
Under review as a conference paper at ICLR 2019

NEURAL NETWORK REGRESSION WITH BETA,
DIRICHLET, AND DIRICHLET-MULTINOMIAL OUT-
PUTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a method for quantifying uncertainty in neural network regression
models when the targets are real values on a d-dimensional simplex, such as prob-
abilities. We show that each target can be modeled as a sample from a Dirichlet
distribution, where the parameters of the Dirichlet are provided by the output of a
neural network, and that the combined model can be trained using the gradient of
the conditional likelihood. This approach provides interpretable predictions in the
form of multidimensional distributions, rather than point estimates, from which
one can obtain confidence intervals or quantify risk in decision making. Further-
more, we show that the same approach can be used to model targets in the form of
empirical counts as samples from the Dirichlet-multinomial compound distribu-
tion. In experiments, we verify that our approach provides these benefits without
harming the performance of the point estimate predictions on two diverse appli-
cations: (1) distilling deep convolutional networks trained on CIFAR-100, and
(2) predicting the location of particle collisions in the XENON1T Dark Matter
detector.

1 INTRODUCTION

Artificial neural networks are typically trained by maximizing the conditional likelihood of output
targets given input features. Each target is modeled as a sample from a distribution p(y|x) param-
eterized by the output activity of the neural network, where the choice of parametric distribution is
implied by the choice of objective function. Thus, the support of the probability distribution should
match the target space, but in practice, this is often not the case.

Today, the vast majority of neural network output layers implicitly model the targets as samples
from one of four distributions: a binomial, a categorical, a Gaussian, or a Laplacian distribution —
respectively corresponding to the binomial cross-entropy loss, multi-class cross-entropy loss, mean
squared error, and mean absolute error. These distributions are commonly used even when the target
space does not match the support, because the gradient calculations for these distributions are simple
(and easy to compute) when paired with the appropriate output layer activation functions. These
distributions dominate to such a degree that few alternatives are even available in most common
deep learning software packages such as Keras (Chollet et al., 2015) and PyTorch (Paszke et al.,
2017).

Alternatives do exist — using neural networks to parameterize more complex distributions is not
new. The standard regression approach can be generalized to a heteroskedastic Gaussian output
layer (Nix & Weigend, 1994; Williams, 1996), where the neural network predicts both a mean and a
variance for each target. Multi-model distributions can be modeled with a mixture density (Bishop,
1994). And more recently, the Gamma output layer was proposed to model targets in R>0 (Ng
et al., 2017). In principle, any parametric distribution with well-defined gradients could serve as a
probabilistic prediction at the output of a neural network model.

The approach proposed here is simpler than the one taken by Conditional Variational Autoencoders
(CVAEs) (Kingma & Welling, 2013; Sohn et al., 2015). While CVAEs can, in theory, model ar-
bitrary high-dimensional conditional distributions, computing the exact conditional likelihood of a
target requires marginalizing over intermediate representations, making exact gradient calculations

1

Under review as a conference paper at ICLR 2019

intractable. Thus, training a CVAE requires approximating the gradients through sampling. In this
work we show that restricting the output to a particular class of distributions, namely the Dirichlet or
Dirichlet-multinomial compound distributions, enables a calculation of the exact likelihood of the
targets and the exact gradients.

Interpreting the output of a neural network classifier as a probability distribution has obvious bene-
fits. One can derive different point estimates, define confidence intervals, or integrate over possible
outcomes — a necessity for managing risk in decision making. Potentially, it could also lead to
better learning — matching the output support to the target space essentially constrains the learn-
ing problem by incorporating outside knowledge. Allowing the network to output “uninformative”
distributions — e.g. a uniform distribution over the support — could make training faster by allow-
ing the network to focus on the easiest training examples first — a self-guided form of curriculum
learning.

