
Published as a conference paper at ICLR 2019

KNOWLEDGE FLOW: IMPROVE UPON YOUR TEACH-
ERS

Iou-Jen Liu, Jian Peng, Alexander G. Schwing
University of Illinois at Urbana-Champaign
{iliu3, jpeng, aschwing}@illinois.edu

ABSTRACT

A zoo of deep nets is available these days for almost any given task, and it is
increasingly unclear which net to start with when addressing a new task, or which
net to use as an initialization for fine-tuning a new model. To address this issue, in
this paper, we develop knowledge flow which moves ‘knowledge’ from multiple
deep nets, referred to as teachers, to a new deep net model, called the student.
The structure of the teachers and the student can differ arbitrarily and they can
be trained on entirely different tasks with different output spaces too. Upon
training with knowledge flow the student is independent of the teachers. We
demonstrate our approach on a variety of supervised and reinforcement learning
tasks, outperforming fine-tuning and other ‘knowledge exchange’ methods.

1 INTRODUCTION

Research communities have amassed a sizable number of deep net architectures for different tasks,
and new ones are added almost daily. Some of those architectures are trained from scratch while
others are fine-tuned, i.e., before training, their weights are initialized using a structurally similar
deep net which was trained on different data.

Beyond fine-tuning, particularly in reinforcement learning, teachers have also been considered in
one way or another by Rusu et al. (2016b); Fernando et al. (2017); Wang et al. (2017); Li & Hoiem
(2016); Bengio et al. (2009); Patel et al. (2015); Chen & Liu (2016); Teh et al. (2017); Parisotto et al.
(2016). For instance, progressive neural net (Rusu et al., 2016b) keeps multiple teachers during both
training and inference, and learns to extract useful features from the teachers for a new target task.
PathNet (Fernando et al., 2017) uses genetic algorithms to choose pathways from a giant network for
learning new tasks. ‘Growing a Brain’ (Wang et al., 2017) fine-tunes a neural network while growing
the network’s capacity (wider or deeper layers). Actor-mimic (Parisotto et al., 2016) pre-trains a
big model on multiple source tasks, then the big model is used as a weight initialization for a new
model which will be trained on a new target task. Knowledge distillation (Hinton et al., 2015) distills
knowledge from a large ensemble of models to a smaller student model.

However, all the aforementioned techniques have limitations. For example, progressive neural net
models (Rusu et al., 2016b) grow with the number of teachers. This large number of parameters
limits the number of teachers a progressive neural net can handle, and largely increases the training
and testing time. In PathNet (Fernando et al., 2017), searching over a big network for pathways is
computationally intensive. For fine-tuning based methods such as ‘Growing a Brain’ (Wang et al.,
2017) and actor-mimic (Parisotto et al., 2016), only one pretrained model can be used at a time.
Hence, their performance heavily relies on the chosen pretrained model.

To address these shortcomings, we develop knowledge flow which moves ‘knowledge’ of multiple
teachers when training a student. Irrespective of how many teachers we use, the student is guaranteed
to become independent at the final stage of training and the size of the resulting student net remains
constant. In addition, our framework makes no restrictions on the deep net size of the teacher
and student, which provides flexibility in choosing teacher models. Importantly, our approach is
applicable to a variety of tasks from reinforcement learning to fully-supervised training.

We evaluate knowledge flow on a variety of tasks from reinforcement learning to fully-supervised
learning. In particular, we follow Rusu et al. (2016b); Fernando et al. (2017) and compare on the same

1

Published as a conference paper at ICLR 2019

Atari games. In addition, we also observed significant top-1 error rate improvements on supervised
learning datasets, i.e., CIFAR-10, and CIFAR-100.

2 BACKGROUND

Knowledge flow is applicable to a variety of settings from supervised learning to reinforcement
learning, which we briefly review to introduce notation.

Supervised Learning recovers the parameters θ of a mapping fθ : X → Y from data space X to
output space Y . To this end, a dataset D = {(xi, yi)}ni=1 containing n pairs (xi, yi) (assumed to
be sampled i.i.d.) is used, where xi ∈ X and yi ∈ Y . Given this dataset, the parameters θ of the
mapping fθ are learned by minimizing a loss function `(x,y)(θ) composed of a regularization term
R(θ) and an empirical risk `(y, fθ(x)) which compares groundtruth label y and prediction fθ(x).
The parameters θ are obtained by optimizing the following program:

min
θ

E(x,y)∼D[`(x,y)(θ)] := E(x,y)∼D[`(y, fθ(x))] +R(θ). (1)

Hereby, the mapping fθ is obtained by maximizing the logits or a corresponding probability distri-
bution f̂θ(y|x), i.e., fθ = argmaxy∈Y f̂θ(y|x). Here and below let the hat (‘̂·’) indicate probability
distributions over appropriate domains.

Reinforcement Learning considers an agent interacting with an environment according to a policy
πθπ : X → A which maps a state xt ∈ X to an action at ∈ A at time t. The policy depends on
the parameters θπ. After performing action at, the agent observes the next state xt+1 and receives
a scalar reward rt. The discounted return at time t is defined as Rt =

∑∞
k=0 γ

krt+k, where γ is
the discount factor. The expected future reward when observing state x and when following policy
πθπ is defined as V πθπ (xt) = Eτ∼πθπ [Rt|xt], where τ = {(xt, at, rt), (xt+1, at+1, rt+1), . . .} is a
trajectory generated by following πθπ from state xt.

The goal of reinforcement learning is to find a policy that maximizes the expected future re-
ward from each state xt. Without loss of generality, in this paper, we follow the asynchronous
advantage actor-critic (A3C) formulation (Mnih et al., 2016). In A3C, the policy mapping
πθπ (x) = argmaxa∈A π̂θπ (a|x) is obtained from a probability distribution over states, where
π̂θπ (a|x) is modeled by a deep net with parameters θπ . The value function is also approximated by a
deep net Vθv (x), having parameters θv .

To optimize the policy parameters θπ given a state xt, a loss function based on a scaled negative
log-likelihood and a negative entropy regularizer is common:

`τπ(θπ) =
1

|τ |
∑
t∈τ

[− log π̂θπ (at|xt)(Rt − Vθv (xt))− βH(π̂θπ (·|xt))] .

Hereby, Rt =
∑k−1
i=0 γ

irt+i + γkVθv (xt+k) is the empirical k-step return obtained when starting in
state xt, and |τ | is the length of the trajectory τ generated by following πθπ . The scalar β ≥ 0 is
a user-specified constant, and H(π̂θπ (·|xt)) is the entropy function, which encourages exploration
by favoring a uniform probability distribution π̂θπ (a|x). To optimize the value function Vθv , it is
common to use the squared loss `τv(θv) =

1
2|τ |

∑
t∈τ (Rt − Vθv (xt))2.

