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ABSTRACT

Current state-of-the-art methods for semantic segmentation use deep neural net-
works to learn the segmentation mask from the input image signal as an image-
to-image mapping. While these methods effectively exploit global image context,
the learning and computational complexities are high. We propose shared memory
augmented neural network actors as a dynamically scalable alternative. Based on
a decomposition of the image into a sequence of local patches, we train such actors
to sequentially segment each patch. To further increase the robustness and better
capture shape priors, an external memory module is shared between different ac-
tors, providing an implicit mechanism for image information exchange. Finally,
the patch-wise predictions are aggregated to a complete segmentation mask. We
demonstrate the benefits of the new paradigm on a challenging lung segmentation
problem based on chest X-Ray images, as well as on two synthetic tasks based
on the MNIST dataset. On the X-Ray data, our method achieves state-of-the-art
accuracy with a significantly reduced model size compared to reference methods.
In addition, we reduce the number of failure cases by at least half.

1 INTRODUCTION

In the medical image analysis domain, the automatic parsing of medical images represents a fun-
damental task that impacts the efficiency of the entire clinical workflow from diagnosis to therapy
planning, intervention and follow-up investigations. An essential step in this sense is the semantic
segmentation of anatomical structures which supports the radiologist to read and understand the im-
age content. Recent approaches are inspired from the vision domain and rely on fully convolutional
neural networks, e.g., (Ronneberger et al., 2015; Yang et al., 2017), to achieve state-of-the-art results
on various segmentation problems (Menze et al., 2015). Usually, these methods use the entire image
to directly predict the complete segmentation mask. While this facilitates the incorporation of valu-
able global image context, it also increases the complexity of the learning task, requiring the models
to capture the complete variability in the shape and structure of different objects. In addition, this
strategy does not scale well to (volumetric) high resolution data due to memory limitations.

In this paper, we propose a new paradigm for semantic medical image segmentation based on a
novel neural architecture called shared memory augmented neural network (SHAMANN). Based on
a decomposition of the original image into a sequence of image subregions, e.g., local patches, we
define different so called SHAMANN actors which traverse the sequence differently and segment
each image subregion. An external memory module enables each actor to capture relations between
different subregions within its sequence and increase the robustness of its predictions. In particular,
this external module is shared among all actors and serves as a means to implicitly exchange local
image context information in order to better capture global image properties, such as shape priors.
Finally, the predictions of all actors are fused to obtain a semantic segmentation mask for the original
image. An overview of the proposed framework with two SHAMANN actors is given in Figure 1.

The contributions of our work are: (i) a reformulation of the semantic segmentation problem as a
sequence learning task (ii) SHAMANN - a memory efficient and dynamically scalabale alternative
to end-to-end fully convolutional segmentation networks, that can also implicitly capture global
image properties through a shared external memory module; and (iii) a comprehensive analysis of
the method and comparison against state-of-the-art methods on a large chest X-Ray dataset.
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Figure 1: Generic architecture overview with two SHAMANN actors denoted by F and B that
traverse a series of local image patches sequentially in a forward, respectively backward manner and
segment each patch. For completion we also visualize two simplified alternatives, one in which the
actors do not share their memory (Bi-MANN), and the other with no external memory (Bi-LSTM).

