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ABSTRACT

We study the BERT language representation model and the sequence generation
model with BERT encoder for multi-label text classification task. We experi-
ment with both models and explore their special qualities for this setting. We
also introduce and examine experimentally a mixed model, which is an ensemble
of multi-label BERT and sequence generating BERT models. Our experiments
demonstrated that BERT-based models and the mixed model, in particular, out-
perform current baselines in several metrics achieving state-of-the-art results on
three well-studied multi-label classification datasets with English texts and two
private Yandex Taxi datasets with Russian texts.

1 INTRODUCTION

Multi-label text classification (MLTC) is an important natural language processing task with many
applications, such as document categorization, automatic text annotation, protein function prediction
(Wehrmann et al., 2018), intent detection in dialogue systems, and tickets tagging in client support
systems (Molino et al., 2018). In this task, text samples are assigned to multiple labels from a finite
label set.

In recent years, it became clear that deep learning approaches can go a long way toward solving
text classification tasks. However, most of the widely used approaches in MLTC tend to neglect
correlation between labels. One of the promising yet fairly less studied methods to tackle this
problem is using sequence-to-sequence modeling. In this approach, a model treats an input text as
a sequence of tokens and predict labels in a sequential way taking into account previously predicted
labels. Nam et al. (2017) used Seq2Seq architecture with GRU encoder and attention-based GRU
decoder, achieving an improvement over a standard GRU model (Cho et al., 2014) on several datasets
and metrics. Yang et al. (2018b) continued this idea by introducing Sequence Generation Model
(SGM) consisting of BiLSTM-based encoder and LSTM decoder coupled with additive attention
mechanism (Bahdanau et al., 2014).

In this paper, we argue that the encoder part of SGM can be successfully replaced with a heavy
language representation model such as BERT (Devlin et al., 2018). We propose Sequence Gener-
ating BERT model (BERT+SGM) and a mixed model which is an ensemble of vanilla BERT and
BERT+SGM models. We show that BERT+SGM model achieves decent results after less than a
half of an epoch of training, while the standard BERT model needs to be trained for 5-6 epochs
just to achieve the same accuracy and several dozens epochs more to converge. On public datasets,
we obtain 0.4%, 0.8%, and 1.6% average improvement in miF1, maF1, and accuracy respectively
in comparison with BERT. On datasets with hierarchically structured classes, we achieve 2.8% and
1.5% average improvement in maF1 and accuracy.

Our main contributions are as follows:

1. We present the results of BERT as an encoder in the sequence-to-sequence framework for
MLTC datasets with and without a given hierarchical tree structure over classes.

2. We introduce and examine experimentally a novel mixed model for MLTC.
3. We fine-tune the vanilla BERT model to perform multi-label text classification. To the best

of our knowledge, this is the first work to experiment with BERT and explore its particular
properties for the multi-label setting and hierarchical text classification.
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4. We demonstrate state-of-the-art results on three well-studied MLTC datasets with English
texts and two private Yandex Taxi datasets with Russian texts.

2 RELATED WORK AND PRELIMINARIES

Let us consider a set D = {(xn, yn)}Nn=1 ⊆ X × Y consisting of N samples that are assumed
to be identically and independently distributed following an unknown distribution P (X,Y). Multi-
class classification task aims to learn a function that maps inputs to the elements of a label set
L = {1, 2, . . . , L}, i.e. Y = L. In multi-label classification, the aim is to learn a function that maps
inputs to the subsets of L, i.e. Y = 2L. In text classification tasks, X is a space of natural language
texts.

A standard pipeline in deep learning is to use a base model that converts a raw text to its fixed-
size vector representation and then pass it to a classification algorithm. Typical architectures for
base models include different types of recurrent neural networks (Hochreiter & Schmidhuber, 1997;
Cho et al., 2014), convolutional neural networks (Kim, 2014), hierarchical attention networks (Yang
et al., 2016), and other more sophisticated approaches. These models consider each instance x as a
sequence of tokens x = [w1, w2, . . . , wT ]. Each token wi is then mapped to a vector representation
ui ∈ RH thus forming an embedding matrix UT×H which can be initialized with pre-trained word
embeddings (Mikolov et al., 2013; Pennington et al., 2014). Moreover, recent works show that it
is possible to pre-train entire language representation models on large corpora of texts in a self-
supervised way. Newly introduced models providing context-dependent text embeddings, such as
ELMo (Peters et al., 2018), ULMFiT (Howard & Ruder, 2018), OpenAI GPT (Radford et al., 2018),
and BERT (Devlin et al., 2018) significantly improved previous state-of-the-art results on various
NLP tasks. Among the most recent works, XLNet (Yang et al., 2019) and RoBERTa (Liu et al.,
2019) models improve these results further after overcoming some limitations of original BERT.