In the present work, we derive gradients for the Beta distribution, Dirichlet distribution, and
Dirichlet-multinomial compound distribution. We then propose activation functions that stabilize
numerical optimization with stochastic gradient descent. Finally, we demonstrate through exper-
iments that this approach can be used to model three common types of targets: (1) targets over
the multivariate simplex, (2) real-valued scalar targets with lower and upper bounds, and (3) non-
negative integer-valued counts (samples from the Dirichlet-multinomial compound distribution).
The experiments demonstrate that our approach provides interpretable predictions with learned un-
certainty, without decreasing the performance of the point estimates.

2 DIRICHLET OUTPUT LAYERS

2.1 TARGETS ON THE MULTIDIMENSIONAL SIMPLEX

Consider a supervised learning scenario, in which the goal is to model the relationship between a
set of input, target pairs (x(t), y(t)), where y(t) lies on the d-simplex ∆d, i.e. y(t) ∈ Rd with
y

(t)
i > 0 ∀ i ∈ {1, . . . , d} and

∑d
i=1 y

(t)
i = 1. We can construct a neural network that takes in x(t)

and outputs a length-d vector α(t) =< α
(t)
1 , . . . , α

(t)
d >, with α(t)

i ∈ (0,∞), that parameterizes a
Dirichlet distribution over ∆d with probability density function

pα(z) =

∏d
i=1 z

αi−1
i

B(α)
(1)

B(α) =

∏d
i=1 Γ(αi)

Γ(
∑d
i=1 αi)

(2)

where Γ is the Gamma function, which generalizes the factorial function to real values. Thus, given
a set of neural network weights and some input x(t), we have a conditional density function over
the domain of the target y(t). The network can be trained to minimize the negative log-likelihood
(NLL) of the training set, −∑t ln p

α(t)(y(t)), using gradient descent. Dropping the example index
t for clarity, we write the log-likelihood for a single example as

ln(pα(y)) = ln

(
d∏
i=1

yαi−1
i

)
− ln

(∏d
i=1 Γ(αi)

Γ(
∑d
i=1 αi)

)

=

d∑
i=1

ln(yαi−1
i) + ln(Γ(

d∑
i=1

αi))−
d∑
i=1

ln(Γ(αi))

=

d∑
i=1

(αi − 1) ln(yi) + ln(Γ(

d∑
i=1

αi))−
d∑
i=1

ln(Γ(αi)). (3)

The gradient w.r.t. the network output αi is then

2

Under review as a conference paper at ICLR 2019

∂

∂αi
ln (pα(y)) = ln(yi) +

∂

∂αi
ln(Γ(

d∑
j=1

αj))−
∂

∂αi
ln(Γ(αi))

= ln(yi) +
∂(
∑d
j=1 αj)

∂αi
ψ(

d∑
j=1

αj)− ψ(αi)

= ln(yi) + ψ(

d∑
j=1

αj)− ψ(αi) (4)

where ψ is the digamma function ψ(x) = ∂
∂x ln(Γ(x)), and the gradient for a particular target is

∂

∂αi
ln (pα(z = y)) = ln(yi) + ψ(

d∑
j=1

αj)− ψ(αi) (5)

Accurate numerical approximations of the digamma function are readily available, and obtaining
point estimates from the network output is as simple as computing the mean of the Dirichlet distri-
bution, E[z] = α∑d

i=1 αi
, or the mode α− 1∑d

i=1 αi−d
when αi > 1 ∀i ∈ {1, . . . , d}.

The Dirichlet distribution can also be parameterized by a vector µ ∈ ∆d, together with a scalar
γ > 0, where

pµ,γ(z) =

∏d
i=1 z

αi−1

B(α)
(6)

αi = µi × γ (7)

In this alternative parameterization, µ predicts the expectation of the Dirichlet, and the summation to
one could be enforced using a softmax activation. This is conceptually similar to the heteroskedastic
Gaussian model where the neural network computes the mean and standard deviation of a Gaussian
distribution.