2 RELATED WORK

Segmentation. In the fields of computer vision and medical imaging, segmentation is a fundamental
task for understanding the semantic content of an image. State-of-the-art results on different segmen-
tation benchmarks (Cordts et al., 2015; Everingham et al., 2015), have been achieved by using fully
convolutional neural networks (He et al., 2017; Shelhamer et al., 2017). However, one limitation
of such networks is the use of pooling layers. By down-sampling and increasing the field-of-view,
precise localization information is lost. To tackle this issue, two different approaches have been
proposed. First, encoder-decoder architectures, e.g., U-NET (Ronneberger et al., 2015), recover the
details and spatial dimension using de-convolutions and shortcut connections (Badrinarayanan et al.,
2017; Lin et al., 2017; Yang et al., 2017). The alternative is to use dilated convolutions to increase the
field-of-view without decreasing the spatial dimension (Chen et al., 2018; Peng et al., 2017; Yu et al.,
2017; Yu & Koltun, 2015; Zhao et al., 2017). In this context, graphical models such as conditional
random fields (Lafferty et al., 2001) are used to further improve the results. In the medical context,
a standard approach for medical segmentation is multi-atlas label propagation (MALP) (Wang et al.,
2013; Zikic et al., 2013). In MALP, a collection of atlases, i.e., labeled images, is required. At run-
time, one needs to perform expensive non-linear registration operations of each atlas to unseen data
to achieve a segmentation. These solutions typically scale poorly and are inefficient. Alternatively,
one can address the segmentation problem by using random forests (Glocker et al., 2012), providing
stronger unary predictions through joint class and shape regression. Milletari et al. (2017) employed
an additional patch-voting scheme to increase the robustness against outliers. Other approaches
use linear shape models to incorporate prior information (SSM) (Heimann & Meinzer, 2009). In
marginal space deep learning (Ghesu et al., 2016), SSMs have been coupled with deep learning to
enable the segmentation of anatomical structures. While these methods provide good results and are
relatively easy to train, they do not exploit global anatomical information. In addition, the inference
is time-consuming, especially for 3D images.

Memory networks. Recently, neural networks have been augmented with an external memory
module to decouple the memorization capacity from the network parameters, making these meth-
ods better suitable for capturing long-range dependencies in sequential data. These networks have
been used in the context of classification (Vinyals et al., 2016), meta-learning (Santoro et al., 2016;
Sprechmann et al., 2018), reinforcement learning (Mnih et al., 2015; Pritzel et al., 2017), graph prob-
lems (Graves et al., 2016) or question answering (Graves et al., 2016; Sukhbaatar et al., 2015), to
name a few. Closest to our work are generative methods (van den Oord et al., 2016), which model the
conditional probability of a pixel based on previous pixels, using LSTMs. In contrast, we propose
a sequence learning task for image segmentation and show that the memorization capacity can be
improved using a shared external memory. Bahdanau et al. (2014) and Wang et al. (2016) proposed a
memory-based strategy for the task of machine translation. They use a bidirectional RNN to encode
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the input and save the concatenation of the outputs of the two units in a memory. After the sequence
is processed and saved in the memory, a decoder reads from the memory and outputs the final predic-
tions. In contrast, our proposed method allows information exchange between SHAMANN actors
while processing the input sequence thereby enabling each agent to access global image context. To
the best of our knowledge, this is the first paper that proposes a method based on memory networks
for the task of image segmentation.

3 PROPOSED METHODS

In this section, we present our main contribution, the shared memory augmented neural networks
(SHAMANN) architecture for semantic segmentation. Our observation is that in a bidirectional
setup, information from different directions is not being explicitly exchanged. We hypothesize that
by sharing an external memory, our networks can better capture global context, leading to a more
accurate segmentation.

3.1 PROBLEM FORMULATION

In the following x and xT will denote a row and column vector respectively, and A a matrix.
Following formulations are focused on but not limited to 2D images. Formally, let us consider an
input image I : Ω → RHI×WI×C , with Ω ⊂ R2 the image domain; HI ,WI and C denoting
the height, width and number of channels of the image signal. The goal of the segmentation task
is to assign a label to every pixel/voxel x in the input image, considering a predefined set of K
object classes {y1, . . . , yK}. The segmentation result can be represented as a set of segmentation
channels Y : Ω → RHI×WI×K , where the value of a pixel (x, y) of a given channel k encodes the
probability of observing the class yk. A final segmentation mask can then be obtained by applying a
softmax function along the different class-specific channels. In this work, we propose to reformulate
the segmentation problem as a sequential learning task. Let us consider a sequence of T patches
P = {P0, . . . ,PT } covering the image domain, with Pt : Ω→ RHp×Wp×C , where Hp,Wp are the
height and width of the patch. For example, these patches may be extracted using uniform sampling.
We propose to learn a function f that maps the sequence of input patches to a sequence of patch
segmentation masks as f(Pt)

T
t=0 = (Φt)

T
t=0, with f : RT×Hp×Wp×C → RT×Hp×Wp×K .