A novel approach to take account of dependencies between labels is using Seq2Seq modeling. In
this framework that first appeared in the neural machine translation field (Sutskever et al., 2014), we
generally have source input X and target output Y in the form of sequences. We also assume there
is a hidden dependence between X and Y, which can be captured by probabilistic model P (Y|X, θ).
Therefore, the problem consists of three parts: modeling the distribution P (Y|X, θ), learning the
parameters θ, and performing the inference stage where we need to find Ŷ = argY maxP (Y|X, θ).
Nam et al. (2017) have shown that after introducing a total order relation on the set of classes L, the
MLTC problem can be treated as sequence-to-sequence task with Y being the ordered set of relevant
labels {l1, l2, . . . , lM} ⊆ L of an instance X = [w1, w2, . . . , wT ]. The primary approach to model
sequences is decomposing the joint probability P (Y|X, θ) intoM separate conditional probabilities.
Traditionally, the left-to-right (L2R) order decomposition is:

P (l1, l2, . . . , lM |x) =
M∏
i=1

P (li|l1:i−1,x) (1)

Wang et al. (2016) demonstrated that the label ordering in (1) effects on the model accuracy, and the
order with descending label frequencies results in a decent performance on image datasets. Alter-
natively, if an additional prior knowledge about the relationship between classes is provided in the
form of a tree hierarchy, the labels can also be sorted in topological order with a depth-first search
performed on the hierarchical tree. Nam et al. (2017) argued that both orderings work similarly well
on text classification datasets.

A given hierarchical structure over labels forms a particular case of text classification task known
as hierarchical text classification (HTC). Such an underlying structure over the set of labels can
help to discover similar classes and transfer knowledge between them improving the accuracy of the
model for the labels with only a few training examples (Srivastava & Salakhutdinov, 2013). Most of
the researchers’ efforts to study HTC were dedicated to computer vision applications (Wang et al.,
2016; Yan et al., 2015; Srivastava & Salakhutdinov, 2013; Salakhutdinov et al., 2011), but many of
these studies potentially can be or have already been adapted to the field of natural language texts.
Among the most recent works, Peng et al. (2018) proposed a Graph-based CNN architecture with
a hierarchical regularizer, and Wehrmann et al. (2018) argued that mixing an output from a global
classifier and the outputs from all layers of a local classifier can be beneficial to learn hierarchical
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dependencies. It was also shown that reinforcement learning models with special award functions
can be applied to learn non-trivial losses (Yang et al., 2018a; Mao et al.).

3 BERT-BASED MODELS FOR MULTI-LABEL TEXT CLASSIFICATION

3.1 BERT MODEL AS A TEXT ENCODER

BERT (Bidirectional Encoder Representations from Transformers) is a recently proposed language
representation model for obtaining text embeddings. BERT was pre-trained on unlabelled texts for
masked word prediction and next sentence prediction tasks, providing deep bidirectional represen-
tations. For classification tasks, a special token [CLS] is put to the beginning of the text and the
output vector of the token [CLS] is designed to correspond to the final text embedding. The pre-
trained BERT model has proven to be very useful for transfer learning in multi-class and pairwise
text classification. Fine-tuning the model followed by one additional feedforward layer and softmax
activation function was shown to be enough for providing state-of-the-art results on a downstream
task (Devlin et al., 2018).

For examining BERT on the multi-label setting, we change activation function after the last layer to
sigmoid so that for each label we predict their probabilities independently. The loss to be optimized
will be adjusted accordingly from cross-entropy loss to binary cross-entropy loss.

3.2 BERT ENCODER FOR SEQUENCE GENERATION

In sequence generation model (Yang et al., 2018b), the authors use BiLSTM as an encoder with
pre-trained word embeddings of dimension d = 512. For a raw text x = [w1, w2, . . . , wT ] each
word wi is mapped to its embedding ui ∈ Rd, and contextual word representations are computed as
follows:

−→
h i =

−−−−→
LSTM(

−→
h i−1,ui),

←−
h i =

←−−−−
LSTM(

←−
h i+1,ui), hi = [

−→
h i;
←−
h i] (2)

After that, the decoder’s zeroth hidden state is initialized as s0 = finit([
−→
h 0;
←−
h T ]).