By minimizing the empirical expectation of `τπ(θπ) and `τv(θv), i.e., by addressing

min
θπ

Eτ∼πθπ [`
τ
π(θπ)], and min

θv
Eτ∼πθπ [`

τ
v(θv)], (2)

alternatingly, we learn a policy and a value function that maximize expected return.

3 KNOWLEDGE FLOW

Instead of optimizing the programs given in Eq. (1) and Eq. (2) from scratch, the aforementioned
warm-start techniques (see Sec. 5 for more) are applicable. To address their mentioned shortcomings,
we propose knowledge flow, a framework that moves ‘knowledge’ from an arbitrary number of deep
nets, henceforth referred to as ‘teachers’ to a deep net under training, called the ‘student.’

2

Published as a conference paper at ICLR 2019

Teacher2(!(#)) Teacher1(!(%)) Student (!(&))

layer1
layer1

layer1
layer2

layer2

layer3

layer3

layer2

+

+

layer1 layer1

layer2 layer2

+

+

'%((%%))%((%%)*((%%) *((&%)

ℎ((&%)

*((%#)

'%((&%)

*((&#)
'#((&#)'#((%#))#((%#)

,,

Teacher1(!(%)) Student (!(&))

(a) (b) (c)

ℎ((%%)-% = {(&%, (%%, (##}

-# = {(&#, (%#, (#2}

Figure 1: (a) Example of a two-teacher knowledge flow. (b) Deep net transformation of knowledge
flow. (c) Average normalized weights for teachers’ and the student’s layers. At the beginning of
training, the student heavily relies on teacher one. As training progresses, teacher one’s weight
decreases, and the student’s weight increases until the student is eventually independent.

3.1 OVERVIEW

Knowledge flow is outlined on example deep nets in Fig. 1 (a,b). We train the parameters of the student
net which are randomly initialized. To this end we take advantage of teachers, whose parameters are
fixed and obtained from pre-trained models on different source tasks by different algorithms. For
example, for reinforcement learning, we may consider teachers trained by A3C (Mnih et al., 2016),
A2C (Dhariwal et al., 2017) or DQN (Mnih et al., 2015).

‘Knowledge’ of multiple teachers is transferred to a student by adding transformed and scaled
intermediate representations from the teacher deep nets to the student net. To achieve this, we modify
the student net, i.e., fθ in the supervised setting and πθπ (a|x), Vθv (x) in the reinforcement learning
case. We add teacher representations which are transformed by multiplication with a trainable
matrix Q and scaled via a weight pw that is normalized to sum to one for each student layer and
parameterized via trainable parameters w. The normalized weights encode which of the teachers’ or
the student’s representation to trust at every layer of the student net. Note that a teacher can help the
student at different levels of abstraction with input from different levels of its net.

Importantly, after training, the student model should perform well on the target task without relying on
teachers. To achieve this, as training progresses, we increasingly encourage a high normalized weight
on the student representation, which forces the student to eventually capture all the ‘knowledge.’ Due
to the trainable scaling, at an early stage of training, we observe the student to rely heavily on the
‘knowledge’ of the teacher to quickly obtain better performance. However, as training proceeds, the
student is encouraged to become more and more independent. During final stages of training, the
student will no longer be able to rely on teachers, which ensures that the student has learned to master
the desired task on its own. This is observed in Fig. 1 (c).

To formally encourage this successive transfer we introduce two additional loss functions. The first,
referred to as the dependency loss `dep(w), captures how much a student relies on teachers. It depends
on the weight vector w which encodes the strength of the coupling. The second one ensures that
a student’s behavior doesn’t change rapidly when the teachers’ influence decreases. We use loss
`KL(·, ·) to capture the change.

By combining student net modifications and additional loss terms, for the supervised task we obtain

min
θ,w,Q

E(x,y)[˜̀(x,y)(θ, w,Q) + λ1`dep(w) + λ2`KL(
˜̂
fθ,

˜̂
fθold)], (3)

and for reinforcement learning the transformed program reads as follows:{
minθπ,w,Q Eτ∼π̃θπ [˜̀

τ
π(θπ, w,Q) + λ1`dep(w) + λ2`

τ
KL(

˜̂πθπ ,
˜̂πθπold

)]

minθv,w,Q Eτ∼π̃θπ [˜̀
τ
v(θv, w,Q)]

. (4)

Loss ˜̀·
·(θ, w,Q) originates from the original loss `··(θ) (Eqs. (1)-(2)) by transforming the deep net to

include cross-connections, hence its dependence on w,Q. The tilde (‘̃·’) denotes this dependence,

also for probability distribution ˜̂
f and policy distribution ˜̂π. Parameters from the current and a

previous iteration are referred to via θ and θold respectively.

3

Published as a conference paper at ICLR 2019

For both supervised and reinforcement learning, λ1 and λ2 control the strength which is used to
decrease the influence of the teacher. A low λ1 allows the student to rely on teachers. Close to the end
of training, the student should be independent. Therefore, we set λ1 to a small value at the beginning,
and gradually increase its value as training progresses.

Note that we don’t make any assumptions about teachers and student’s objective. If a teacher’s
and student’s objective differ, negative transfer may occur initially. However, the proposed method
quickly decreases the weight for teacher layers to reduce this effect. Despite differences, students
could potentially still benefit from the low level representation of the teachers. We do observe this
low level knowledge transfer in our experiments.

In the following we first describe how to modify the deep nets, before we detail the loss functions
`dep and `KL, which are used to successively decrease the influence of the teachers.

3.2 DEEP NET TRANSFORMATION AND LOSS TERMS

Deep Net Transformation: Knowledge flow enhances the student by adding transformed and scaled
intermediate representations from teacher models. To perform the transformation, intermediate
representations from teachers are first multiplied by transformation matrices Q. Then the transformed
representations from teachers and representations from the student are linearly combined. The
weights for this linear combination are determined by a weight pw which is normalized to sum to one
for each student layer.

Let index m = 0 denote the student model and let θ(0) refer to its parameters. Further, let θ(m),
m ∈ {1, . . . ,M} denote teacher models. We use lim to refer to deep net layer i of teacher m, with
i ∈ {1, . . . , Lm} and Lm the number of layers in teacher m. We define layer j of the student model
to be lj0, where j ∈ {1, . . . , L0} and L0 the number of deep net layers in the student model. The
output of layer lkm right before and after an activation unit is denoted z(lkm) and h(lkm) respectively.

To align a teacher’s layer lim with a student’s layer lj0, we introduce a learnable transformation matrix
Qj(lim) ∈ Rdim(lj0)×dim(lim), where dim(·) gives the number of elements in the corresponding layer.
The matrix multiplication Qj(lim)z(lim) aligns the representation from layer i of teacher m with the
representation of layer j of the student.

