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A B S T R A C T

Convolutional neural networks (CNNs) achieve state-of-the-art accuracy in a variety
of tasks in computer vision and beyond. One of the major obstacles hindering the
ubiquitous use of CNNs for inference on low-power edge devices is their high
computational complexity and memory bandwidth requirements. The latter often
dominates the energy footprint on modern hardware. In this paper, we introduce
a lossy transform coding approach, inspired by image and video compression,
designed to reduce the memory bandwidth due to the storage of intermediate
activation calculation results. Our method does not require fine-tuning the network
weights and halves the data transfer volumes to the main memory by compressing
feature maps, which are highly correlated, with variable length coding. Our
method outperform previous approach in term of the number of bits per value
with minor accuracy degradation on ResNet-34 and MobileNetV2. We analyze the
performance of our approach on a variety of CNN architectures and demonstrate
that FPGA implementation of ResNet-18 with our approach results in a reduction
of around 40% in the memory energy footprint, compared to quantized network,
with negligible impact on accuracy. When allowing accuracy degradation of up to
2%, the reduction of 60% is achieved. A reference implementation accompanies
the paper.

1 Introduction

Deep neural networks have established themselves as the first-choice tool for a wide range of
applications. Neural networks have shown phenomenal results in a variety of tasks in a broad range of
fields such as computer vision, computational imaging, and image and language processing. Despite
deep neural models impressive performance, the computation and computational requirements are
substantial for both training and inference phases. So far, this fact has been a major obstacle for the
deployment of deep neural models in applications constrained by memory, computational, and energy
resources, such as those running on embedded systems.

To alleviate the energy cost, custom hardware for neural network inference, including FPGAs and
ASICs, is actively being developed in recent years. In addition to providing better energy efficiency
per arithmetic operation, custom hardware offers more flexibility in various strategies to reduce the
computational and storage complexity of the model inference, for example by means of quantization
(Baskin et al., 2018; Hubara et al., 2018; Jacob et al., 2018) and pruning (Han et al., 2016; Louizos
et al., 2018; Theis et al., 2018). In particular, quantization to very low precision is especially efficient
on custom hardware where arbitrary precision arithmetic operations require proportional resources. To
prevent accuracy degradation, many approaches have employed training the model with quantization
constraints or modifying the network structure.

A recent study (Yang et al., 2017) has shown that almost 70% of the energy footprint on such hardware
is due to data movement to and from the off-chip memory. Amounts of data typically need to be
transferred to and from the RAM and back during the forward pass through each layer, since the local
memory is too small to store all the feature maps. By reducing the number of bits representing these
data, existing quantization techniques reduce the memory bandwidth considerably. However, to the
best of our knowledge, none of these methods exploit the high amount of interdependence between
the feature maps and spatial locations of the compute activations.
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Contributions. In this paper, we propose a novel scheme based on transform-domain quantization
of the neural network activations followed by lossless variable length coding. We demonstrate that
this approach reduces memory bandwidth by 40% when applied in the post-training regime (i.e.,
without fine-tuning) with small computational overhead and no accuracy degradation. Relaxing the
accuracy requirements increases bandwidth savings to 60%. Moreover, we outperform previous
methods in term of number bit per value with minor accuracy degradation. A detailed evaluation
of various ingredients and parameters of the proposed method is presented. We also demonstrate a
reference hardware implementation that confirms a reduction in memory energy consumption during
inference.

2 Related work

Quantization. Low-precision representation of the weights and activations is a common means of
reducing computational complexity. On appropriate hardware, this typically results in the reduction of
the energy footprint as well. It has been demonstrated that in standard architectures quantization down
to 16 (Gupta et al., 2015) or 8 bits (Jacob et al., 2018; Lee et al., 2018; Yang et al., 2019) per parameter
is practically harmless. However, further reduction of bitwidth requires non-trivial techniques (Mishra
et al., 2018; Zhang et al., 2018), often with adverse impact on training complexity. Lately, the
quantization of weights and activations of neural networks to 2 bits or even 1 (Rastegari et al., 2016;
Hubara et al., 2018) has attracted the attention of many researchers. While the performance of binary
(i.e., 1-bit) neural networks still lags behind their full-precision counterparts (Ding et al., 2019; Peng
& Chen, 2019), existing quantization methods allow 2-4 bit quantization with a negligible impact on
accuracy (Choi et al., 2018b;a; Dong et al., 2019).