3.2 ARCHITECTURE OVERVIEW

In this section, we introduce in more detail the components of our model (as can be seen in Fig-
ure 1). The encoder extracts a rich visual representation from the raw patch intensities. We model
it as a function (e.g., a convolutional network), mapping the input to a d-dimensional feature space:
E(Pt)

T
t=0 = (ψt)

T
t=0, with E : RHp×Wp×C → Rd. The actor module, defined as component

2, learns the sequence of input feature vectors Ψ = {ψ0, . . . ,ψT } and captures distal spatial
dependencies. Each actor scans the input sequence Ψ differently, to produce an output sequence
HJ = {hJ

0 , . . . ,h
J
T }, with hJ ∈ Rd. Here, we use two actors, one scanning the input in the for-

ward direction (J := F ), and the other in the backward direction (J := B). The patch-level fusion
step combines the outputs of the actors as σ(HF ⊕HB) = H , with σ : R2×d → Rd and ⊕ the con-
catenation operator. The mapping σ could be a simple function, e.g., an average or a concatenation
operation. In our work, we propose to explicitly learn how to combine the different outputs using a
neural network with a single fully connected layer. The decoder maps the fused outputs of the actors
to patch segmentation masks as D(ht)

T
t=0 = (Φt)

T
t=0, with D : Rd → RHp×Wp×K . In the final

image-level fusion step (see component 4), all patch segmentation masks Φ = {Φ0, . . . ,ΦT } are
aggregated over the full image domain to generate the final segmentation mask Y . For fusion, we
propose to use averaging (Iglesias & Sabuncu, 2015).

3.3 IMAGE SEGMENTATION AS A SEQUENTIAL LEARNING TASK

In the following sections, we show three different alternatives for the actor module. These are the
bidirectional long-short term memory units (Bi-LSTM), described in Section 3.3.1; the bidirectional
memory-augmented neural networks (Bi-MANN), described in Section 3.3.2; and our proposed
SHAMANN framework (see Section 3.3.3).
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Figure 2: Detailed illustration of a forward actor network that uses an external memory module to
perform a sequential segmentation task. At the time iteration t, the actor updates its memory cell
ct using the previous memory cell ct−1 and the current encoded input patch ψt, concatenated with
the previous information read from the memory rt−1. The actor then writes to and reads from an
external memory module and produces a segmentation mask Φt.

3.3.1 BIDIRECTIONAL LONG-SHORT TERM MEMORY NETWORKS: BI-LSTM

One of the most common challenge in training a recurrent neural netowrk is the vanishing gradient
effect. To address this challenge, LSTM units have been proposed by Hochreiter & Schmidhuber
(1997). These units have achieved high performance on real-world problems such as image caption-
ing (Vinyals et al., 2015). The core element of the LSTM unit is the memory cell ct, which is an
abstract representation of the previously observed input. The definition of the output ht and ct can
be summarized as:

[ht, ct] = LSTM(ψt,ht−1, ct−1), (1)

where LSTM stands for the gated processing structure. The output of a LSTM unit is the sequence of
output vectorsH = {h0, . . . ,hT }. The bidirectional LSTM processes the sequence data both in for-
ward and backward directions with separate LSTM units. Thus, the forward LSTM unit will process
the input sequence ΨF = {ψ0, . . . ,ψT } and produce the output sequence HF = {hF

0 , . . . ,h
F
T },

while the backward LSTM cell will process the reverse input sequence ΨB = {ψT , . . . ,ψ0} and
produce the output sequence HB = {hB

T , . . . ,h
B
0 }. The final output of the Bi-LSTM is given by

H = σ(HF ⊕HB), where ⊕ denotes the concatenation operator.