We propose to use the outputs of the last transformer block in BERT model as vector representations
of words and the embedding of the token [CLS] produced by BERT as the initial hidden state of
the decoder. We also use a simple dot-product attention mechanism which in our setting showed
similar performance as additive attention, but resulted in less number of parameters to learn. The
process we follow to calculate decoder’s hidden states αt and the attention scores αt is described in
Algorithm 1 and illustrated in Figure 1. The weight matrices Winit,Wo,Wd,Vd are all learnable
parameters. It is also worth mentioning that we do not freeze BERT parameters so that they can also
be fine-tuned in the training process.

In order to maximize the total likelihood of the produced sequence, we train the final model to
minimize the cross-entropy objective loss for a given x and ground-truth labels {l∗1, l∗2, . . . , l∗k} ∈ L:

LCE(θ) = −
k∑

i=1

logP (l∗i |x, l∗1:i−1, θ) (3)

In the inference stage, we can compute the objective 3 replacing ground-truth labels with predicted
labels. To produce the final sequence of labels, we perform a beam search following the work
(Wiseman & Rush, 2016) to find candidate sequences that have the minimal objective scores among
the paths ending with the <EOS> token.

3.3 MIXED MODEL

In further experiments, we mainly test standard BERT and sequence generating BERT models.
From our experimental results that will be demonstrated later on, we concluded that BERT and
BERT+SGM may each have their advantages and drawbacks on different datasets. Therefore, to
make the models alleviate each other’s weaknesses, it might be reasonable to combine them. Our
error analysis on a number of examples has shown that in some cases, BERT can predict excess
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Figure 1: BERT + SGM. An overview of the model.

Algorithm 1 BERT + SGM
Lpred ← {}
L ← {1, 2, . . . , L,<EOS>}
[h1,h2, . . . ,hT ],h[CLS] ← BERT(x)
s0 ←Winith[CLS]
ŷ0 ← <BOS>
t← 0
while ŷt 6= <EOS> do

t← t+ 1
αt = softmax([h1,h2, . . . ,hT ]

Tst−1)

ct ←
∑T

i=1 αtihi

st ← LSTM(st−1, [ŷt−1; ct−1])
ot ←Wo tanh(Wdst + Vdct)
for i ∈ {0, 1, 2, . . . , L} do

if Li ∈ Lpred then
Iti ← −∞

else
Iti ← 0

yt ← softmax(ot + It)
ŷt ← argmaxyt
Lpred ← Lpred ∪ {ŷt}

labels while BERT+SGM tends to be more restrained, which suggests that the two approaches can
potentially complement each other well.

Another argument in favor of using a hybrid method is that in contrast to the multi-label BERT
model, BERT+SGM exploits the information about the underlying structure of labels. Wehrmann
et al. (2018) in their work propose HMCN model in which they suggest to jointly optimize both local
(hierarchical) and global classifiers and combine their final probability predictions as a weighted
average.

Inspired by this idea, we propose to use a mixed model which is an ensemble of multi-label BERT
and sequence generating BERT models. A main challenge in creating a mixed model is that the out-
puts of the two models are quite different. Typically, we do not have access to a probability distribu-
tion over the labels in classic Seq2Seq framework. We suggest to tackle this problem by computing
the probability distributions produced by the decoder at each stage and then perform element-wise
max-pooling operation on them following the idea of the recent paper (Salvador et al., 2018). We
should emphasize that using these probabilities to produce final label sets will not necessarily result
in the same predictions as the original BERT + SGM model. However, in our experiments, we found
that the probability distributions obtained in that way are quite meaningful and with proper prob-
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DATASET N L W C STRUCTURE LANGUAGE
RCV1-v2 804 410 103 223.2± 206.6 3.2± 1.4 Tree Eng
Reuters-21578 10 787 90 142.2± 142.5 1.2± 0.7 - Eng
AAPD 55 840 54 155.9± 67.6 2.4± 0.7 - Eng
Y.Taxi Drivers 163 633 374 18.9± 22.6 2.1± 1.0 Tree Rus
Y.Taxi Riders 174 590 426 16.2± 18.6 3.4± 0.8 Tree Rus

Table 1: Summary of the datasets. N is the number of documents, L is the number of labels, W
denotes the average number of words per sample± SD, and C denotes the average number of labels
per sample ± SD.

ability threshold (around 0.4-0.45 for the considered datasets) can yield predictions with accuracy
comparable to the accuracy of BERT+SGM model’s predictions from the inference stage.