Quantizing the neural network typically requires introducing the quantizer model at the training
stage. However, in many applications the network is already trained in full precision, and there is no
access to the training set to configure the quantizer. In such a post-training regime, most quantization
methods employ statistical clamping, i.e., the choice of quantization bounds based on the statistics
acquired in a small test set. Migacz (2017) proposed using a small calibration set to gather activation
statistics and then randomly searching for a quantized distribution that minimizes the Kullback-
Leibler divergence to the continuous one. Gong et al. (2018), on the other hand, used the L∞ norm
of the tensor as a threshold. Lee et al. (2018) employed channel-wise quantization and constructed a
dataset of parametric probability densities with their respective quantized versions; a simple classifier
was trained to select the best fitting density. Banner et al. (2018) derived an approximation of the
optimal threshold under the assumption of Laplacian or Gaussian distribution of the weights, which
achieved single-percentage accuracy reduction for 8-bit weights and 4-bit activations. Meller et al.
(2019) showed that the equalization of channels and removal of outliers improved quantization
quality. Choukroun et al. (2019) used one-dimensional line-search to evaluate an optimal quantization
threshold, demonstrating state-of-the-art results for 4-bit weight and activation quantization.

Influence of memory access on energy consumption. Yang et al. (2017) studied the breakdown
of energy consumption in CNN inference. For example, in GoogLeNet (Szegedy et al., 2015)
arithmetic operations consume only 10% of the total energy, while feature map transfers to and from
an external RAM amount to about 68% of the energy footprint. However, due to the complexity of
real memory systems, not every method that decreases the sheer memory bandwidth will necessarily
yield significant improvement in power consumption. In particular, it depends on computational part
optimization: while memory performance is mainly defined by the external memory chip, better
optimization of computations will lead to higher relative energy consumption of the memory. For
example, while Ansari & Ogunfunmi (2018) reported a 70% bandwidth reduction, the dynamic power
consumption decreased by a mere 2%.

Xiao et al. (2017) proposed fusing convolutional layers to reduce the transfer of feature maps. In an
extreme case, all layers are fused into a single group. A similar approach was adopted by Xing et al.
(2019), who demonstrated a hardware design that does not write any intermediate results into the
off-chip memory. This approach achieved approximately 15% runtime improvement for ResNet and
state-of-the-art throughput. However, the authors did not compare the energy footprint of the design
with the baseline. Morcel et al. (2019) demonstrated that using on-chip cache cuts down the memory
bandwidth and thus reduces power consumption by an order of magnitude. In addition, Jouppi et al.
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(2017) noted that not only the power consumption but also the speed of DNN accelerators is memory-
rather than compute-bound. This is confirmed by Wang et al. (2019), who also demonstrated that
increasing computation throughput without increasing memory bandwidths barely affects latency.

Network compression. Lossless coding and, in particular, variable length coding (VLC), is a way to
reduce the memory footprint without compromising performance. In particular, Han et al. (2016)
proposed using Huffman coding to compress network weights, alongside quantization and pruning.
Wijayanto et al. (2019) proposed using the more computationally-demanding algorithm DEFLATE
(LZ77 + Huffman) to further improve compression rates. Chandra (2018) used Huffman coding
to compress feature maps and thus reduce memory bandwidth. Gudovskiy et al. (2018) proposed
passing only the lower-dimensional feature maps to the memory to reduce the bandwidth. Cavigelli
& Benini (2019) proposed using RLE-based algorithm to compress sparse network activations.

3 Transform-Domain Compression

In what follows, we briefly review the basics of lossy transform coding. For a detailed overview
of the subject, we refer the reader to Goyal (2001). Let x = (x1, . . . , xn) represent the values
of the activations of a NN layer in a block of size n = W × H × C spanning, respectively, the
horizontal and the vertical dimensions and the feature channels. Prior to being sent to memory,
the activations, x, are encoded by first undergoing an affine transform, y = T x = T(x− µ); the
transform coefficients are quantized by a scalar quantizer, Q∆, whose strength is controlled by the
step size ∆, and subsequently coded by a lossless variable length coder (VLC). We refer to the length
in bits of the resulting code, normalized by n as to the average rate, R∆. To decode the activation
vector, a variable length decoder (VLD) is applied first, followed by the inverse quantizer and the
inverse transform. The resulting decoded activation, x̂ = T −1Q−1

∆ (Q∆(T x)), typically differs from
x; the discrepancy is quantified by a distortion, D∆. The functional relation between the rate and the
distortion is controlled by the quantization strength, ∆, and is called rate-distortion curve.