3.3.2 BIDIRECTIONAL MEMORY-AUGMENTED NEURAL NETWORKS: BI-MANN

One limitation of Bi-LSTM is that the number of network parameters grows proportionally to the
memorization capacity, making it unsuitable for sequences with long-range dependencies. These
types of dependencies often occur in our formulation of the segmentation task, depending on the
image content, the sequence length, and the patch size. One can alleviate this issue and increase
the memorization capacity by making use of an external memory. These networks called memory
augmented neural networks (MANN) use a controller network, i.e., an LSTM, to access an external,
addressable memoryM ∈ RQ×N , where N is the number of memory cells and Q is the dimension
of each cell (Graves et al., 2016).

Following these principles, we propose to enhance each actor with an external memory capability.
Figure 2 illustrates how a forward actor addresses such a memory module to perform a sequential
segmentation task. At every time iteration t, the actor produces write and read heads to interact
with a small portion of the memory constrained by weights associated with previous observations.
The write operation uses the write weights ww

t ∈ RN to remove content from the memory with
an erase vector et ∈ [0, 1]Q, then write the add vector at ∈ RQ: Mt[i] ← (1 − ww

t [i] · et) ◦
Mt−1[i] +ww

t [i] · at, where ◦ and · denote the element-wise and scalar multiplication respectively
and 1 ∈ RQ a vector of ones. Similarly, the output of a read operation using the read weights
wr

t ∈ RN is the weighted sum over the memory locations: rt(M) =
∑N

i=1w
r
t [i] ·Mt[i]. We
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use content lookup to define the read weights, in which a key krt ∈ RQ emitted by the actor is
compared to the content of each memory location. The attention score for a read operation at row i

is the i-th value in the column vector wr
t = exp(F (krt ,Mt[i]))/

∑N
j=1 exp(F (krt ,Mt[j])), where

F computes the similarity between two vectors, i.e., cosine similarity, and [] is the row operator. The
content lookup weights ŵw

t ∈ RN allow the write operation to update content in the memory. In
order to also allocate new memory slots, we extend the addressing with a mechanism that returns
the most unused location w̃w

t ∈ {0, 1}N (as a one hot vector). At every iteration the write operation
uses an allocation gate α to either update the content of a location, or write to a new, unused location:
ww

t = αŵw
t + (1 − α)w̃w

t . The read and write keys, erase and add vectors and the allocation gate
are linear mappings of the memory cell of an actor.

We extend MANNs to a bidirectional formulation, where two actors, each with its individual external
memory module, scans the input sequence in a forward (J := F ) and backward (J := B) manner
and produce the output and memory cell a time t as:

[gJt , c
J
t ] = LSTM(ψt ⊕ rt−1(MJ), gJt−1, c

J
t−1), (2)

where gJt = W J
g (hJ

t ⊕ rt(MJ)) + bJg are linear mappings of the concatenation of the output
vectors and the currently read information from the memory module. The final output of Bi-MANN
is given by H = σ({gF0 , gF1 , . . . , gFT } ⊕ {gBT , gBT−1, . . . , g

B
0 }).

3.3.3 SHARED MEMORY-AUGMENTED NEURAL NETWORKS: SHAMANN

While the external memory module addresses the limited memorization capability of standard Bi-
LSTM units, the sequence processing by the different actors remains suboptimal - in the sense that
there is no active exchange of context information between them. The hypothesis is that through
such an exchange, individual actors can observe more global context, leading to a more robust
segmentation. With this in mind, we propose to share the external memory module between actors.
By reading and writing information to the same memory module, the actors can interact in an implicit
way. The output and memory cell for a time iteration t are defined as follows:

[gJt , c
J
t ] = LSTM(ψt ⊕ rt−1(M), gJt−1, c

J
t−1), (3)

where gJt = W J
g (hJ

t ⊕rt(M))+bJg are linear mappings of the concatenation of the output vectors
and the current read information from the shared memory module. Note that the matrixM in Equa-
tion 3 represents the memory module, which is shared by both the forward and backward actors, in
contrast to Equation 2 where each actor has its own memory module, i.e.,MF andMB . The two ac-
tors write and read alternatively from the memory, first the forward actor, then the backward actor. To
ensure the correct allocation of free memory, the two actors also share the usage vector. The final out-
put of the SHAMANN framework is given by H = σ({gF0 , gF1 , . . . , gFT } ⊕ {gBT , gBT−1, . . . , g

B
0 }).