After obtaining probability distributions of both models, we can compute their weighed average to
create the final probability distribution vector, as follows:

pmixed = αpBERT+SGM + (1− α)pBERT (4)

This probability vector is then used to make final predictions of labels with 0.5 probability thresh-
old. The value of α ∈ [0, 1] is a trade-off parameter that is optimized on validation set. The final
procedure is presented in Algorithm 2.

Algorithm 2 Mixed Model
pBERT ← BERT(x)
[y1,y2, . . . ,yn]← BERT+SGM(x)
for l ∈ {1, 2, . . . , L} do

p
(l)
BERT+SGM ← max{y1l, y2l, . . . , ynl}

pmixed ← αpBERT+SGM + (1− α)pBERT

Lpred ← {l | p(l)mixed > 0.5}

4 EXPERIMENTS

4.1 DATASETS AND PREPROCESSING

We train and evaluate all the models on three public datasets with English texts and two private
datasets with Russian texts. The summary of the datasets’ statistics is provided in the Table 1.
Preprocessing of the datasets included lower casing the texts and removing punctuation. For the
baseline TextCNN and SGM models, we used the same preprocessing techniques as in (Yang et al.,
2018b).

Reuters Corpus Volume I (RCV1-v2) (Lewis et al., 2004) is a collection of manually categorized
804 410 news stories (after dropping four empty samples from the testing set). There are 103
categories organized in a tree hierarchy, and each text sample is assigned to labels from one or
multiple paths in the tree. Since there was practically no difference between topological sorting order
and order by frequency (Nam et al., 2017) in multi-path case, we chose to sort the labels from the
most common ones to the rarest ones. The training/testing split for this dataset is originally 23,149
in the training set and 781,261 in the testing set (Lewis et al., 2004). While this training/testing
split is still used in modern research works (Nam et al., 2013; Mao et al.), in some other works
authors have (implicitly) shifted towards using reverse training/testing split (Nam et al., 2017), and
several other recent research works (Lin et al., 2018; Yang et al., 2018a;b) started using 802,414
samples for the training set and 1,000 samples for the validation and testing sets. This change of the
split might be reasonable due to the inadequate original proportion of the sets in modern realities,
yet it makes it difficult to perform an apple-to-apple comparison of different models without their
reimplementation. To avoid confusion, we decided to be consistent with the original training/testing
split. We also used 10% of the training data for validation.

Reuters-21578 is one of the most commonly used MLTC benchmark datasets with 10,787 articles
from Reuters newswire collected in 1987 and tagged with 90 labels. We use the standard ApteMod
split of the dataset following the work (Cohen & Singer, 1996).
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Figure 2: An example of a subtree of the tree hierarchy over classes in Y.Taxi Riders dataset.

Figure 3: Performance of BERT and BERT+SGM on Reuters-21578 validation set during training.

Arxiv Academic Paper Dataset (AAPD) is a recently collected dataset (Yang et al., 2018b) consisting
of abstracts of 55,840 research papers from arXiv.org. Each paper belongs to one or several
academic subjects, and the task is to predict those subjects for a paper based on its abstract. The
number of categories is 54. We refer the reader to Appendix B for visualization of multi-label BERT
embeddings for some of the labels from this dataset.

Riders Tickets from Yandex Taxi Client Support (Y.Taxi Riders) is a private dataset obtained in Yandex
Taxi client support system consisting of 174,590 tickets from riders. Initially, the dataset was labeled
by Yandex Taxi reviewers with one tag per each ticket sample with an estimated accuracy of labeling
around 75-78%. However, using additional information about a tree hierarchical structure over
labels, we substituted each label with the corresponding label set with all the parent classes lying
in the path between the root node and the label node. After this procedure, we ended up with 426
labels. Since in this task there is only one path in the tree to be predicted, we will explore a natural
topological label ordering for this dataset. An example of a subtree of the tree hierarchy is provided
in Figure 2.

Drivers Tickets from Yandex Taxi Client Support (Y.Taxi Drivers) is also a private dataset obtained in
Yandex Taxi drivers support system which has similar properties with the Y.Taxi Riders dataset. In
the drivers’ version, there are 163,633 tickets labeled with 374 tags.

4.2 EXPERIMENT SETTINGS AND BASELINES

We implemented all the experiments in PyTorch 1.0 and ran the computations on a GeForce GTX
1080Ti GPU. Our implementation is relied on pytorch-transformers library 1.