Classical rate-distortion analysis in information theory assumes the MSE distortion, D = 1
n‖x− x̂‖22.

While in our case the measure of distortion is the impact on the task-specific loss, we adopt the
Euclidean distortion for two reasons: firstly, it is well-studied and leads to simple expressions for the
quantizer; and, secondly, computing loss requires access to the training data, which are unavailable in
the post-training regime. The derivation of an optimal rate is provided in Appendix D.

A crucial observation justifying transform coding is the fact that significant statistical dependence
usually exists between the xi (Cogswell et al., 2016). We model this fact by asserting that the
activations are jointly Gaussian, x ∼ N (µ,Σ), with the covariance matrix Σ, whose diagonal
elements are denoted by σ2

i . Statistical dependence corresponds to non-zero off-diagonal elements
in Σ. The affinely transformed y = T(x − µ) is also Gaussian with the covariance matrix Σ′ =

TTΣT. The distortion (D.2) is minimized over orthonormal matrices by T = Σ−1/2 diagonalizing
the covariance (Goyal, 2001). The latter is usually referred to as the Karhunen-Loeve transform
(KLT) or principal component analysis (PCA). The corresponding minimum distortion is D∗(R) =
πe
6 det (Σ)1/n2−2R. Since the covariance matrix is symmetric, T is orthonormal, implying T−1 =

TT.

In Fig. 1, a visualization of 2D vector quantization is shown. For correlated channels (Fig. 1a), many
2D quantization bins are not used since they contain no values. Linear transformation (Fig. 1b)
provides improved quantization error for correlated channels by getting rid of those empty bins.

3.1 Implementation

In what follows, we describe an implementation of the transform coding scheme at the level of
individual CNN layers. The convolutional layer depicted in Fig. 2 comprises a bank of convolutions
(denoted by ∗ in the Figure) followed by batch normalization (BN) that is computed on an incoming
input stream. The output of BN is a 3D tensor that is subdivided into 3D blocks to which the transform
coding is applied. Each such block is sent to an encoder, where it undergoes PCA, scalar quantization
and VLC. The bit stream at the VLC output has a lower rate than the raw input and is accumulated
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(a) (b) (c)
Figure 1: Vector quantization in 2D case. (a) A pair of correlated channels on a scatter plot. All
values in a cell are mapped to the center of the cell; hence, small cells induce small quantization
noise. Several bins are empty (red cells); (b) Decorrelation improves utilization since the cells are
smaller now; (c) Forcing equal bin size along all dimensions further improves utilization. Instead of
restricting both channel dynamic range to be divided into same number of bins, we use uniform bin
size along all dimensions. VLC allows to further compress the representation since the channels with
smaller dynamic range have are mapped mostly to a few most probable bins.

in the external memory. Once all the output of the layer has been stored in the memory, it can be
streamed as the input to the following layer. For that purpose, the inverse process is performed by
the decoder: a VLD produces the quantized levels that are scaled back to the transform domain, and
an inverse PCA is applied to reconstruct each of the activation blocks. The layer non-linearity is
then applied, and the activations are used as an input to the following layer. While the location of
the nonlinearity could also precede the encoder, our experiments show that the described scheme
performs better.

*

Memory

PCA PCA-1

Q Q-1

VLC VLD

BN to 
layer l+1

from
 layer l-1

Figure 2: High-level flow diagram of the encoder-decoder chain. PCA and BN are folded into the
convolution weights (denoted by ∗), resulting in a single convolution (boxed in grey).

Linear transform. We have explored different sizes of blocks for the PCA transform and found
1× 1×C to be optimal (the ablation study is shown in Appendix B). Due to the choice of 1× 1×C
blocks, the PCA transform essentially becomes a 1 × 1 tensor convolution kernel (Fig. E.1 in the
Appendix shows an example of its application to an image). This allows further optimization: as
depicted in Fig. 2, the convolution bank of the layer, BN and PCA can be folded (Jacob et al., 2018)
into a single operation, offering also an advantage in the arithmetic complexity.