Our network is fully differentiable and can be trained end-to-end via back-propagation through
time (Werbos, 1990).

4 EXPERIMENTS

In this section, we present the results of the proposed methods on real-world and synthetic applica-
tions. We benchmarked our method on a large chest X-Ray dataset and compared it to state-of-the-
art methods. Additionally, we conducted two synthetic experiments on MNIST (Lecun et al., 1998)
with the goal of analyzing the memorization capacity of the different models and providing insights
into the benefits of sharing an external memory module.

4.1 CHEST X-RAY LUNG SEGMENTATION

This is a fundamental preprocessing task towards automated diagnosis of lung diseases, e.g., nod-
ules, tumors, etc. (Wang et al., 2017). To meet high clinical standards, an accurate and robust
segmentation of the lungs is required. For this problem, important challenges are the variability in
shape and intensities of the lungs, as well as reduced anatomy contrast, due to pleural effusion.

The chest X-Ray dataset consists of 7083 images of 7083 patients selected from the public database
ChestX-Ray8 (Wang et al., 2017), each of size 1024×1024 pixels. Ground truth segmentation masks
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Figure 3: Qualitative results. From left to right: input image with label, segmentation masks us-
ing the method proposed by Ronneberger et al. (2015), two models proposed by Yu et al. (2017)
and SHAMANN. The bottom two rows show results on more difficult cases. The last row demon-
strates the effectiveness of the SHAMANN method in capturing the global context. We visualize the
groundtruth mask in magenta, the prediction of the networks in turquoise and their overlap in blue.

Table 1: Quantitative results.

Method Dice #params (millions) high-res (3D) data #failures
SHAMANN 96.97 +/- 1.36 6.2 flexible 5
U-NET 96.92 +/- 1.34 20.1 memory limited 10
DRN(c26) 96.95 +/- 1.67 20.6 memory limited 10
DRN(c42) 96.78 +/- 1.52 30.7 memory limited 12

were provided by clinical experts. We performed a random patient-based split in 5000 training, 583
validation and 1500 test images. The patch size was set to 160×160 pixels with a stride of 80×80,
resulting in a sequence of 169 patches per image.

Table 1 shows quantitative results. We compute the dice score using the definition of true positive
(TP), false positive (FP) and false negative (FN) as: (2∗TP )/(2∗TP+FP+FN). The experiment
demonstrates that, even though we use sequences of local patches, our algorithm reaches state-of-
the-art performance by effectively capturing the global context through the shared memory. In
particular, our model requires significantly less parameters in comparison to the reference methods.
This allows in theory a more (memory) efficient application to high-resolution (volumetric) data.
Furthermore, in our formulation one can dynamically split the sequence length (both at training and
testing time) and maintain global context in the shared memory to achieve an even higher degree of
flexibility. We are currently investigating these benefits on large volumetric medical scans.

An additional important property of our method is the robustness on difficult cases, caused by, e.g.,
large scale variations between children and adults, different image artifacts and abnormalities, such
as pleural effusion or large lesions. We manage to reduce the number of cases with large error, i.e.,
a dice score below 0.9, by at least half. Figure 3 shows qualitative results.
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(a) Bottom half of pixels missing. (b) Random patches missing.

Figure 4: MNIST quantitative results. SHAMANN performs best both in terms of dice and classifi-
cation accuracy for different cell state sizes.

4.2 MNIST IMAGE COMPLETION: MEMORY ANALYSIS

To investigate the benefits of extending neural networks with an external memory, we designed two
synthetic tasks based on the MNIST dataset. First, we deleted the bottom half of the input images
and trained our models to complete the missing information. The goal of this experiment was to
observe the networks capacity to extrapolate the missing data based only on the first half of the
image. In a second experiment, we removed random patches from the input images. Since in this
case the location of the missing data is not deterministic, the networks have to adaptively learn a
more complex strategy for the memorization and lookup of information to better extrapolate the
missing data. For both experiments we used the original MNIST images as labels. The MNIST
data consists of 70000 pictures of handwritten digits (55000 train, 5000 validation and 10000 test)
and their associated label. We considered patches of size 8×8 with a stride of 4×4 resulting in a
sequence of 49 patches per image.