In the experiments, we used the base-uncased versions of BERT for English texts and the base-cased-
multilingual version for Russian texts. Models of both versions output 768-dimensional hidden
representation vector. We set batch size to 16. For optimization, we used Adam optimizer (Kingma
& Ba, 2015) with β1 = 0.9, β2 = 0.99 and learning rate 2 ·10−5. For the multi-label BERT, we also
used the same scheduling of the learning rate as in the original work by Devlin et al. (2018).

1https://github.com/huggingface/pytorch-transformers (the former name: pytorch-
pretrained-bert)
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RCV1-v2 Reuters-21578 AAPD
HA miF1 maF1 ACC HA miF1 maF1 ACC HA miF1 maF1 ACC

TextCNN 0.990 0.829 0.456 0.600 0.991 0.851 0.437 0.827 0.974 0.674 0.445 0.364
HMCN - 0.808 0.546 - - - - - - - - -
HiLAP - 0.833 0.611 - - - - - - - - -
EncDec orig. - - - - 0.996 0.858 0.457 0.828 - - - -
SGM repr. 0.990 0.815 0.428 0.605 0.996 0.788 0.452 0.812 0.974 0.698 0.468 0.372
BERT 0.992 0.864 0.556 0.624 0.997 0.899 0.534 0.857 0.976 0.713 0.559 0.381
BERT+SGM 0.990 0.846 0.629 0.602 0.996 0.854 0.467 0.817 0.976 0.718 0.496 0.377
Mixed 0.992 0.868 0.611 0.631 0.996 0.900 0.533 0.858 0.977 0.719 0.553 0.397

Y.Taxi Drivers Y.Taxi Riders
HA miF1 maF1 ACC HA miF1 maF1 ACC

TextCNN 0.996 0.610 0.173 0.571 0.994 0.521 0.130 0.381
SGM repr. 0.996 0.629 0.148 0.584 0.993 0.545 0.112 0.399
BERT 0.997 0.692 0.226 0.578 0.995 0.658 0.153 0.452
BERT+SGM 0.997 0.644 0.196 0.596 0.997 0.644 0.176 0.465
Mixed 0.998 0.681 0.235 0.599 0.997 0.657 0.174 0.469

Table 2: Results on the five considered datasets. Metrics are marked in bold if they contain the
highest metrics for the dataset in their ±SD interval.

Following previous research works (Nam et al., 2017), we used hamming accuracy, set accuracy,
micro-averaged f1, and macro-averaged f1 to evaluate the performance of the models. To be
specific, the former two metrics can be computed as ACC(y, ŷ) = 1(y = ŷ) and HA(y, ŷ) =
1

L

L∑
j=1

1(yj = ŷj) and are designed to determine the accuracy of the predicted sets as whole. The

latter ones are label-based metrics and can be calculated as follows:

miF1 =

L∑
j=1

2tpj

L∑
j=1

(2tpj + fpj + fnj)

, maF1 =
1

L

L∑
j=1

2tpj
2tpj + fpj + fnj

(5)

where tpj , fnj , and fpj denote the number of true positive, false positive and false negative predic-
tions for the label j, respectively.

We use a classic convolutional neural network TextCNN (Kim, 2014) as a baseline for our experi-
ments. We implemented a two-layer CNN with each layer followed by max pooling and two feed-
forward fully-connected layers followed by dropout and batch normalization at the end. Our second
baseline model is Sequence Generation Model SGM (Yang et al., 2018b), for which we reused the
implementation of the authors 2. For the sake of comparison, we also provide the results of HMCN
(Wehrmann et al., 2018) and HiLAP (Mao et al.) models for hierarchical text classification on
RCV1-v2 dataset adopted from the work (Mao et al.). For Reuters-21578 dataset, we also included
the results of the EncDec model (Nam et al., 2017) from the original paper on sequence-to-sequence
approach to MLTC.

4.3 RESULTS AND DISCUSSION

We present the results of the suggested models and baselines on the five considered datasets in Table
2.

First, we can see that both BERT and BERT+SGM show favorable results on multi-label classifica-
tion datasets mostly outperforming other baselines by a significant margin.

On RCV1-v2 dataset, it is clear that the BERT-based models perform the best in micro-F1 metrics.
The methods dealing with the class structure (tree hierarchy in HMCN and HiLAP, label frequency
in BERT+SGM) also have the highest macro-F1 score.