The PCA matrix is pre-computed, as its computation requires the expensive eigendecomposition of
the covariance matrix. The covariance matrix is estimated on a small batch of (unlabeled) training
or test data and can be updated online. Estimation of the covariance matrix for all layers at once is
problematic since quantizing activations in the l-th layer alters the input to the l+ 1-st layer, resulting
in a biased estimation of the covariance matrix in the l + 1-st layer. To avoid this, we calculate the
covariance matrix layer by layer, gradually applying the quantization. The PCA matrix is calculated
after quantization of the weights is performed, and is itself quantized to 8 bits.

Quantization. For transformed feature maps we use a uniform quantization, where the dynamic
range is determined according to the channel with the highest variance. Since all channels have an
equal quantization step, entropy of the low-variance channels is significantly reduced.
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Figure 3: Rate-distortion curves for ResNet-18 and MobileNetV2 architectures with 8- (blue) and
4-bit (red) weight quantization. Distortion is evaluated in terms of top-1 accuracy on ImageNet.
Dashed lines represent rates obtained by Huffman VLC, while solid lines represent theoretical rates
(entropy). More architectures can be found in Fig. A.1 in the Appendix.

Variable length coding. The theoretical rate associated with a discrete random variable, Y (the
output of the quantizer), is given by its entropy H(X) = −E log2X = −

∑
i p(xi) log2 p(xi). This

quantity constitutes the lower bound on the amount of information required for lossless compression
of Y . We use Huffman codes, which are a practical variable length coding method (Szpankowski,
2000), achieving the rates bounded by H(X) ≤ R ≤ H(X) + 1 (see Fig. 3 for a comparison of the
theoretical rates to the ones attained by Huffman codes). Fig. F.1 in the Appendix shows an example
of Huffman trees constructed directly on the activations and their PCA coefficients.

1×1 and grouped convolutions. While for regular 3×3 convolutions the computational overhead
is small, there are two useful cases in which this is not true: 1× 1 and grouped convolutions. For
1× 1 convolutions the overhead is higher: the transformation requires as much computation as the
convolution itself. Nevertheless, it can still be feasible in the case of energy-efficient computations.
In the case of grouped convolutions, it is impossible to fold the transformation inside the convolution.
However, in the common case when the grouped convolution is followed by a regular one, we can
change the order of operations: we perform BN, activation and transformation before writing to the
memory. This way, the inverse transformation can be folded inside the following convolution.

4 Experimental Results

We evaluate the proposed framework on common CNN architectures that have achieved high perfor-
mance on the ImageNet benchmark. The inference contains 2 stages: a calibration stage, on which
the linear transformation is learned based on a single batch of data, and the test stage.

Full model performance. We evaluted our method on different CNN architectures: ResNet-18,
50, and 101 (He et al., 2016); MobileNetV2 (Sandler et al., 2018); and InceptionV3 (Szegedy et al.,
2016). Specifically, MobileNetV2 is known to be unfriendly to activation quantization (Sheng et al.,
2018). Performance was evaluated on ImageNet dataset (Russakovsky et al., 2015) on which the
networks were pre-trained. The proposed method was applied to the outputs of all convolutional
layers, while the weights were quantized to either 4 or 8 bits (two distinct configurations) using the
method proposed by Banner et al. (2018). Rates are reported both in terms of the entropy value and
the average length of the feature maps compressed using Huffman VLC in Fig. 3 and Fig. A.1 in
the Appendix. We observed that higher compression is achieved for covariance matrices with fast
decaying eigenvalues describing low-dimensional data. A full analysis can be found in Appendix G.
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Figure 4: Ablation study of the proposed encoder on ResNet-18. Left: rate-distortion curve with
different encoder configurations. Theoretical rates are reported; top-1 accuracy is used as the
distortion measure. Right: theoretical memory rate in bits per value achieved for different levels of
PCA truncation for baseline and 0.5% lower than baseline top-1 accuracy.

Table 1: Comparison with EBPC (Cavigelli & Benini, 2019). While EBPC does not affect perfor-
mance of the network, our method allows better compression by exploiting rate-distortion tradeoff.