2.2 TARGETS SAMPLED FROM A DIRICHLET-MULTINOMIAL COMPOUND DISTRIBUTION

The Dirichlet output layer can also be used to model vectors of non-negative integer targets y ∈ Nd0
as samples from the Dirichlet-multinomial compound distribution. This allows us to treat each target
as a collection of related trials, conditioned on the same input. The distribution is parameterized by
the Dirichlet parameters α and the number of multinomial trials n. The number of trials n can be
fixed for each training example, fixed for the entire data set, or treated as a random variable sampled
from a conditional probability distribution parameterized by an additional neural network output.
Here we assume that n =

∑
i yi is given for each training example, so that the probability of target

y is given by the following:

pα, n(y) =

∫
∆d

Mulz,n(y)Dirα(z)dz

=

∫
∆d

(
1

B(y)

d∏
i=1

zyii

)(
1

B(α)

d∏
i=1

zαi−1
i

)
dz

=
1

B(α)B(y)

∫
∆d

d∏
i=1

zyi+αi−1
i dz

=
B(α+ y)

B(α)B(y)
(8)

3

Under review as a conference paper at ICLR 2019

where we use the definition of the multivariate beta function to integrate over the simplex ∆d and
marginalize out z. This leads to the log-likelihood

ln(pα, n(y)) = lnB(α+ y)− lnB(α)− lnB(y)

= ln

(∏d
i=1 Γ(αi + yi)

Γ(
∑d
i=1 αi + yi)

)
− ln

(∏d
i=1 Γ(αi)

Γ(
∑d
i=1 αi)

)
− lnB(y)

=

d∑
i=1

ln(Γ(αi + yi))− ln(Γ(

d∑
i=1

(αi + yi)))

+ ln(Γ(

d∑
i=1

αi))−
d∑
i=1

ln(Γ(αi))− lnB(y) (9)

and the gradient of the log-likelihood w.r.t. network output αi,

∂

∂αi
ln
(
pα, n(y)

)
= ψ(αi + yi)− ψ(

d∑
j=1

(αj + yj)) + ψ(

d∑
j=1

αj)− ψ(αi). (10)

2.3 UNIVARIATE TARGETS WITH LOWER AND UPPER BOUNDS

When the targets are real-valued scalars with lower and upper bounds, we can shift and rescale the
values to be in the range [0, 1] and model the target as a sample from a Beta distribution. The Beta
distribution is the d = 2 case of the Dirichlet, and can be used to predict univariate targets y ∈ [0, 1].
It can be parameterized by a neural network that outputs two values α, β > 0, with

pα,β(z) = zα−1(1− z)β−1 Γ(αβ)

Γ(α)Γ(β)
(11)

with log-likelihood

ln (pα,β(z)) = (α− 1) ln(z) + (β − 1) ln(1− z) (12)
+ ln(Γ(αβ))− ln(Γ(α))− ln(Γ(β))

and gradients

∂

∂α
ln (pα,β(z)) = ln(z) + ψ(αβ)− ψ(α) (13)

∂

∂β
ln (pα,β(z)) = ln(1− z) + ψ(αβ)− ψ(β). (14)

Alternatively, we can parameterize the Beta using two scalar network outputs: µ ∈ [0, 1] and γ > 0.

pµ,γ(z) = yα−1(1− z)β−1 Γ(αβ)

Γ(α)Γ(β)
(15)

α = µ× γ (16)
β = γ − µ× γ (17)

In this parameterization, µ = α
α+β = E[z] is the expectation of the distribution, and γ = α + β

controls the width of the density function.

4

Under review as a conference paper at ICLR 2019

−4 −2 0 2 4

x

−1

0

1

2

3

4

Inverse-Linear

f(x)

f ′(x)

ψ(f(x))f ′(x)

−4 −2 0 2 4

x

−1

0

1

2

3

4

Exponential-Linear

f(x)

f ′(x)

ψ(f(x))f ′(x)

Figure 1: The choice of activation function in the output layer of a neural network affects the shape of
the objective function. To stabilize learning in a Dirichlet output layer, we propose that the activation
function f should approach 0 asymptotically as x → −∞, and that ∂

∂xψ(f(x)) = ψ(f(x))f ′(x)
should be bounded. Two such functions are the Inverse-Linear (left) and Exponential-Linear (right)
piecewise functions.

