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Abstract

Dirichlet process mixture model provides a flexible nonparametric framework for unsuper-
vised learning. Monte Carlo based sampling methods always involve heavy computation
efforts; conventional variational inference requires careful design of the variational distri-
bution and the conditional expectation. In this work, we treat the DP mixture itself as
the variational proposal, and view the given data as drawn samples of the unknown target
distribution. We propose an evidence upper bound (EUBO) to act as the surrogate loss,
and fit a DP mixture to the given data by minimizing the EUBO, which is equivalent to
minimizing the KL-divergence between the target distribution and the DP mixture. We
provide three advantages of the EUBO based DP mixture fitting and show how to build
the black-box style sequential learning algorithm. We use the stochastic gradient descent
(SGD) algorithm for optimization that leverages on the automatic differentiation tools.
Simulation studies are provided to demonstrate the efficiency of our proposed methods.

1. Introduction

Dirichlet process mixture model provides a flexible nonparametric framework for unsu-
pervised learning (Blei and Jordan, 2004). But fitting DP mixtures for large dataset is
nontrivial: Monte Carlo based sampling methods always involve heavy computation efforts
and require an extremely long running time (MacEachern, 1994; Escobar and West, 1995);
variational inference methods for the DP mixtures require careful design of the variational
distribution and the conditional expectation (Blei and Jordan, 2004; Kurihara et al., 2007;
Huynh et al., 2015). Inspired by the adaptive MCMC with mixture proposal (Ji and Schmi-
dler, 2013; Cappé et al., 2008) as well as stochastic approximation version of EM (Celeux
and Diebolt, 1992; Delyon et al., 1999; Chen et al., 2018), a sequential learning approach
for fitting a DP mixture model is proposed in this work. We propose a new perspective
on variational inference for DP mixtures. Specifically, we use the DP mixture itself as the
variational proposal, and view the given data as drawn samples of the unknown target
distribution. We present an evidence upper bound (EUBO) as the optimization surrogate
loss. By minimizing this EUBO, we fit a DP mixture for the given data in the sense of
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minimizing their KL-divergence. We present three nice properties of the EUBO, which
make it an elegant choice for fitting DP mixtures. The SGD algorithm with mini-batch
data is utilized for optimizing the variational parameters, which enables our method to
deal with large scale dataset. Leveraging on the advantage of truncated DP mixtures, we
can obtain a closed form update formula to iteratively update the weights of the truncated
DP mixture components; for the mean and covariance of the DP mixtures, we utilize the
modern automatic differentiation tools Paszke et al. (2017).

2. Sequential learning for DP Mixtures

Assume a set of data X = [x1, ..., xN ], which follows an unknown distribution π(x). Our
goal is to fit a nonparametric DP mixtures q(x;φ) for the entire data set X to approximate
π(x) in a sequential fashion: at each iteration we choose Xs, a subset of X selected either
randomly or by design, then update the nonparametric distribution q(x;φ) by learning from
Xs.

2.1. Truncated DP Mixtures

DP mixtures have different representation schemes such as Polya urn (Ferguson, 1973) and
stick-breaking (Sethuraman, 1994). We choose the truncated DP mixture as the nonpara-
metric variational proposal. The truncated DP mixtures assume a large but finite K for
the components number (Ishwaran and James, 2001), that is qφ(x) =

∑K
k=1wkN(·|µk,Σk)

where wk = Vk
∏k−1
j=1(1−Vj) with Vk being i.i.d. samples from Beta distribution Beta(1, α)

and µk, Σk denote the mean and the covariance of the normal distribution. Let φ denotes
{Vk, µk,Σk}Kk=1. Leveraging on the representation form of truncated DP mixtures, we can
obtain a closed form update formula to iteratively update the parameters of the truncated
DP mixtures.

2.2. Evidence upper bound

In the previous study of variational inference for DP mixtures (Blei and Jordan, 2004),
they assume the parameters of DP mixtures as hidden variable and using the mean-field
variational method to find the Bayesian posterior for these parameters. But the complex
setting of this method prevents it from working in a black-box fashion, which is desir-
able in dealing with large dataset. In comparison, here we view x as the hidden variable
and the given dataset X as drawn samples from an unknown ground true distribution
π(x), also denoted as p(x|M) where M is a specified model. We treat the DP mixture
qφ(x) itself as the variational distribution. Then we introduce an upper bound on the ev-
idence: p(M) =