Architecture Method Activations
(avg. number of bits per value) Accuracy

ResNet-34
EBPC 3.33 73.3%

Our method 3.9 72.9%
Our method 3.11 72.1%

MobileNetV2
EBPC 3.64 71.7%

Our method 3.8 71.6%
Our method 3.25 71.4%

Comparison to other methods. We compare the proposed method with other post-training quan-
tization methods: ACIQ (Banner et al., 2018), GEMMLOWP (Jacob & Warden, 2017), and KLD
(Migacz, 2017). Note that our method can be applied on top of any of them to further reduce the
memory bandwidth. For each method, we varied the bitwidth and chose the smallest one that attained
top-1 accuracy within 0.1% from the baseline and measured the entropy of the activations. Our
method reduces, in average, 36% of the memory bandwidth relatively to the best competing methods;
the full comparison can be found in Table A.1 in the Appendix.

As for other memory bandwidth reduction methods, our method shows better performance than
Cavigelli & Benini (2019) at the expense of performance degradation (Table 1). The performance
difference is smaller in MobileNetV2, since mobile architectures tend to be less sparse (Park et al.,
2018), making RLE less efficient. While the method proposed by Gudovskiy et al. (2018) requires
fine-tuning, our method, although introducing computational overhead, can be applied to any network
without such limitations. In addition, similarly to (Gudovskiy et al., 2018) it is possible to compress
only part of the layers in which the activation size is most significant.

Ablation study. An ablation study was performed using ResNet-18 to study the effect of different
ingredients of the proposed encoder-decoder chain. The following settings were compared: direct
quantization of the activations; quantization of PCA coefficients; direct quantization followed by
VLC; and full encoder chain comprising PCA, quantization, and VLC. The resulting rate-distortion
curves are compared in Fig. 4 (left). Our results confirm the previous result of Chandra (2018),
suggesting that VLC applied to quantized activations can significantly reduce memory bandwidth.
They further show that a combination with PCA makes the improvement dramatically bigger. In
addition, we analyze the effect of truncating the least significant principal components, which reduces
the computational overhead of PCA. Fig. 4 (right) shows the tradeoff between the computational and
memory complexities, with baseline accuracy and 0.5% below the baseline.
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Figure 5: Top-1 accuracy on ResNet18 ImageNet vs. power consumption of our hardware implemen-
tation. Each point represents a different quantization rate.

5 Hardware Implementation

In order to verify the practical impact of the proposed approach of reducing feature map entropy
to save total energy consumption, we implemented the basic building blocks of a pre-trained
ResNet-18, with weights and activation quantized to 8 bit, on Intel Stratix-10 FPGA, part num-
ber 1SX280LU3F50I2VG. From logic utilization and memory energy consumption (exact numbers
are shown in Table C.1 in the Appendix) of convolutional layers we conclude that our method add
minor computational overhead in contrast to significant reduction in memory energy consumption.
Fig. 5 shows total energy consumption for a single inference of ResNet-18 on ImageNet. In particular,
our method is more efficient for higher accuracies, where the redundancy of features is inevitably
higher. We further noticed that our approach reached real-time computational inference speed (over
40 fps). The reduction in memory bandwidth can be exploited by using cheaper, slower memory
operating at lower clock speeds, which may further reduce its energy footprint. More details appears
in the Appendix. Source files for hardware implementation can found at reference implementation.

6 Conclusion

This paper presents a proof-of-concept of energy optimization in NN inference hardware by lossy
compression of activations prior to their offloading to the external memory. Our method uses
transform-domain coding, exploiting the correlations between the activation values to improve their
compressibility, reducing bandwidth by approximately 25% relative to VLC and approximately 40%
relative to an 8-bit baseline without accuracy degradation and by 60% relative to an 8-bit baseline
with less than 2% accuracy degradation. The computational overhead required for additional linear
transformation is relatively small and the proposed method can be easily applied on top of any existing
quantization method.
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A Additional experimental results

In Fig. A.1 we show Rate-distortion curves on ResNet50, ResNet101 and InceptionV3 for weights
quantized to 4 and 8 bits. We show the theoretical entropy value and the real value using Huffman
VLC. In Table A.1 we show the comparison of our method with other post-training quantization
method. For fair comparison, we add to all compared methods a VLC and show the minimum amount
of information that is required to be transferred to the memory.

Table A.1: Comparison of our method against three known post-training quantization methods ((i)
ACIQ (Banner et al., 2018); (ii) GEMMLOWP (Jacob & Warden, 2017); (iii) KLD (Migacz, 2017); .
We report the smallest bit per value for which degradation is at most 0.1% of the baseline.