3 STABILITY

In order to stabilize learning with stochastic gradient descent, the activation function should be
chosen carefully to shape the objective function. For the models proposed here, we need an ac-
tivation function with a strictly positive range, and that asymptotically approaches zero (or some
minimum value ε > 0) as x → −∞. Moreover, the digamma terms in the gradient of the Dirichlet
become large for small αi (limx→0+ψ(x) = −∞), so to avoid large gradients (which can desta-
bilize learning), we propose two piecewise activation functions for which ∂

∂xψ(f(x)) is bounded:
the Inverse-Linear (IL) and Exponential-Linear (EL) functions (Figure 1). The latter is simply a
strictly-positive variant of the popular Exponential Linear Unit, or ELU (Clevert et al., 2015).

IL(x) =

{
1

1−x for x < 0,

x+ 1 for x ≥ 0
(18)

EL(x) =

{
ex for x < 0,

x+ 1 for x ≥ 0
(19)

We also propose an activation function that saturates at hyper-parameter value τ > 1, the
Exponential-Tanh (ET):

ETτ (x) =

{
ex for x < 0,

(τ − 1)× tanh(x
τ−1) + 1 for x ≥ 0

(20)

Each of these activation functions were tested in experiments. We found that in both parameteri-
zations of the Dirichlet output, using the IL activation resulted in a more stable learning trajectory
than with the EL, presumably because 1

1−x approaches zero more slowly than ex. We also observed
overflow errors when some αi became very small. We found that this could be avoided through
weight regularization or by adding a small stability factor ε to the output activation function.

Even with these activation functions, the increased flexibility of the models could lead to unexpected
behavior. The model is able to concentrate probability mass at a particular target value, which could
allow a network to devote its limited capacity to maximizing the likelihood of a single example.
While this was not observed in our experiments, additional regularization and hyper-parameter tun-
ing might be required for some applications.

5

Under review as a conference paper at ICLR 2019

0.0 0.2 0.4 0.6 0.8 1.0

y

0

2

4

6

8

p
α
,β
(y
)

α = 1.00, β = 1.00

α = 0.76, β = 3.28

α = 3.92, β = 31.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Epoch

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
α

β

Figure 2: Example evolution of the probability density function for a simple neural network with a
Beta output, trained to optimize the log-likelihood of a single data point with y = 0.1. The density
functions are given by pθ1,θ2(y) = yα−1(1− y)β−1/B(α, β) where α = EL(θ1) and β = EL(θ2).
Initializing θ1 and θ2 to zero gives a uniform distribution (dotted line). After 10 iterations of gradient
descent updates to θ1, θ2, the probability mass accumulates in the left corner (dashed line), with
α < 1. Then α increases and the mode of the distribution becomes non-zero when α > 0. At 1000
iterations, the mode is close to the target at y = 0.1 (solid line).

4 EXPERIMENTS

4.1 SIMPLE SIMULATION WITH BETA OUTPUT

As a simple illustration, consider a single data point y = 0.1 modeled as a sample from a Beta
distribution parameterized by α = EL(θ1) and β = EL(θ2), with the exponential linear activation
function EL defined as in Equation 19. We update θ1 and θ2 using gradient descent as if they
were parameters of a very simple neural network. Figure 2 shows that this model quickly learns to
concentrate probability mass at the target.

4.2 REGRESSION TASK FOR XENON1T DARK MATTER DETECTOR

For real-valued targets in a bounded interval, one might expect performance to improve when these
bounds are incorporated into the model. We tested this idea on a simulated data set from the
XENON1T dark matter detection experiment (XENON Collaboration, 2017b), where the task is
to predict the x and y locations of individual particle collisions from detector data — essentially a
video of the sensor activities over time. The location of each collision is bounded by the dimen-
sions of the detector. The training data consists of 160,000 simulated collision events (XENON
Collaboration, 2017a), while another 20,000 events are used for early stopping and validation. The
detector has rotational symmetry isomorphic to the cyclic group of order 6, which is accounted for
by randomly rotating each example during training. For each event, the neural network input con-
sists of real-valued recordings from 248 detector elements for 1000 time steps, and a neural network
predicts both the x and y locations of the event, each normalized to be in the range [0, 1].