In some cases, BERT performs better than the sequence-to-sequence version, which is especially
evident on the Reuters-21578 dataset. Since BERT+SGM has more learnable parameters, a pos-
sible reason might be a fewer number of samples provided on the dataset. However, sometimes

2https://github.com/lancopku/SGM
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Figure 4: Hamming accuracy, set accuracy, miF1, and maF1 metrics of the mixed model on RCV1-
v2 validation set.

BERT+SGM might be a more preferable option: on RCV1-v2 dataset the macro-F1 metrics of BERT
+ SGM is much larger while other metrics are still comparable with the BERT’s results. Also, for
both Yandex Taxi datasets on the Russian language, we can see that the hamming accuracy and the
set accuracy of the BERT+SGM model is higher compared to other models. On Y.Taxi Riders there
is also an improvement in terms of macro-F1 metrics.

In most cases, better performance can be achieved after mixing BERT and BERT+SGM. On public
datasets, we see 0.4%, 0.8%, and 1.6% average improvement in miF1, maF1, and accuracy respec-
tively in comparison with BERT. On datasets with tree hierarchy over classes, we observe 2.8% and
1.5% average improvement in maF1 and accuracy. Metrics of interest for the mixed model depend-
ing on α on RCV1-v2 validation set are shown in Figure 4. Visualization of feature importance for
BERT and sequence generating BERT models is provided in Appendix A.

In our experiments, we also found that BERT for multi-label text classification tasks takes far more
epochs to converge compared to 3-4 epochs needed for multi-class datasets (Devlin et al., 2018). For
AAPD, we performed 20 epochs of training; for RCV1-v2 and Reuters-21578 – around 30 epochs;
for Russian datasets – 45-50 epochs. BERT + SGM achieves decent accuracy much faster than
multi-label BERT and converges after 8-12 epochs. The behavior of performance of both models on
the validation set of Reuters-21578 during the training process is shown in Figure 3.

Another finding of our experiments is that the beam size in the inference stage does not appear to
influence much on the performance. We obtained optimal results with the beam size in the range
from 5 to 9. However, a greedy approach with the beam size 1 still gives similar results with less
than 1.5% difference in the metrics. A possible explanation for this might be that, while in neural
machine translation (NMT) the word ordering in the output sequence matters a lot and there might
be confusing options, label set generation task is much simpler and we do not have any problems
with ordering. Also, due to a quite limited ’vocabulary’ size |L|, we may not have as many options
here to perform a beam search as in NMT or another natural sequence generation task.

5 CONCLUSION

In this research work, we examine BERT and sequence generating BERT on the multi-label set-
ting. We experiment with both models and explore their particular properties for this task. We also
introduce and examine experimentally a mixed model which is an ensemble of vanilla BERT and
sequence-to-sequence BERT models.

Our experimental studies showed that BERT-based models and the mixed model, in particular, out-
perform current baselines by several metrics achieving state-of-the-art results on three well-studied
multi-label classification datasets with English texts and two private Yandex Taxi datasets with Rus-
sian texts. We established that multi-label BERT typically needs several dozens of epochs to con-
verge, unlike to BERT+SGM model which demonstrates decent results just after a few hundreds of
iterations (less than a half of an epoch).
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A FEATURE IMPORTANCE IN BERT AND SEQUENCE GENERATING BERT

A natural question arises as to whether the success of the mixed model is the result of two models
having different views on text features. To have a rough idea of how the networks make their
prediction, we visualized the word importance scores for each model using the leave-one-out method
in Figure 5. It can be seen from this example that BERT+SGM seems to be slightly more selective in
terms of features to which it pays attention. Also, in this particular case, the predictions of sequence
generating BERT are more accurate.

BERT+SGM BERT multi-label

Figure 5: Visualization of feature importance for multi-label BERT and BERT+SGM models trained
on AAPD and applied to BERT paper (Devlin et al., 2018) abstract (cs.LG – machine learning;
cs.CL – computation & linguistics; cs.NE – neural and evolutionary computing).

B LABEL EMBEDDINGS IN MULTI-LABEL BERT

We extracted and projected to 2D-plane the label embeddings obtained from the fully connected
classification layer of multi-label BERT fine-tuned on AAPD dataset. Visualization of some labels
is shown in Figure 6. From this plot, we can see some clusters of labels that are close in terms of
word.

Figure 6: Projection of label embeddings obtained from the fully connected classification layer of
multi-label BERT fine-tuned on AAPD dataset.
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