Architecture Weights Method Activations
(bits) (avg number of bits per value)

ResNet-50

8

GEMMLOWP 6.88
ACIQ 6
KLD 6.3
Our method 4.15

4

GEMMLOWP 6.93
ACIQ 6.2
KLD 6.52
Our method 4.25

Inception V3

8 GEMMLOWP 6.93
ACIQ 6.2
KLD 6.43
Our method 4.3

4 GEMMLOWP 6.97
ACIQ 6.3
KLD 6.35
Our method 4.6

MobileNetV2

8

GEMMLOWP 8.6
ACIQ 7.5
KLD 7.8
Our method 3.8

4

GEMMLOWP 8.8
ACIQ 7.85
KLD 8.1
Our method 4

Layerwise performance. In order to understand the effect of the layer depth on its activation
compressibility, we applied the proposed transform-domain compression to each layer individually.
Fig. A.2 on the following page reports the obtained rates on ResNet-18 and 50. High coding gain is
most noticeable in the first layer, which is traditionally more difficult to compress, and is consequently
quantized to higher precision (Hubara et al., 2018; Banner et al., 2018; Choi et al., 2018b).

A.1 CIFAR-10 results

B Block shape and size

Fig. B.1 shows the rate-distortion curves for blocks of the same size allocated differently to each of the
three dimensions; the distortion is evaluated both in terms of the MSE and the network classification
accuracy. The figure demonstrates that optimal performance for high accuracy is achieved with
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Figure A.1: Rate-distortion curves for ResNet50, ResNet101 and Inception V3 architectures with
8- (blue) and 4-bit (red) weight quantization. Distortion is evaluated in terms of top-1 accuracy on
ImageNet. Dashed lines represent rates obtained by Huffman VLC, while solid lines represent the
theoretical rates (entropy).

Figure A.2: Theoretic average rates for individual layers in ResNet-50 (left) and Resnet-18 (right);
lower values indicate better compression. Both configurations achieve the full precision baseline
top-1 accuracy on ImageNet. The first layer is assigned the lowest bitwidth in both models where we
observe high correlations between channels.

1× 1× C = n blocks, suggesting that the correlation between the feature maps is higher than that
between spatially adjacent activations. For lower accuracy, bigger blocks are even more efficient, but
the overhead of 4 times bigger block is too high. Experiments reported later in the paper set the block
size to values between 64 to 512 samples.

C Hardware implementation details

We have implemented ResNet-18 using a Stratix-10 FPGA by Intel, part number
1SX280LU3F50I2VG. The memory used for energy calculation is the Micron 4Gb x16 -
MT41J256M16. Current consumption of the DDR was taken from the data sheet for read and
write operation, and was used to calculate the energy required to transfer the feature maps in each
layer. The script for calculating the energy consumption accompanies reference implementation.

In our design each convolutional layer of ResNet-18 is implemented separately. In each layer we
calculate 1 pixel of 1 output feature each clock. For example, the second layer has 64 input and 64
output feature maps, thus it takes 64× (56× 56) clock cycles to calculate the output before moving
to the next layer.
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Figure A.3: Rate-distortion curves for ResNet-20 with 8- (blue) and 4-bit (red) weight quantization.
Distortion is evaluated in terms of top-1 accuracy on CIFAR-10. Dashed lines represent rates obtained
by Huffman VLC, while solid lines represent the theoretical rates (entropy).
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Figure B.1: The influence of the block shape on the top-1 validation accuracy (left) and MSE (right)
of ResNet-18 on ImageNet. Our experiments show that for the same size, the most efficient shape
is 1× 1× C, taking advantage of the correlations across different feature maps at the same spatial
location. Theoretical rates are shown.

We read the input features only once by caching the pixels and reusing them from internal memory,
and only reloading the weights of the filters in the current layer.

D Optimal rate derivation

Let us assume Gaussian activations, for which there are emperical evidence (Lin et al., 2016; Cai
et al., 2017; Banner et al., 2018), xi ∈ N (µi, σ

2
i ), and let Ri bits be allocated to each xi. The

optimal `2 distortion of xi achieved by a uniform quantizer constrained by the rate Ri can be
approximated as Di ≈ πe

6 σ
2
i 2−2Ri . The approximation is accurate until about Ri ≈ 1 bit (Goyal,

2000). Unfortunately, no general closed-form expression exits relating Ri with the corresponding
quantizer step ∆i, thus, the latter is computed numerically. From our experiments, we derived the
approximation ∆i ≈ 4.2184 · 2−Ri , accurate for Ri ≥ 2 bits.