For the quantitative evaluation we measured dice scores, as well as classification accuracy on the
reconstructed digits. To measure the classification accuracy we trained a deep neural network clas-
sifier on the original MNIST dataset and used this network to evaluate the images reconstructed by
our methods. The accuracy of this classifier on the original MNIST dataset was 99.23%. On the
altered test sets, without applying any completion, the accuracy was 56.14% for the first and 67.8%
for the second experiment. Figure 4 shows quantitative results. Using SHAMANN to perform im-
age completion on the altered data, the classification accuracy was increased to 95.2% for the first,
and 96.9% for the second experiment. In both experiments the networks augmented with memory
outperform the Bi-LSTM network and especially the model without memory (called NO MEM).
This demonstrates that more effective image completion strategies can be learned with the use of
an external memory module, reaching best performance when the memory is shared. Note that as
the capacity of the Bi-LSTM units increases, the difference in reconstruction performance to both
Bi-MANN and SHAMANN reduces. As expected, given a large enough cell size, LSTM units can
emulate the high memorization capacity of an external memory. While in the first experiment the
methods perform similarly at the largest cell size; in the second experiment the differences between
the methods is considerably large, even at the largest cell size level. This indicates that for more
complex problems the performance of the Bi-LSTM is limited, even for a larger cell sizes.

Figures 5a and 5b show qualitative results. While in the first rows, the first three methods fail to
extrapolate correctly the missing parts of the digits, the networks using a shared memory module
make an accurate shape reconstruction that leads to correct classifications. The last row shows a
failure case, where all four methods fail to correctly recognize the digit. However, considering the
high difficulty in reconstructing these two digits, one can argue that the output of the SHAMANN
method is reasonable. Figure 5c shows the benefits of sharing the memory module, by comparing
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(c) Insights in the shared memory.

Figure 5: Figures 5a and 5b show qualitative results. From left to right: altered input image,
label, reconstructed images using actors with no memory, actors with internal memory, actors with
individual external memory, and actors that share an external memory module. Figure 5c illustrates
how actors use the context seen by others to refine their prediction.

Table 2: Hyperparameters for both experiments.

Encoder / Decoder Actor Ext. Memory
#layers shortcuts #filters mem. cell #read heads N Q

X-Ray 5 yes {8, 16, . . . , 256} 128 32 400 128
MNIST 3 no {16, 16, 16} 8-256 8 100 8-256

the prediction of individual actors with and without the information exchange via the shared memory.
Table 2 shows the hyperparameters used for the experiments. For training we used the RMSProp

optimizer with a learning rate of 10−3 and minimized the mean squared error on all experiments.

5 CONCLUSION AND FUTURE WORK

In this paper, we presented a novel memory efficient segmentation approach based on sequence
learning and memory augmented neural networks. Based on a decomposition of the original image
into a sequence of image patches, we trained two SHAMANN actors that traverse the sequence
bidirectionally and segment each image subregion. An external memory module enables each actor
to capture relations between different subregions within its sequence and increase the robustness of
its predictions. In particular, the shared nature of the external module serves as a means to implicitly
exchange local image context information between actors to better capture shape priors. Despite the
fact that we learn the segmentation module at patch-level, our algorithm matches the state-of-the-art
performance of image-to-image architectures on a challenging lung segmentation task based on a
X-Ray dataset. In addition, we conducted a detailed analysis on two synthetic tasks based on the
MNIST dataset, demonstrating the benefits of sharing the external memory among different actors.

In our future work, we plan to extend our model to large 3D/4D medical scans and investigate the
improved scalability and memory efficiency. We also plan to investigate the benefits of increasing
the number of actors with different scanning strategies.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 39:2481–2495, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473, 2014.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):
834–848, 2018.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Scharwächter, Markus Enzweiler, Ro-
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