∫
p(x,M)dx =

∫
p(x|M)p(M)dx, by using the Gibbs’ inequality that

−
∫
p(x|M) log p(x|M)dx ≤ −

∫
p(x|M) log qφ(x)dx for any distribution qφ(x),

log p(M) =

∫
p(x|M)[log p(x,M)− log p(x|M)]dx

≤
∫
p(x|M)[log p(x,M)− log qφ(x)]dx. (1)
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We define U ≡ Eπ(x)[log p(x,M) − log qφ(x)] as the Evidence Upper BOund (EUBO) (Ji
and Shen, 2019). It is easy to find that U = log p(M) + DKL(π(x)||qφ(x)), where the KL-
divergence DKL(π(x)||qφ(x)) is just the discrepancy between the EUBO U and the true
log p(M). Minimizing the EUBO leads to fitting qφ(x) to the dataset X in the sense that
DKL(π(x)||qφ(x)) is minimized. This EUBO has several nice properties: 1)DKL(π(x)||qφ(x))
posses mass covering (or say zero-avoiding) property (Minka, 2005), that is when minimizing
this DKL, qφ(x) tends to cover all the area where π(x) is non-zero; 2) in our setting, we
assume X are samples from the unknown π(x), so we can apply the Monte Carlo method
to deal with the integration in U ; 3) we do not require the numerical value of π(x), but
other bounds like the evidence lower bound(ELBO)(Hoffman et al., 2013), the Rényi bound
(Li and Turner, 2016) and the Chi-upper bound (Dieng et al., 2017) may need to evaluate
π(x), which is unknown in our problem setting. Moreover, the EUBO or DKL(π(x)||qφ(x))
is a different loss compared with the marginal likelihood of the observed data used in EM
methods, and we do not need the help of hidden variable which is required in the EM
algorithm. To our knowledge, using EUBO as the surrogate loss to fit for DP mixtures is
quite unique and has not been discussed in the literature.

2.3. SGD optimization

To apply the SGD optimization, we derive the gradient of U with respect to Vk, µk and Σk

as follows,

∇Vk
U =

∫
π(x)

1

qφ(x)

− K∑
l=k+1

Vl
∏

j≤l−1,j 6=k

(1− Vj)q(x|µl,Σl) +

k−1∏
j=1

(1− Vj)q(x|µk,Σk)

 dx, (2)

∇µk
U =

∫
π(x)

wkq(x;µk,Σk)

qφ(x)
∇µk

log q(x;µk,Σk)dx, (3)

∇Σk
U =

∫
π(x)

wkq(x;µk,Σk)

qφ(x)
∇Σk

log q(x;µk,Σk)dx. (4)

Given the subset of the observation Xs = {x(i)
s }Ns

i=1 from π(x), or say a mini-batch, the
Monte Carlo approximation of these gradients is

∇̃Vk
U =

1

Ns

Ns∑
i=1

1

qφ(x
(i)
s )

− K∑
l=k+1

Vl
∏

j≤l−1,j 6=k

(1− Vj)q(x(i)
s |µl,Σl) +

k−1∏
j=1

(1− Vj)q(x(i)
s |µk,Σk)

 ,
(5)

∇̃µk
U =

1

Ns

Ns∑
i=1

wkq(x
(i)
s ;µk,Σk)

qφ(x
(i)
s )

∇µk
log q(x(i)

s ;µk,Σk), (6)

∇̃Σk
U =

1

Ns

Ns∑
i=1

wkq(x
(i)
s ;µk,Σk)

qφ(x
(i)
s )

∇Σk
log q(x(i)

s ;µk,Σk). (7)

Leveraging on the automatic differentiation tools in Python, such as Pytorch (Paszke
et al., 2017), we can obtain the numerical gradient of ∇̃µkU (or ∇̃Σk

U) without further

exploration of ∇µk log q(x
(i)
s ;µk,Σk) (or ∇Σk

log q(x
(i)
s ;µk,Σk)), which significantly benefits

the implementation. Advanced SGD type algorithms, such as Adam (Kingma and Ba,
2014), help in accelerating the convergence. The entire algorithm is shown as follows,
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Algorithm 1: Sequential Learning for DP Mixtures

• Initialization: Choose ψ0 = (V0, µ0,Σ0) and set t = 1.