For each layer j in the student model, we define a candidate set Lj , which contains lj0 and all the
teachers’ layers to be considered. For example, in Fig. 1 (a), layer one of the student model is
combined with layer one of teacher one and layer two of teacher two. Therefore, the candidate set of
layer one of the student model is given by L1 = {l10, l11, l22}.
To decide which teachers’ or the student’s representation to trust at every layer of the student net,
we introduce a normalized weight pjw(l) for all j ∈ {1, . . . , L0}, where l ∈ Lj , summing to one for
each layer j in the student deep net, i.e.,∑

l∈Lj
pjw(l) = 1, ∀j ∈ {1, . . . , L0}.

To obtain the combined intermediate representation of layer j for the student model, we use

h(lj0) = σ

 ∑
l∈Lj\lj0

pjw(l)Q
j(l)z(l) + pjw(l

j
0)z(l

j
0)

 ,

where pjw(l
i
m) determines how much the student layer j relies on transformed representations of layer

i from the m-th teacher. Intuitively, if the transformed representation of the m-th teacher layer i is
helpful, pjw(l

i
m) will be close to one. We visualize the deep net transformation in Fig. 1 (b).

Note that the intermediate representations of teachers are not changed in our framework. To obtain
the output of layer lkm we apply the original activation unit to the original representation z(lim), i.e.,
h(lim) = σ(z(lim)), ∀m ∈ {1, . . . ,M}, j ∈ {1, . . . Lm}.

The maximal number of introduced matrices Q in our framework is
∑M
i=1 LiL0. In practice, we

don’t link a student’s layer to every layer of a teacher network. Intuitively, a teachers’ bottom layer

4

Published as a conference paper at ICLR 2019

Table 1: Comparison with PathNet (Fernando et al., 2017) and progressive neural network
(PNN) (Rusu et al., 2016b). Since PathNet and PNN don’t report exact scores we obtain their
numbers from their plots and indicate that with a ∼ symbol. The results of the state-of-the-art
methods: A3C (Mnih et al., 2016), PPO (Schulman et al., 2017), and ACKTR (Wu et al., 2017) on
Atari games are also listed for reference.

w/ Seaquest
teacher

w/ Riverraid
teacher

w/ Sea. and River.
teachers No teachers

Ours PathNet Ours PathNet Ours PNN A3C PPO ACKTR

Alien 1254 ∼1700 1259 ∼1800 1911 ∼2000 182 1850 3197
Asterix 3982 ∼2000 3823 ∼2000 6012 ∼9000 6723 4533 31583
Boxing 96 ∼70 96 ∼80 99 ∼99 34 95 1
Gopher 4152 ∼ 3900 3820 ∼2100 5233 ∼4500 8443 2933 47730
Hero 21250 ∼12500 29343 ∼12500 30928 ∼30000 28766 n/a n/a

James. 857 ∼600 832 ∼600 1245 ∼850 352 561 512
Krull 8193 ∼7800 6890 ∼7500 10000 ∼9954 8067 7942 9689

features are very likely irrelevant to a student’s top layer features. Indeed, we observed that linking
a teachers’ bottom layer to a student’s top layer generally doesn’t yield improvements. Therefore,
in practice, we recommend to link one teacher layer to one or two student layers, in which case we
introduce on the order of ML0 matrices Q. Also note that while additional trainable parameters
Q and w are introduced in our framework, Q and w are not part of the resulting student network
since we ensure pjw(l) ≡ 0 ∀l ∈ Lj\lj0 at the end of training as discussed next. Hence, the additional
parameters function as auxiliary knobs that help the student learn faster. In the final stage of training,
the student will be independent (see Fig. 1 (c)) and does no longer rely on Q, w, or any transformed
representations from teachers.

Decreasing Teachers’ Influence: We successively decrease the influence of the teachers during
training by gradually encouraging the normalized weight pjw(l

j
0) to increase to a value of 1 ∀j ∈

{1, 2, . . . , L0}. To capture how much the student relies on teachers, we introduce the dependence
cost as the negative log probability:

`dep(w) = −
1

L0

∑
j∈{1,2,...,L0}

log pjw(l
j
0). (5)

By minimizing `dep(w), we encourage weights for the layers of the student to increase. Hence we
encourage the student to become more and more independent. During the final stage of training,
pjw(l

j
0) approaches one for all j ∈ {1, . . . , L0}, making the student independent of the transformed

representation obtained from teachers.

Empirically, we found that a fast decrease of the influence of the teacher can degrade the performance.
This is intuitive as it requires some time to find good transformations Q. Moreover, decreasing
the influence of a teacher too fast may change the output distribution over labels or actions of the
student model too much, and thus lead to performance loss. To prevent changing a student’s output
distribution too fast, we found a Kullback-Leibler (KL) regularizer to yield good results. More
specifically, in the case of supervised learning we use

`KL(
˜̂
fθ,

˜̂
fθold) = DKL[

˜̂
fθ(·|x)|| ˜̂fθold(·|x)]. (6)

Hereby, θ is the set of current parameters, and θold are the previous ones. In the reinforcement learning
case we use DKL[˜̂πθ(·|xt)||˜̂πθold(·|xt)].

4 EXPERIMENTAL RESULTS

In the following we evaluate knowledge flow on reinforcement and supervised learning tasks. Results
are reported by using only the student model to avoid even the smallest influence from any teacher
nets.

4.1 REINFORCEMENT LEARNING

We evaluate knowledge flow on reinforcement learning using Atari games that were used by Rusu
et al. (2016b); Fernando et al. (2017). Following existing work, the input to our agent are raw images
from the environment. The agent learns to predict actions only based on the rewards and the input

5

Published as a conference paper at ICLR 2019

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

250

500

750

1000

1250

1500

1750

2000
R

e
w

a
rd

s

alien

ours w/ seaq. and river.

ours w/ seaq.

ours w/ river.

ours baseline

Prog. Net w/ seaq. and river.

PathNet w/ seaq.

PathNet w/ river.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

20

0

20

40

60

80

100

R
e
w

a
rd

s

boxing

ours w/ seaq. and river.

ours w/ seaq.

ours w/ river.

ours baseline

Prog. Net w/ seaq. and river.

PathNet w/ seaq.

PathNet w/ river.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

1000

2000

3000

4000

5000

6000

R
e
w

a
rd

s

gopher

ours w/ seaq. and river.

ours w/ seaq.

ours w/ river.

ours baseline

Prog. Net w/ seaq. and river.

PathNet w/ seaq.

PathNet w/ river.

(a) Alien (b) Boxing (c) Gopher

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

5000

10000

15000

20000

25000

30000

R
e
w

a
rd

s

hero

ours w/ seaq. and river.

ours w/ seaq.

ours w/ river.

ours baseline

Prog. Net w/ seaq. and river.

