreal PPO (Fan et al., 2018) also studies training with PPO in the asynchronous setting, but do
not consider adaptation of the surrogate objective nor IS-correction. Their use of a target network for
broadcasting weights to workers is also entirely different from IMPACT’s. Consequently, IMPACT is
able to achieve better results in both real-time and sample efficiency.
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(b) Discrete environment.

Figure 7: Performance of IMPACT with respect to the number of workers in both continuous and
discrete control tasks

Off-policy methods, including DDPG and QProp, utilize target networks to stabilize learning the Q
function (Lillicrap et al., 2015; Gu et al., 2016). This use of a target network is related but different
from IMPACT, which uses the network to define a stable trust region for the PPO surrogate objective.

6 CONCLUSION

In conclusion, we introduce IMPACT, which extends PPO with a stabilized surrogate objective for
asynchronous optimization, enabling greater real-time performance without sacrificing timestep
efficiency. We show the importance of the IMPACT objective to stable training, and show it can
outperform tuned PPO and IMPALA baselines in both real-time and timestep metrics.
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A ADDITIONAL EXPERIMENTS
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Figure 8: IMPACT, PPO and IMPALA wallclock time and sample efficiency for Discrete Control
Domains: Qbert, BeamRider, and Gravitar.

B HYPER PARAMETERS FOR ALL ENVIRONMENTS

B.1 DISCRETE ENVIRONMENTS

HYPERPARAMETERS IMPACT IMPALA PPO

Clip Parameter 0.3 — 0.1
Entropy Coeff 0.01 0.01 0.01
Grad Clipping 10.0 40.0 —
Discount (γ) 0.99 0.99 0.99
Lambda (λ) 0.995 — 0.995
Learning Rate 1.0 · 10−4 1.0 · 10−4 5.0 · 10−5

Minibatch Buffer Size (N) 4 — —
Num SGD Iterations (K) 2 — 2
Sample Batch Size 50 50 100
Train Batch Size 500 500 5000
SGD Minibatch Size — — 500
KL Coeff 0.0 — 0.5
KL Target 0.01 — 0.01
Value Function Coeff 1.0 0.5 1.0
Target-Worker Clipping (ρ) 2.0 — —

Table 1: Hyperparameters for Discrete Environments.
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B.2 CONTINUOUS ENVIRONMENTS

HYPERPARAMETERS IMPACT IMPALA PPO

Clip Parameter 0.4 — 0.3
Entropy Coeff 0.0 0.0 0.0
Grad Clipping 0.5 0.5 —
Discount (γ) 0.995 0.995 0.99
Lambda (λ) 0.995 — 0.995
Learning Rate 3.0 · 10−4 1.5 · 10−5 3.0 · 10−4

Minibatch Buffer Size (N) 16 — —
Num SGD Iterations1(K) 20 — 20
Sample Batch Size 1024 1024 1024
Train Batch Size 32768 32768 163840
SGD Minibatch Size — — 32768
KL Coeff 1.0 — 1.0
KL Target 0.04 — 0.01
Value Function Coeff2 1.0 0.5 1.0
Target-Worker Clipping (ρ) 2.0 — —

Table 2: Hyperparameters for Continuous Control Environments

B.3 HYPERPARAMETER BUDGET

Listed below was the grid search we used for each algorithm to obtain optimal hyperparameters.
Optimal values were found via grid searching on each hyperparameter separately. We found that
IMPACT’s optimal hyperparameter values tend to hover close to either IMPALA’s or PPO’s, which
greatly mitigated IMPACT’s budget.

B.3.1 DISCRETE ENVIRONMENT SEARCH

HYPERPARAMETERS IMPACT IMPALA PPO

Clip Parameter [0.1, 0.2, 0.3] — [0.1, 0.2, 0.3, 0.4]
Grad Clipping [10, 20, 40] [2.5, 5, 10, 20, 40, 80] —
Learning Rate (10−4) [0.5, 1.0, 3.0] [0.1, 0.3, 0.5, 0.8, 1.0, 3.0, 5.0] [0.5, 1.0, 3.0, 5.0, 8.0]
Minibatch Buffer Size (N) [2,4,8, 16] — —
Num SGD Iterations (K) [1,2,4] — [1,2,4,8]
Train Batch Size — — [1000, 2500, 5000, 10000]
Value Function Coeff [0.5, 1.0, 2.0] [0.25, 0.5, 1.0, 2.0] [0.25, 0.5, 1.0, 2.0]