• For t = 1 : T , set the learning rate {rV,t+1, rµ,t+1, rΣ,t+1}, update the Vk,t, wk,t, µk,t
and Σk,t (for k = 1, ...,K) as follows,

Vk,t+1 = Vk,t − rV,t+1∇̃Vk
U ,

wk,t+1 = Vk,t+1

k−1∏
j=1

(1− Vj,t+1),

µk,t+1 = µk,t − rµ,t+1∇̃µk
U ,

Σk,t+1 = Σk,t − rΣ,s+1∇̃Σk
U .

3. Simulation study

Example 1 Toy mixtures: We demonstrate the behavior of the proposed sequential learn-
ing algorithm by applying it to a synthetic data set: 5000 data points generated from a
mixture of four bivariate normals with weights: [0.3, 0.4, 0.29, 0.01], means: [−1.75, 0], [0, 0],
[2, 1], [5, 5] and covariances: [0.6, 0.5; 0.5, 0.6], [0.4,−0.25;−0.25, 0.4], [0.25, 0.15; 0.15, 2],
[0.3, 0.2; 0.2, 0.25]. In our sequential learning context, we assume that at each iteration
the observation is a subset of 50 data points uniformly selected. The TDP mixture is
initialized as follows: the maximum number of components is set as K = 10, means of
normal components µk (for k = 1, ...,K) are randomly initialized in range [−5, 5]× [−5, 5],
the covariance are set as Σk = 2I (for k = 1, ...,K), and set Vk = 1/(K − k + 1). The
algorithm runs 100 epoches. The output of the sequential learning algorithm is wk, µk,
Σk for (k = 1, ...,K ′), where K ′ is the number of components with weight larger than a
threshold (1e-4). We show the fitted mixture model in the final iteration in Figure 1(a) and
the estimated DKL(π(x)||qφ(x)) over each epoch in Figure 1(b).
Example 2 7-dimension mixtures: We test the proposed approach on another target
function π(·), which is a outer product of seven univariate distributions, with the marginal
likelihood exactly equal to 1. These seven distributions are: 1) 3

5Ga(10+x|2, 3)+ 2
5Ga(10−

x|2, 5); 2) 3
4skN(x|3, 1, 5)+ 1

4skN(x|−3, 3,−6); 3)T (x|0, 9, 4); 4) 1
2Be(x+3|3, 3)+ 1

2N(x|0, 1);
5) 1

2ε(x|1)+ 1
2ε(−x|1); 6) skN(x|0, 8,−3); 7) 1

8N(x|−10, 0.1)+ 1
4N(x|0, 0.15)+ 5

8N(x|7, 0.2).
where Ga(·|α, β) denotes the gamma distribution, N(·|µ, σ) denotes the normal distribu-
tion, skN(·|µ, σ, α) denotes the skew-normal distribution, T (·|µ, σ, df) denotes the student-
T distribution, Be(·|α, β) denotes the beta distribution, and ε(·|λ) denotes the exponential
distribution. This target distribution is complex: dimension 2 has two modes bracketing a
deep ravine; dimension 4 has one low, broad mode that overlaps a second sharper mode;
dimension 7 has three distinct well-separated modes.

We syntheses 5000 data points from the target distribution. We use a mini-batch of 50
data points selected uniformly in each iteration. We compare the true target distribution,
the kernel density estimation of samples drawn by the MCMC algorithm and the fitted
TDP normal mixtures in univariate style in Figure 2. The fitted TDP mixtures matches
the true target distribution well.

4



Sequential Learning for Dirichlet Process Mixtures

(a)

0 20 40 60 80 100
epoch

0.0

0.2

0.4

0.6

0.8

1.0

KL
-d

iv
er

ge
nc

e

(b)

Figure 1: (a) Synthetic data points are shown in red dots. The fitted TDP mixture is presented
with + representing the mean of normal component and ellipse representing one standard
deviation. (b)The KL-divergence between the true target distribution and the estimated
TDP mixture per epoch.

These simulation studies show that the proposed sequential learning algorithm can iter-
atively learn a TDP mixture model to fit the data. The proposed algorithm affords at least
three advantages: 1) it utilizes the TDP mixture model, which can provide more flexibility
in modelling than a mixture model with a fixed component number; 2) instead of learning
from the whole data set at each iteration, it requires only a subset of the data, reducing the
computation cost; 3) it takes the advantage of the SGD type algorithm which makes the
algorithm be suitable for complex models.
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Figure 2: Plots of density functions for comparison: the true univariate density is shown by the

red dashed dot curve; kernel density estimation of samples drawn by MCMC is shown by

the solid blue curve; the fitted TDP mixtures is shown by black dashed curve.
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