PathNet w/ seaq.

PathNet w/ river.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

200

400

600

800

1000

1200

R
e
w

a
rd

s

jamesbond

ours w/ seaq. and river.

ours w/ seaq.

ours w/ river.

ours baseline

Prog. Net w/ seaq. and river.

PathNet w/ seaq.

PathNet w/ river.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

2000

4000

6000

8000

10000

R
e
w

a
rd

s

krull

ours w/ seaq. and river.

ours w/ seaq.

ours w/ river.

ours baseline

Prog. Net w/ seaq. and river.

PathNet w/ seaq.

PathNet w/ river.

(d) Hero (e) JamesBond (f) Krull

Figure 2: Comparison with progressive neural network and PathNet.

images from the environment. The agent chooses an action every four frames, and the last action
is repeated on the skipped four frames. For all teacher models and the student model, we use the
fully forward architecture of A3C (Mnih et al., 2016). The model has three hidden layers. The
first layer is a convolutional layer with 16 filters of size 8x8 and stride 4. The second layer is a
convolutional layer with 32 filters of size 4x4 and stride 2. The third layer is a fully connected layer
with 256 hidden units. Following the third hidden layer are two sets of output. One is a softmax
output that provides a probability distribution over all valid actions. The other one is a scalar output
that provides the estimated value function. We use the same hyper-parameter settings as Mnih et al.
(2016) except for the learning rate. Mnih et al. (2016) use RMSProp with shared statistics while we
use Adam with shared statistics, which we found to give better results when training the baselines.
The learning rate is set to 10−4 and gradually decreased to zero for all experiments. To select λ1
and λ2 in our framework, we follow progressive neural net (Rusu et al., 2016b): randomly sample
λ1 ∈ {0.05, 0.1, 0.5} and λ2 ∈ {0.001, 0.01, 0.05}. Note that λ1 is set to zero at the beginning of
training, and linearly increased to the sampled value at the end of training. Following Rusu et al.
(2016b), we repeat each experiment 25 times with different random seeds and randomly sampled λ1
and λ2. The results of the top three out of 25 runs are reported. As A3C, we run 16 agents on 16
CPU cores in parallel.

Evaluation Metrics: We follow the evaluation procedure of Mnih et al. (2015). The trained student
models are evaluated by playing each game for 30 episodes. We also follow the ‘no-op’ procedure: at
the beginning of each testing episode, the agents perform up to 30 ‘no-op’ actions.

Results: We first compare our framework with PathNet (Fernando et al., 2017) and progressive neural
net (PNN) (Rusu et al., 2016b), which are state-of-the-art transfer reinforcement learning frameworks,
using their experimental settings. The comparison is summarized in Table 1. The state-of-the-art
results (Mnih et al., 2016; Schulman et al., 2017; Wu et al., 2017) on Atari games are also included in
Table 1 for reference. Compared to PathNet, a student model trained using our transfer framework
with one teacher achieves higher scores in 11 out of 14 experiments. Compared with PNN, for a
two-teacher framework, our trained student model has only 0.7M parameters and PNN has 16M
parameters. Nonetheless we observe higher scores in five out of the seven experiments. The results
demonstrate that knowledge flow effectively transfers knowledge from teachers to the student. Table 1
also indicates that, in our framework, when the number of teachers increases from one to two, the
student’s performance improves significantly across all experiments. The training curves for the
experiments are shown in Fig. 2. The curve is the average of the top three out of 25 runs. We observe
our approach to generally perform very well.

6

Published as a conference paper at ICLR 2019

Table 2: Comparison with fine-tuning and baseline A3C on different environment/teacher settings. The
subscript following each number indicate the teachers being used. E.g., (alien, space I.) indicates that one
teacher is an alien expert and the other is a space invaders expert.

Ours
w/ expert

Ours
w/ non-expert Fine-tune A3C

baseline A3C

Alien(teachers) 1705(alien, space I.) 1923(bank., space I.) 996(bank.) 1303(n/a) 182(n/a)
Breakout(teachers) 400(breakout, space I.) 306(pong, space I.) 261(space I.) 99(n/a) 552(n/a)

ChopperCommand(teachers) 8120(chopper., space I.) 6013(sea., space I.) 3789(sea.) 4513(n/a) 4669(n/a)
KungFuMaster(teachers) 29458(kungfu., sea) 35103(sea. hero) 26752(hero) 29446(n/a) 3046(n/a)

MsPacman(teachers) 2411(mspac., alien) 2450(alien, space I.) 1324(alien) 1628(n/a) 594(n/a)
Seaquest(teachers) 1873(sea., chopper.) 32103(chopper., space I.) 1590(chopper.) 1670(n/a) 2300(n/a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

10000

20000

30000

40000

R
e
w

a
rd

s

Seaquest

Ours w/ Seaquest and ChopperCommand

Ours w/ ChooperCommand and SpaceInvaders

Finutune from ChopperCOmmand

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

5000

10000

15000

20000

25000

30000

35000

40000

R
e
w

a
rd

s

KungFuMaster

Ours w/ KungFuMaster and Seaquest

Ours w/ Seaquest and Hero

Finutune from Hero

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

250

500

750

1000

1250

1500

1750

2000

R
e
w

a
rd

s

Alien

Ours w/ Alien and SpaceInvaders

Ours w/ BankHeist and SpaceInvaders

Finutune from BankHeist

Baseline

(a) Seaquest (b) KungFuMaster (c) Alien

Figure 3: Comparison with fine-tuning and baseline A3C on different combinations of environ-
ment/teacher settings.

To further evaluate knowledge flow, we experiment with different combinations of environ-
ment/teacher settings. These settings are not used by PathNet and progressive neural network.
The results are summarized in Table 2, where “ours w/ expert” represents that one teacher is expert for
the target game; “ours w/ non-expert” represents that both teachers are not experts for the target game;
“Fine-tune” represents fine-tuning from a non-expert on a new target game; “A3C baseline” represents
our implementation of the A3C baseline; “A3C” represents the scores reported originally (Mnih et al.,
2016). Note that our A3C implementation achieves better scores than those reported by Mnih et al.
(2016) for most of the games. As shown in Table 2, knowledge flow with expert teacher performs
better than the baseline across all experiments, which we interpret as evidence that knowledge flow
successfully transfers ‘knowledge’ from an expert teacher to the student. In addition, knowledge
flow with non-expert teachers also outperforms fine-tuning on a non-expert teacher. The reasons
are twofold: First, a student model in knowledge flow can learn from multiple teachers while the
fine-tuning method can only start from one setting. Second, in knowledge flow, the student can avoid
the negative impact from insufficiently pretrained teachers, while fine-tuning from an insufficiently
pretrained model slows down the training process and may degrade the overall performance. The
training curves for the experiments are shown in Fig. 3. More training curves are in the Appendix
(Fig. 6). Note that in knowledge flow, the student can benefit from the intermediate representations of
the teacher, even if input space, output space and objectives differ. For example, in Fig. 3 (a), the two
teachers are Chopper Command and Space Invaders, which are quite different from the target game
Seaquest. The student model still benefits from learning from the teachers and achieves scores ten
times larger than learning without teacher and fine-tuning from a teacher.