# of Runs 19 17 21

Table 3: Hyperparameter Search for Discrete Environments

1For HalfCheetah-v2, IMPACT and PPO Num SGD Iterations (K) is 32.
2For HalfCheetah-v2, IMPACT Value Function Coeff is 0.5.
3IMPALA was difficult to finetune due to unstable runs.
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B.4 CONTINUOUS ENVIRONMENT SEARCH

HYPERPARAMETERS IMPACT IMPALA PPO

Clip Parameter [0.2, 0.3, 0.4] — [0.1, 0.2, 0.3, 0.4]
Grad Clipping [0.5, 1.0, 5.0] [0.1, 0.25, 0.5, 1.0, 5.0, 10.0] —
Learning Rate (10−4) [1.0, 3.0, 5.0] [0.1, 0.15, 0.3, 0.5, 0.8, 1.0, 3.0, 5.0] 3 [1.0, 3.0, 5.0]
Minibatch Buffer Size (N) [4,8,16] — —
Num SGD Iterations (K) [20,26,32] — [20,26,32]
Train Batch Size — — [65536, 98304, 131072, 163840]
KL Target [0.01, 0.02, 0.04] — [0.01, 0.02, 0.04]
Value Function Coeff [0.5, 1.0, 2.0] [0.5, 1.0, 2.0] [0.5, 1.0, 2.0]

# of Runs 21 17 20

Table 4: Hyperparameter Search for Continuous Environments

C IMPALA TO IMPACT
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Figure 9: IMPALA to IMPACT: Incrementally Adding PPO Objective, Replay, and Target-Worker
Clipping to IMPALA. The experiments are done on the HalfCheetah-v2 gym environment.

In Figure 9, we gradually add components to IMPALA until the agent is equivalent to IMPACT’s.
Starting from IMPALA, we gradually add PPO’s objective function, circular replay buffer, and
target-worker clipping. In particular, IMPALA with PPO’s objective function and circular replay
buffer is equivalent to an asynchronous-variant of PPO (APPO). APPO fails to perform as well as
synchronous distributed PPO, since PPO is an on-policy algorithm.

D IMPALA IN CONTINUOUS ENVIRONMENTS

In Figure 6, IMPALA performs substantially worse than other agents in continuous environments.
We postulate that IMPALA suffers from low asymptotic performance here since its objective is an
importance-sampled version of the Vanilla Policy Gradient (VPG) objective, which is known to
suffer from high variance and large update-step sizes. We found that for VPG, higher learning rates
encourage faster learning in the beginning but performance drops to negative return later in training.
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In Appendix B, for IMPALA, we heavily tuned on the learning rate, finding that small learning rates
stabilize learning at the cost of low asymptotic performance. Prior work also reveals the agents that
use VPG fail to attain good performance in non-trivial continuous tasks (Achiam, 2018). Our results
with IMPALA reaches similar performance compared to other VPG-based algorithms. The closest
neighbor to IMPALA, A3C uses workers to compute gradients from the VPG objective to send to the
learner thread. A3C performs well in InvertedPendulum yet flounders in continuous environments
(Tassa et al., 2018).
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Figure 10: Likelihood ratio rt(θ) for different objective functions, including PPO’s. We assume a diagonal
Gaussian policy for our policy. Left: Corresponding one dimensional action distributions for Worker i, Target,
and Master Learner; Right: Ratio values graphed as a function of possible action values. IMPACT with PPO
clipping is a lower bound of PPO.

E THE INTUITION OF THE OBJECTIVE

The following ratios represent the objective functions for different ablation studies. In the plots
(Figure 10), we set the advantage function to be one, i.e. Ât = 1.

• IS ratio: πθ
πworkeri

Ât

• IMPACT target: min
(
πworkeri
πtarget

, ρ
)

πθ
πworkeri

Ât

• PPO ε-clip: min
(

πθ
πworkeri

Ât, clip( πθ
πworkeri

, 1− ε, 1 + ε)Ât

)
• IMPACT target ε-clip: min

(
min

(
πworkeri
πtarget

, ρ
)

πθ
πworkeri

Ât, clip
(

min
(
πworkeri
πtarget

, ρ
)

πθ
πworkeri

, 1− ε, 1 + ε
)
Ât

)
According to Figure 10, IS ratio is large when πworkeri assigns low probability. IMPACT target ε-clip
is a lower bound of the PPO ε-clip. In an distributed asynchronous setting, the trust region suffers
from larger variance stemming from off-policy data. IMPACT target ε-clip ratio mitigates this by
encouraging conservative and reasonable policy-gradient steps.
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