A “typical” deep neural network regression model was constructed with an MSE objective and a
linear output layer, where one output unit predicted the x-location, and another predicted the y-
location. The architecture and other hyperparameters were optimized using Sherpa (Hertel et al.,
2018), including the number and shape of the layers, the learning rate, momentum, and dropout
regularization. The best architecture used a two-column siamese network design to process the
data from the top and bottom of the detector, with three convolutional layers of shape 300-300-10
followed by two dense layers of 2000-1000 in each column. (The kernel shape and step size were
set to 1, as the sensors were not arranged in a grid.) These were followed by two dense layers of 300
units that combine all the information from the two columns. Layers were initialized from a scaled
normal distribution (Glorot & Bengio, 2010), and optimized using the Adam algorithm (Kingma
& Ba, 2014) (learning rate = 0.0001, β1 = 0.999, β2 = 0.999, decay = 0.0001) on mini-batches
of size 20. A dropout rate of 50% was used in the top 3 layers (Srivastava et al., 2014; Baldi &
Sadowski, 2014). The selu activation (Klambauer et al., 2017) was used in each hidden layer.

6

Under review as a conference paper at ICLR 2019

0.0 0.2 0.4 0.6 0.8 1.0

x-location

0

5

10

15

20

25 Target: 0.95

Predicted: �= 164.7,�= 8.5

Mean: 0.95

Mode: 0.96

0 25 50 75 100 125 150 175 200

Epoch

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

M
S
E

Sigmoid

Gaussian

Beta

Beta2

Figure 3: Left: Example prediction from the XENON1T network with a Beta output layer. The
target is at 0.95, and the Beta distribution predicted by the network has mean 0.95 and mode 0.96.
Right: Validation set performance on the XENON1T regression task using a linear output layer, a
heteroskedastic Gaussian output layer, a Beta output layer, or a Beta output layer with the alternative
parameterization (Beta2). Rather than compare the NLL objective, we compare the more intuitive
MSE loss, using the means of the Beta distributions as point estimates.

This standard neural network regression model was then compared to three neural networks with
more expressive output distributions: (1) a heteroskedastic Gaussian, where the mean was predicted
by neurons with linear activation, and the standard deviation was predicted by neurons with expo-
nential activation; (2) a Beta output layer (Equation 11) with exponential activation; (3) and a Beta
output layer with the alternative parameterization in Equation 17 where the µ units have a sigmoid
activation and the γ units have a exponential activation. The heteroskedastic Gaussian and Beta
layers not only provide more informative predictions in the form of distributions that can be used
in the downstream analysis, but they also result in better performance than the standard approach
(Figure 3).

4.3 CIFAR-100 TRANSFER TASK

This approach is also appropriate for tasks in which the targets are probabilities. In model compres-
sion, or network distillation (Bucilu et al., 2006; Hinton et al., 2015), a large model (or ensemble of
models) is trained for a supervised learning task, and then the information learned is transferred to a
separate, smaller model by training the small model to predict the probabilistic output, or ”soft tar-
gets,” of the large model. In many cases, the smaller “student” model will train faster and generalize
better than if it had been trained on the actual “hard targets” from the training data set, because there
is information, or “dark knowledge”, contained in the imperfect predictions of the large model.
When the “teacher” model has a sigmoid or softmax output, the targets of the student model will
be probability values on a multi-dimensional simplex, which can be modelled as samples from a
Dirichlet distribution.

We tested this approach by first training a typical convolutional neural network on the CIFAR-
100 (Krizhevsky & Hinton, 2009) benchmark data set to serve as a teacher model. The classification
data set consisted of 60,000 32-by-32 RGB images from 100 classes, with 50,000 training examples
and 10,000 test examples. We used the 18-layer convolutional network architecture from Clevert
et al. (2015), with the selu transfer function in the hidden layers (Klambauer et al., 2017), a softmax
output layer, constant dropout rates of (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.0) in each stack, batch size of
100, and the Adam optimizer (η = 0.0001, β1 = 0.99, β2 = 0.999). Training was stopped when the
validation loss did not improve over 10 epochs. Training samples were augmented using horizontal
flipping and random translations of up to 10% vertically or horizontally.