4.2 SUPERVISED LEARNING

For supervised learning, we use a variety of image classification benchmarks, including CIFAR-
10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), and EM-
NIST (Cohen et al., 2017). The parameters λ1 for the dependent cost and λ2 for the KL cost are
determined using the validation set of each dataset.

Evaluation Metrics: To evaluate the trained student model we report top-1 error rate on the test set
of each dataset. All plots and reported numbers are the average of three runs obtained using different
random seeds.

7

Published as a conference paper at ICLR 2019

Table 3: Test Error (%) on CIFAR-10/100. The parentheses following “Ours” indicates the teachers
we use. I.e., ‘Ours (SVHN, C100)’ indicates that we use an SVHN expert and a C100 expert as
teachers.

Baseline
Densenet

Fine-tune
from C100

Fine-tune
from SVHN

Ours
(C100, SVHN)

C10 4.44 4.27 4.58 3.88
(a)

Baseline
Densenet

Fine-tune
from C10

Fine-tune
from SVHN

Ours
(C10, SVHN)

C100 21.64 20.83 21.02 20.78
(b)

CIFAR-10/CIFAR-100: CIFAR-10 and CIFAR-100 datasets consist of colored images of size
32× 32. CIFAR-10 (C10) has 10 classes and CIFAR-100 (C100) has 100 classes. For both dataset,
the training and test sets contain 50,000 and 10,000 images respectively. We perform all experiments
on CIFAR-10 and CIFAR-100 with standard data augmentation (Huang et al., 2017).

We use Densenet (Huang et al., 2017) (depth 100, growth rate 24) as a baseline and follow their
hyper-parameter settings to train our baseline, teacher and student models. For our approach, we
first train teachers on CIFAR-10, CIFAR-100, and SVHN (Netzer et al., 2011). We then train the
student model using a different combination of teachers. We compare our results to fine-tuning and
the baseline model. As shown in Table 3 (a), for the CIFAR-10 target task, fine-tuning from the
CIFAR-100 expert improves 4% over the baseline. Fine-tuning from the SVHN expert performs
worse than the baseline model. Intuitively, for the CIFAR-10 target task, the CIFAR-100 deep net is a
good teacher while a deep net trained with SVHN isn’t. Presented with both good and inadequate
teachers, knowledge flow improves by 13% over the baseline. This demonstrates that knowledge flow
can not only leverage a good teacher’s ‘knowledge,’ but it can also avoid misleading influence. As
detailed in Table 3 (b), the results are similar on the CIFAR-100 dataset.

To further demonstrate the properties of knowledge flow, additional results are in the appendix.

5 RELATED WORK

As mentioned before, ‘knowledge’ transfer has been considered using a variety of techniques. We
briefly discuss related work in contrast to our approach in the following and defer details to Sec. 8.
PathNet (Fernando et al., 2017) enables multiple agents to train the same deep net while reusing pa-
rameters and avoiding catastrophic forgetting. In contrast to this formulation we consider availability
of multiple pre-trained teacher nets.
Progressive Net (Rusu et al., 2016b) leverages transfer and avoids catastrophic forgetting by intro-
ducing lateral connections to previously learned features. Our discussed method uses similar lateral
connections. However, in contrast to Rusu et al. (2016b), our method ensures independence of the
student upon training, addressing a limitation in (Rusu et al., 2016b) where only a fraction of the
capacity of the student is eventually utilized.
Distral a neologism combining ‘distill & transfer learning’ (Teh et al., 2017) considers joint training
of multiple tasks. Multiple tasks share a ‘distilled’ policy which encodes common behavior between
different tasks. While each worker addresses its own task, a shared policy encourages consistency
between the policies. Different from Distral, which is a multi-task learning framework, knowledge
flow addresses a single task, while in multi-task learning, multiple tasks are addressed at the same time.
Hence, common for multi-task learning and knowledge flow is a transfer of information. However,
in multi-task learning, information extracted from different tasks are shared to boost performance,
while, in knowledge flow, the information of multiple teachers is leveraged to help a student learn
better a single, new, previously unseen task.

Other related work includes actor-mimic (Parisotto et al., 2016), learning without forgetting (Li &
Hoiem, 2016), growing a brain (Wang et al., 2017), policy distillation (Rusu et al., 2016a), domain
adaptation (Pan & Yang, 2010; Long et al., 2015; Tzeng et al., 2015), knowledge distillation (Hin-
ton et al., 2015) or lifelong learning (Chen & Liu, 2016). A more detailed discussion on related
work is provided in Sec. 8 of the supplementary material.

6 CONCLUSION

We developed a general knowledge flow approach that permits to train a deep net from any number
of teachers. We showed results for reinforcement learning and supervised learning, demonstrating
improvements compared to training from scratch and to fine-tuning. In the future we plan to learn
when to use which teacher and how to actively swap teachers during training of a student.

8

Published as a conference paper at ICLR 2019

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proc. ICML, 2009.

Aaron Chen. pytorch-playground. https://github.com/aaron-xichen/
pytorch-playground, 2017.

Z. Chen and B. Liu. Lifelong Machine Learning. Morgan & Claypool Publishers, 2016.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proc. AISTATS, 2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension of
MNIST to handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

Prafulla Dhariwal, Christopher Hesse, Matthias Plappert, Alec Radford, John Schulman, Szymon
Sidor, and Yuhuai Wu. Openai baselines, 2017.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Tommaso Furlanello, Jiaping Zhao, Andrew M. Saxe, Laurent Itti, and Bosco S. Tjan. Active long
term memory networks. arXiv preprint arXiv:1606.02355, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. CVPR, 2016.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. In
Proc. CVPR, 2017.

Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep neural
networks. arxiv, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In Proc. ECCV, 2016.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable features
with deep adaptation networks. In Proc. ICML, 2015.

T. Mitchell, W. Cohen, E. Hruscha, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner,
B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohammad, N. Nakashole, E. Platanios,
A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves,
and J. Welling. Never-ending learning. In Proc. AAAI, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. In
Nature, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proc. ICML, 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

9

https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground

Published as a conference paper at ICLR 2019

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data
Eng., 2010.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. In Proc. ICLR, 2016.