Optimal rate allocation consists of minimizing the total distortion given a target average rate R for
the entire activation block. Under the previous assumptions, this can be expressed as the constrained
optimization problem

min
R1,...,Rn

n∑
i=1

πe

6
σ2
i 2−2Ri s.t.

1

n
(R1 + · · ·+Rn) = R, (D.1)
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Table C.1: Logic utilization and memory energy consumption of layers of various widths on Intel’s
Stratix10 FPGA. Clock frequency was fixed at 160MHz for each design. In LUTs and DSP we
present the % of total resources. In Power and Bandwidth we present the total number (% saving
comparison to regular quantization)

# channels Method LUTs DSPs Energy Bandwidth
(µJ) (Gbps)

64
Quantization 19K 960 225.93 1.28
Q+VLC 19K 960 173.44 (-23%) 0.96 (-25%)
Q+VLC+PCA 19.5K (+5%) 1056(+10%) 100.6 (-44%) 0.68 (-46.8%)

128
Quantization 43K 2240 112.96 1.28
Q+VLC 43K 2240 148 (-17%) 1.04 (-18.7%)
Q+VLC+PCA 45K(+4.3%) 2366(+5.6%) 117 (-35%) 0.83 (-35.1%)

256
Quantization 91K 4800 56.5 1.28
Q+VLC 91K 4800 46.8 (-17.2%) 1.03 (-19.5%)
Q+VLC+PCA 93K(+4%) 5059(+5.4%) 103 (-42.8%) 0.73 (-42.9%)

512
Quantization 182K 9600 28.2 1.28
Q+VLC 182K 9600 23.9 (-15.6%) 1.05 (-17.9%)
Q+VLC+PCA 186K(+2%) 10051(+4.7%) 91 (-49.5%) 0.66 (-48.4%)

which admits the closed-form solution (Goyal, 2001), R∗i = R+ log2 σi −
1

n

n∑
k=1

log2 σk, and R∗i =

0 whenever the latter expression is negative. The corresponding minimum distortion is given by

D∗(R) =
πe

6

(
σ2

1 · · · · · σ2
n

) 1
n 2−2R. (D.2)

E Projection into principal components

In Fig. E.1 we show an intuition of the effect of the projection into the principal components, in 2
layers of ResNet18. This projection helps to concentrate most of the data in part of the channels, and
then have the ability to write less data that layers.

F Huffman encoder as VLC

Huffman encoder is a known algorithm for lossless data compression. The ability of compress, i.e
achieve the theoretical bound of entropy, can be seen in the balance of the huffman tree, means that
if the huffman tree is more unbalanced we get better compression. In Fig. F.1 there is an example
of huffman tree with and without projection on the principal components, after the projection the
huffman tree is more unbalanced.

G Eigenvalues analysis

The eigenvalues of the covariance matrix is a measure of the dispersal of the data. If high energy
ratio, means the cumulative sum of eigenvalues divided by the total sum, can be expressed with small
part of the eigenvalues, the data is less dispersal and therefore more compressible. In figure G.1 we
analyze the covariance energy average ratio in all layers of different architectures. The interesting
conclusion is that the ability of compression with the suggested algorithm is correlated with the
covariance energy average ratio , means that for new architectures we can look only at the energy
ratio of the activation to measure our ability of compression.
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Figure E.1: Channels from layers one and two in ResNet18 with and without principal component
projection. Using PCA we create new channels where each channel is based on all original channels,
ordered by how well the new channels capture the data. Under each channel we can see the energy
(in terms of L2 norm) associated with that channel. Most energy is now concentrated within a few
known channels (the first channels), enabling aggressive quantization for the rest of the channels.
This is unlike the case of no projection where energy is more spread out among the different channels
without affording an easy way to prioritize between them. Finally, note that values of the last channels
are almost identical. For example, all values of channel 64 are mapped to a single value v, which can
benefit the entropy encoder by using a short codeword for v and thus write less bits to memory for
that channel.
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Figure F.1: Example of Huffman tree with (Right) and without (Left) projection on the principal
components. The colored nodes represent the leaves of the tree. We can see that when we project on
the principal component the tree is less balanced, means can be better compressed
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Figure G.1: Analysis of the eigenvalues ratio that are needed to achieve energy ratio, means cumulative
sum of the eigenvalues.
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