Next, student neural networks were trained to predict the predictions of the teacher network. The
student networks had the same architecture and optimization hyperparameters as the original net-
work, except that no dropout regularization was used, and gradients were clipped to a maximum
value of 100 for stability. We compared three different types of student network output layers: (1) a
standard softmax layer with categorical cross-entropy objective, (2) a Dirichlet output consisting of

7

Under review as a conference paper at ICLR 2019

0 100 200 300 400 500

Epoch

0.001

0.002

0.003

0.004

0.005

M
S
E

Softmax

Dirichlet

Dirichlet2

Softmax (loss=MSE)

Dirichlet (loss=MSE)

Dirichlet2 (loss=MSE)

Figure 4: Validation set performance on the CIFAR-100 distillation task using a softmax output
layer with categorical cross-entropy loss, a Dirichlet output layer as parameterized in Equation 1,
or a Dirichlet output layer as parameterized in Equation 7. Rather than compare the NLL objective,
we compare the more intuitive MSE loss, using the mean of the Dirichlet distributions as point
estimates. Each network was also trained using an MSE objective (using the mean of the Dirichlet
as a point-estimate); this had little effect on the softmax output, but hurt the final performance of the
Dirichlet outputs.

100 IL units as defined in Equation 18, plus a stability factor of ε = 10−6, and (3) a Dirichlet with
the alternative parameterization given in Equation 7, where the mean of the Dirichlet is specified
by a softmax of size 100, and the scale is specified with a single IL unit. Figure 4 compares the
training trajectories of the networks, and shows that after training, the mean-value point estimate
from the Dirichlet output layers have very similar MSE to the predictions of the softmax layer. We
also include training trajectories for another three networks trained using the MSE objective on the
mean-value point prediction from each distribution, rather than the NLL. This initially made training
faster for the two versions of the Dirichlet output, but the final performance was not as good; for the
softmax layer, using the MSE as the objective instead of the cross-entropy made little difference.

4.4 LOW-DIMENSIONAL EMBEDDING FOR DIRICHLET-MULTINOMIAL DATA

To test the Dirichlet-multinomial output, we trained an autoencoder network to learn a 2-dimensional
embedding of data simulated from high-dimensional, semi-sparse multinomials. This situation is en-
countered in metagenomics, where the goal is to understand the structure of microbial communities
from mixed sequence reads (Holmes et al., 2012).

The data set was constructed by first parameterizing 10 clusters by sampling 10 times from a Dirich-
let (d = 100, α =< 0.1, 0.1, . . . , 0.1 >), and then sampling 1,000 times from each cluster, with
the number of trials n sampled from the uniform distribution U(50, 100), for a total of 10,000 ex-
amples, with each 100-dimensional example consisting of a vector of non-negative counts. Training
was performed on 80% of these examples, while 20% was used as a validation set. We trained a neu-
ral network autoencoder model consisting of three tanh hidden layers of shape 100-2-100, with the
2-dimensional layer serving as the low-dimensional bottleneck, and a Dirichlet-multinomial output
layer. The network was trained for 100 epochs, using the Adam optimizer (η = 0.0001, β1 = 0.99,
β2 = 0.999), batch size of 100, and L2 regularization in the hidden layer (0.0001). As shown in
Figure 5, the model has no problem converging to an embedding in which the 10 clusters are clearly
separated in the validation set.

5 CONCLUSION

In most artificial neural network models, supervised learning corresponds to maximizing the NLL
of the training set targets conditioned on the inputs. In this interpretation, each neural network
prediction is a distribution over possible target values. While the vast majority of neural network
classifiers in use today rely on a small set of distributions — the binomial distribution, the categorical
distribution, the Gaussian distribution, or the Laplacian distribution — there are many situations for
which none of these distributions are appropriate. Here we propose the use of the Beta distribution,

8

Under review as a conference paper at ICLR 2019

Figure 5: A deep Dirichlet-multinomial autoencoder was used to learn a two-dimensional embed-
ding of simulated samples from 100-dimensional multinomials. The 10 different clusters are readily
apparent in the embedding of the validation set examples. The samples shown are colored by their
true cluster identity.