Vishal M. Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Visual domain adaptation:
A survey of recent advances. IEEE Signal Process. Mag., 2015.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Çaglar Gülçehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. In Proc. ICLR, 2016a.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In arXiv preprint
arXiv:1606.04671, 2016b.

Paul Ruvolo and Eric Eaton. Ella: An efficient lifelong learning algorithm. In Proc. ICML, 2013.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yee Teh, Victor Bapst, Wojciech M. Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Proc. NIPS,
2017.

Martin Thoma. Analysis and optimization of convolutional neural network architectures. arXiv
preprint arXiv:1707.09725, 2017.

Sebastian Thrun. Lifelong learning algorithms. In Learning to Learn. Springer US, 1998.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Proc. ICCV, 2015.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Growing a brain: Fine-tuning by increasing
model capacity. In Proc. CVPR, 2017.

Yuhuai Wu, Elman Mansimov, Shun Liao, Roger B. Grosse, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. In Proc. NIPS,
2017.

Junbo Jake Zhao, Michaël Mathieu, Ross Goroshin, and Yann LeCun. Stacked what-where auto-
encoders. arXiv preprint arXiv:1506.02351, 2015.

10

Published as a conference paper at ICLR 2019

Table 4: Test error (%) of distilled student net.

MNIST MNIST w/o digit ‘3’ C100 Imagenet

Student alone 1.46 11.06 31.87 30.24

KD Hinton et al. (2015) 0.74 2.06 30.28 30.04
Ours 0.73 1.05 30.07 29.05

Table 5: Our approach on the EMNIST Letters dataset.

Model (Teacher) Test error(%)

Cohen et al. (2017) 14.85
Fine-tune from EMNIST digits 9.04

Baseline 9.20
Ours (EMNIST letters) 7.13

Ours (EMNIST half letters) 8.13
Ours (EMNIST digit) 8.11

7 APPENDIX

7.1 SUPERVISED LEARNING

Comparison with Knowledge Distillation: We follow knowledge Distillation (KD) (Hinton et al.,
2015) to distill knowledge from a larger model (teacher) to a smaller model (student). The student
models have 50% - 5% parameters of the teacher models. Following their setup, we conduct
experiments on MNIST, MNIST with digit ‘3’ missing in the training set, CIFAR-100, and ImageNet.
For MNIST and MNIST with digit ‘3’ missing, following KD, the teacher model is an MLP with two
hidden layers of 1200 hidden units, and the student model is an MLP with two hidden layers of 800
hidden units. For CIFAR-100, we use the model from Chen (2017) as teacher model. The student
model follows the structure of the teacher, but the number of output channels of each convolutional
layer is halved. For ImageNet, the teacher model is a 50-layer ResNet (He et al., 2016), and the
student model is a 18-layer ResNet. The test error of the distilled student model are summarize in
Table 4. Our framework has consistently better performance than KD, because the student model
in our framework benefits not only from the output layer behavior of the teacher but also from
intermediate layer representations of the teacher.

EMNIST:

The ‘EMNIST Letters’ dataset consists of images of size 28× 28 pixels showing handwritten letters.
It has 26 balanced classes. Each class contains lower and upper case letters. The training and test sets
contain 124,800 and 20,800 images respectively. The ‘EMNIST Digits’ dataset consists of images of
size 28× 28 pixels showing handwritten digits. It has 10 balanced classes. The training and test sets
contain 240,000 and 40,000 images respectively.

In this case we use the MNIST model from Chen (2017) as a baseline, teacher and student model.
We trained teachers on EMNIST Digits, EMNIST Letters, and EMNIST Letters with only 13 classes.
Our target task is EMNIST Letters. The student model is trained with different teachers and the
results are compared to fine-tuning, the baseline model, and the state-of-the-art results on EMNIST.
The results are summarized in Table 5. Compared to the baseline and fine-tuning, student learning in
our framework with expert teacher (EMNIST Letters), semi-expert teacher (Half EMNIST Letters),
and non-expert teacher (EMNIST Digits) all have better performance. In Fig. 4 we illustrate the
accuracy over epochs for training of different models.

STL-10:

The STL-10 dataset consist of colored images of size 96× 96 pixels. It has 10 balanced classes. The
training set contains 5,000 labeled images and 100,000 unlabeled images. The test set contains 8,000
images. In our experiment, we only use the 5,000 labeled images for training.

We use the STL-10 model from Chen (2017) as our baseline, teacher and student model. We trained
teachers on CIFAR-10 and CIFAR-100. We compare our results to fine-tuning and the baseline in
Table 6. Note that STL-10 is very similar to CIFAR-10 and CIFAR-100. Therefore, both CIFAR-10
and CIFAR-100 are very good teachers. As shown in Table 6, compared to the baseline, fine-tuning a

11

Published as a conference paper at ICLR 2019

2 4 6 8 10
of Epoch

0.82

0.84

0.86

0.88

0.90

0.92

A
cc

u
ra

cc
y

EMNIST(Letter)

Ours w/ expert teacher

Ours w/ semi-expert teacher

Ours w/ non-expert teacher

Finetune from non-expert

Baseline

Figure 4: Comparison of top-1 accuracy of our approach, fine-tuning and baseline on the EMNIST
Letters test dataset.

Table 6: Our approach on the STL-10 dataset (fully supervised).

Test error (%)

Zhao et al. (2015) 25.20
Thoma (2017) 21.34

Baseline 25.50
Fine-tune from C10 14.32

Fine-tune from C100 14.38
Ours (C100) 12.35

Ours (C10, C100) 11.09

model using weights pretrained on CIFAR-10 and CIFAR-100 reduce test errors by more than 10%.
Compared with fine-tuning, student model training in our framework further reduces the test error by
3%. Note that we only train on the labeled data while other approaches use this data for testing of
semi-supervised approaches. Hence our results are obtained using fewer data and may not be directly
comparable. We still list their results in Table 6 for reference. In Fig. 5 we illustrate the accuracy
over the epochs of training.

7.2 REINFORCEMENT LEARNING

We also compare to Distral (Teh et al., 2017), which is the state-of-the-art multi-task reinforcement
learning framework. We used ‘KL + ent 1 col’, which has a central model (m0), and a task model
(mi) for each task. We perform the experiments on Atari games. In the experiments, we have three
tasks (task 1, task 2, task 3). The teachers of task 2 (m2) and task 3 (m3) are provided for our
framework. Distral is trained for 120M steps (40M steps/task), and our model is trained for 40M
steps. For fair comparison, we report results of Distral’s task 1 model (m1), which is better than its
center model (m0). The results are summarized in Table 7. Distral is suboptimal, because it aims to
learn a multi-task agent. In addition, identical action and state space is assumed. When the target task
is very different from the source tasks, Distral cannot decrease the teacher influence. In contrast, our
framework can decrease a teacher’s influence, and thus reduce negative transfer.

7.3 VISUALIZATION OF NORMALIZED WEIGHTS OF TEACHERS AND STUDENT

Following the reviewer’s suggestion, we plot the averaged normalized weight (pw) for teachers and
the student in the C10 experiment, where C100 and SVHN experts are teachers. Intuitively, the C100
teacher should have a higher pw value than the SVHN teacher, because C100 is more relevant to C10.
The plot verifies this intuition. As shown in Fig. 7, pw of the C100 teacher is higher than that of the
SVHN teacher over the entire training. Note, both teachers’ normalized weights approach zero at the
end of training.

12

Published as a conference paper at ICLR 2019

0 20 40 60 80 100 120 140
of Epoch

20

30

40

50

60

70

80

90

A
cc

u
ra

cy

STL-10

Ours w/ Cifar10, Cifar100

Ours w/ Cifar100

Fine-tune from Cifar100

Finetune from Cifar10

Baseline

Figure 5: Comparison of top-1 accuracy of our approach, fine-tuning and baseline on the STL-10 test
dataset.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

250

500

750

1000

1250

1500

1750

2000

R
e
w

a
rd

s

Alien

Ours w/ Alien and SpaceInvaders

Ours w/ BankHeist and SpaceInvaders

Finutune from BankHeist

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

100

200

300

400

R
e
w

a
rd

s

Breakout

Ours w/ Breakout and SpaceInvaders

Ours w/ Pong and SpaceInvaders

Finutune from SpaceInvaders

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

2000

4000

6000

8000

10000

12000

R
e
w

a
rd

s

ChopperCommand

Ours w/ ChopperCommand and SpaceInvaders

Ours w/ Seaquest and SpaceInvaders

Finutune from Seaquest

Baseline

(a) Alien (b) Breakout (c) ChopperCommand

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

5000

10000

15000

20000

25000

30000

35000

40000

R
e
w

a
rd

s

KungFuMaster

Ours w/ KungFuMaster and Seaquest

Ours w/ Seaquest and Hero

Finutune from Hero

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

1000

2000

3000

4000

R
e
w

a
rd

s

MsPacman

Ours w/ MsPacman and Alien

Ours w/ Alien and SpaceInvaders

Finutune from Alien

Baseline

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Steps 1e7

0

10000

20000

30000

40000

R
e
w

a
rd

s

Seaquest

Ours w/ Seaquest and ChopperCommand

Ours w/ ChooperCommand and SpaceInvaders

Finutune from ChopperCOmmand

Baseline

(d) KungFuMaster (e) MsPacman (f) Seaquest

Figure 6: Comparison with fine-tuning and baseline A3C on different combinations of environ-
ment/teacher settings.

7.4 ABLATION STUDIES

7.4.1 UNTRAINED TEACHER MODELS

To verify that the student really benefits from the knowledge of teachers, we conduct an ablation
study suggested by a reviewer. We use teacher models that haven’t been trained at all. Intuitively,
learning with untrained teachers should have worse performance than learning with knowledgeable
teachers. Our experiments verify this intuition. In Fig. 8 (a), where the target task is hero, learning
with untrained teachers (‘w/ untrained teachers’) achieves an average reward of 15934. Learning with
knowledgeable teachers (‘Ours with seaquest and riverraid teacher’) achieves an average reward of
30928. More results are presented in Figs. 8 (b, c). The results show that knowledge flow achieves
higher rewards than training with untrained teachers in different environments and teacher-student
settings.

13

Published as a conference paper at ICLR 2019

Table 7: Comparison with Distral on Task 1 score.

Task1, Task2, Task3 Distral Teh et al. (2017) Ours

KungFuMaster, Hero, Seaquest 27433 35103
Hero, Seaquest, Riverraid 15096 30928
James, Seaquest, Riverraid 550 1245

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
W

ei
gh

t

Normalized weight for teachers and student (target_task:C10)

student
C100 teacher
SVHN teacher

Figure 7: Normalized weights for the teachers and the student in C10 experiments.

7.4.2 TRAINING WITHOUT KL TERM

The KL term prevents the student’s output distribution over actions or labels from drastic changes
when the teachers’ influence is decreasing. To investigate the importance of the KL term, we conduct
an ablation study where the KL coefficient (λ2) is set to zero. The result is summarized in Fig. 9.
Considering Fig. 9 (a), where the target task is MsPacman and the teachers are Riverraid and Seaquest
experts. Without the KL term, when a teacher’s influence decreases, the rewards drop drastically.
In contrast, with a KL term, we don’t observe performance drops. At the end of training, learning
with the KL term achieves an average reward of 2907 and learning without the KL term achieves an
average reward of 1215. More results are presented in Fig. 9 (b, c), which shows that training with
the KL term achieves higher reward than training without the KL term.

7.5 TEACHERS WITH DIFFERENT ARCHITECTURE THAN STUDENT

In additional experiments, following the suggestion of a reviewer, we use architectures for the teacher
which differ from the student model. More specifically, we use the model of Mnih et al. (2015)
as a teacher model. The teacher model consists of 3 convolutional layers, which have 32, 64, and
64 filters, followed by a hidden fully connected layer which has 512 ReLUs. We use the model
of Mnih et al. (2016) as the student model. The student model consists of 2 convolutional layers,
which have 16 and 32 filters respectively, followed by a hidden fully connected layer which has
256 ReLUs. Both models’ fully connected layers are followed by two output layers for actions
and values. In the experiments, we link each teacher’s first convolutional layer to the student’s first
convolutional layer. Moreover, we link each teacher’s third convolutional layer to the student’s second
convolutional layer, and each teacher’s fully connected layer to the student’s fully connected layer.
In the experiment, the target task is KungFu Master, and the teachers are experts for Seaquest and
Riverraid. The results are summarized in Fig. 10. We observed that learning with teachers, whose
architecture differs from the student, to have similar performance as learning with teachers which
have the same architecture. Consider as an example Fig. 10 (a), where the target task is KungFu
Master, and the teachers are experts for Seaquest and Riverraid. At the end of training, learning with
teachers of different architectures achieves an average reward of 37520, and learning with teachers of
the same architecture achieves an average reward of 35012. More results are shown in Fig. 10 (b, c).
The results show that knowledge flow can enable higher rewards, even if the teachers and the student
architectures differ.