Dirichlet distribution, and the Dirichlet-multinomial compound distribution as outputs of neural
networks. We show that a neural network can parameterize these distributions and the entire model
can be trained using gradient descent on the NLL of the training data targets.

This provides a particularly elegant approach to modelling certain types of network targets. The Beta
and Dirichlet provide a better way to model targets that lie on a simplex, such as probabilities or real-
values that lie on a bounded interval, and the Dirichlet-multinomial enables us to model vectors of
counts using the elegant mathematical properties of the Dirichlet. The predicted distributions have
the correct support, so we can use them in decision making and for confidence intervals. Moreover,
we have demonstrated through experiments that the expectation over the Dirichlet serves as a good
point estimate, with a mean squared error that is similar to optimizing the MSE directly.

REFERENCES

P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial Intelligence, 210C:78–122,
2014.

Christopher M Bishop. Mixture density networks. Technical report, Aston University, 1994.

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
535–541. ACM, 2006.

François Chollet et al. Keras, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pp. 249–256,
2010.

Lars Hertel, Peter Sadowski, and Julian Collado. SHERPA: A Python library for hyperparame-
ter tuning of machine learning models, June 2018. URL https://github.com/LarsHH/
sherpa. original-date: 2018-05-16T21:41:54Z.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

9

https://github.com/LarsHH/sherpa
https://github.com/LarsHH/sherpa

Under review as a conference paper at ICLR 2019

Ian Holmes, Keith Harris, and Christopher Quince. Dirichlet multinomial mixtures: Generative
models for microbial metagenomics. PLOS ONE, 7(2):1–15, 02 2012. doi: 10.1371/journal.
pone.0030126.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in Neural Information Processing Systems, pp. 972–981, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009. URL http://www.cs.toronto.edu/
˜{}kriz/learning-features-2009-TR.pdf.

Nathan Ng, Rodney A Gabriel, Julian McAuley, Charles Elkan, and Zachary C Lipton. Predicting
surgery duration with neural heteroscedastic regression. arXiv preprint arXiv:1702.05386, 2017.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability
distribution. In Neural Networks, 1994. IEEE World Congress on Computational Intelligence.,
1994 IEEE International Conference On, volume 1, pp. 55–60. IEEE, 1994.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp. 3483–3491. Curran
Associates, Inc., 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Peter M. Williams. Using neural networks to model conditional multivariate densities. Neural
Comput., 8(4):843–854, May 1996. ISSN 0899-7667. doi: 10.1162/neco.1996.8.4.843. URL
http://dx.doi.org/10.1162/neco.1996.8.4.843.

XENON Collaboration. PAX: a processor for analyzing XENON, 2017a. URL https://
github.com/XENON1T/pax.

XENON Collaboration. The XENON1T dark matter experiment. The European Physical Journal
C, 77(12):881, Dec 2017b. ISSN 1434-6052. doi: 10.1140/epjc/s10052-017-5326-3. URL
https://doi.org/10.1140/epjc/s10052-017-5326-3.

10

http://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~{}kriz/learning-features-2009-TR.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://dx.doi.org/10.1162/neco.1996.8.4.843
https://github.com/XENON1T/pax
https://github.com/XENON1T/pax
https://doi.org/10.1140/epjc/s10052-017-5326-3

	Introduction
	Dirichlet Output Layers
	Targets on the Multidimensional Simplex
	Targets Sampled from a Dirichlet-Multinomial Compound Distribution
	Univariate Targets with Lower and Upper Bounds

	Stability
	Experiments
	Simple Simulation with Beta Output
	Regression Task for XENON1T Dark Matter Detector
	CIFAR-100 Transfer Task
	Low-Dimensional Embedding for Dirichlet-Multinomial Data

	Conclusion