14

Published as a conference paper at ICLR 2019

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

5000

10000

15000

20000

25000

30000

Re
wa

rd
s

Hero

w/ seaquest and riverraid teacher
w/ untrained teacher

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

200

400

600

800

1000

1200

Re
wa

rd
s

JamesBond
w/ seaquest and riverriad teacher
w/ untrained teacher

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

5000

10000

15000

20000

25000

30000

35000

40000

Re
wa

rd
s

KungFuMaster
w/ hero teacher
w/ untrained teacher

(a) Hero (b) JamesBond (c) KungFuMaster

Figure 8: Ablation study: using untrained teachers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd
s

MsPacman
w/ KL term
w/o KL term

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

5000

10000

15000

20000

25000

30000

35000

40000

Re
wa

rd
s

KungFuMaster
w/ KL term
w/o KL term

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

20

40

60

80

100

Re
wa

rd
s

Boxing

w/ KL term
w/o KL term

(a) MsPacman (b) KungFuMaster (c) Boxing

Figure 9: Ablation study regarding KL term. Seaquest and Riverraid experts are used as teachers for
all experiments.

7.6 AVERAGE NETWORK AS θold

For the parameters θold an average network can be used. To investigate how usage of an average
network to obtain the parameters θold affects the performance, we conduct an experiment where
θold is computed using the exponential running average of the model weight. More specifically, θold
is updated as follows: θold ← α · θold + (1 − α) · θ, where α = 0.9. The results are summarized
in Fig. 11. We observe that using an exponential average to compute θold results in very similar
performance as using a single model. Consider Fig. 11 (a), where the target task is Boxing and the
teacher is a Riverraid expert. At the end of training, using an average network to obtain θold achieves
an average reward of 96.2 and using a single network to obtain θold achieves an average reward of
96.0. More results on using an average network are shown in Fig. 11 (b, c).

8 RELATED WORK

As mentioned before, variants of ‘knowledge’ transfer have been considered using a variety of
techniques, for instance, fine-tuning, progressive neural nets (Rusu et al., 2016b), PathNet (Fernando
et al., 2017), ‘Growing a Brain’ (Wang et al., 2017), actor-mimic (Parisotto et al., 2016), learning
without forgetting (Li & Hoiem, 2016). Also related are techniques on transfer learning and lifelong
learning. We discuss those methods and contrast them to our approach in the following.
PathNet (Fernando et al., 2017) enables multiple agents to train the same giant deep net while reusing
parameters and avoiding catastrophic forgetting. To this end, agents embedded in the neural net
discover which weights can be reused for new tasks and restrict application of gradients to those
parameters. In contrast to this formulation we consider availability of multiple teacher nets, which
are trained.
Progressive Net (Rusu et al., 2016b) leverages transfer and avoids catastrophic forgetting by intro-
ducing lateral connections to previously learned features. Our discussed method uses similar lateral

15

Published as a conference paper at ICLR 2019

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

5000

10000

15000

20000

25000

30000

35000

40000

Re
wa

rd
s

KungFuMaster

w/ same-architecture teacher model
w/ different-architecture teacher model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

20

40

60

80

100

Re
wa

rd
s

Boxing

w/ same-architecture teacher model
w/ different-architecture teacher model

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

1000

2000

3000

4000

5000

Re
wa

rd
s

Gopher
w/ same-architecture teacher model
w/ different-architecture teacher model

(a) KungFuMaster (b) Boxing (c) Gopher

Figure 10: Teachers’ architecture differs from the student’s architecture. Seaquest and Riverraid
experts are used as teachers for all experiments.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

20

40

60

80

100

Re
wa

rd
s

Boxing

w/o exponential average
w/ exponential average

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

5000

10000

15000

20000

25000

30000

35000

40000

Re
wa

rd
s

KungFuMaster
w/o exponential average
w/ exponential average

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
of Frames 1e7

0

1000

2000

3000

4000

5000

Re
wa

rd
s

Gopher
w/o exponential average
w/ exponential average

(a) Boxing (b) KungFuMaster (c) Gopher

Figure 11: Average network to compute θold. Riverraid expert is used as teacher for all experiments.

connections. However, in contrast to Rusu et al. (2016b), we introduce scaling with normalized
weights. This ensures independence of the student upon training, addressing a limitation in (Rusu
et al., 2016b) where only a fraction of the capacity of the student is eventually utilized.
Distral a neologism combining ‘distill & transfer learning’ (Teh et al., 2017) considers joint training
of multiple tasks. Multiple tasks share a ‘distilled’ policy which encodes common behavior between
different tasks. While each worker addresses its own task, a shared policy encourages consistency
between the policies. Different from Distral, which is a multi-task learning framework, knowledge
flow addresses a single task, while in multi-task learning, multiple tasks are addressed at the same time.
Hence, common for multi-task learning and knowledge flow is a transfer of information. However,
in multi-task learning, information extracted from different tasks are shared to boost performance,
while, in knowledge flow, the information of multiple teachers is leveraged to help a student learn
better a single, new, previously unseen task.
Knowledge distillation (Hinton et al., 2015) distills information form a larger deep net into a smaller
one. It assumes both nets are trained on the same dataset. In contrast, our technique allows knowledge
transfer between different source and target domains.
Actor-mimic (Parisotto et al., 2016) enables an agent to learn how to address multiple tasks simul-
taneously and generalize the extracted knowledge to new domains. A single policy net learns how
to act in a set of tasks following the guidance of several expert teachers. A combination of feature
regression and cross entropy loss is used to encourage the student to produce similar actions and
representations. Our proposed technique differs in that we take advantage of a teachers representation
at the beginning of training,
Learning without forgetting (Li & Hoiem, 2016) permits to add a new task to a deep net without
forgetting the original capabilities. Importantly, only data from the new task is used and the old
capabilities are retained by first recording the old networks output on the new data. Similar tech-
niques have been developed by Furlanello et al. (2016); Jung et al. (2016). In contrast, we transfer
‘knowledge’ from teacher networks more explicitly.

16

Published as a conference paper at ICLR 2019

Growing a Brain (Wang et al., 2017) analyzes the parameters which change during fine-tuning and
points out that more natural model adaptation is obtained when increasing the model capacity, by
either extending width or depth. Appropriate normalization is essential to significantly outperform
classical fine-tuning. Since this technique is based on fine-tuning, it differs from our student-teacher
based approach.

Other related work includes policy distillation (Rusu et al., 2016a), domain adaptation (Pan &
Yang, 2010; Long et al., 2015; Tzeng et al., 2015) or lifelong learning (Chen & Liu, 2016; Thrun,
1998; Mitchell et al., 2015; Ruvolo & Eaton, 2013).

17

	Introduction
	Background
	Knowledge Flow
	Overview
	Deep Net Transformation and Loss Terms

	Experimental Results
	Reinforcement Learning
	Supervised Learning

	Related Work
	Conclusion
	Appendix
	Supervised Learning
	Reinforcement Learning
	Visualization of Normalized Weights of Teachers and Student
	Ablation Studies
	Untrained Teacher Models
	Training Without KL Term

	Teachers with Different Architecture than Student
	Average Network as old

	Related Work

