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ABSTRACT

Weight quantization for deep convolutional neural networks (CNNs) has shown
promising results in compressing and accelerating CNN-powered applications
such as semantic segmentation, gesture recognition, and scene understanding.
Prior art has shown that different datasets, tasks, and network architectures ad-
mit different iso-accurate precision values, which increase the complexity of ef-
ficient quantized neural network implementations from both hardware and soft-
ware perspectives. In this work, we show that when the number of channels is
allowed to vary such that networks of different precision values have the same
model size, lower precision values outperform higher precision ones in a Pareto
sense (accuracy vs. model size) for networks with standard convolutions. Relying
on comprehensive empirical analyses, we find that the optimal precision value of
a convolution layer depends on the number of input channels per output filters and
provide theoretical insights for it. To this end, we develop a simple algorithm to
select the precision values for CNNs that outperforms corresponding 8-bit quan-
tized networks by 0.9% and 2.2% in top-1 accuracy on ImageNet for ResNet50
and MobileNetV2, respectively.

1 INTRODUCTION

Recent success of convolutional neural networks (CNNs) in computer vision applications such as
image classification and semantic segmentation, have fueled many important applications in energy-
constrained devices, e.g., virtual reality headsets, drones, and robots. As a result, improving the
energy-efficiency of CNNs while maintaining their attractive features (e.g., accuracy for a task) has
gained tremendous research momentum in recent years.

Among the efforts of improving CNNs’ efficiency, weight quantization was shown to be an effective
technique (Zhou et al. (2016; 2017); Hou & Kwok (2018); Ding et al. (2019)). The majority of
research efforts in quantization have been devoted to develop better quantization algorithms such
that an iso-figure-of-merit (i.e., accuracy) is achieved with lowest possible weight precision value.
Nevertheless, the iso-accurate precision value depends on the dataset, task, and network architecture
of interest, which greatly increases the neural network implementation complexity from both hard-
ware and software perspectives. For example, hardware and software implementations optimized for
executing an 8 bit network are sub-optimal for executing a 4 bit network, and vice versa. The design
optimization complexity further increases for recently proposed mixed-precision networks (Wang
et al. (2019); Wu et al. (2018b); Dong et al. (2019)).

The key observation we have is that most prior literature in this space studies quantization for fixed
network architectures, which is reasonable for evaluating the effectiveness of quantization algo-
rithms, but unnecessary when considering the Pareto efficiency (accuracy vs. model size) of neural
networks. In this work, we relax the restriction of fixing the network architecture and allow the
number of channels of the CNN under consideration to vary. More concretely, we use the width-
multiplier1 (Howard et al. (2017)) as a tool to compare the performance of different weight precision
values under the same model size.

Overall, we systematically analyze the model size and accuracy trade-offs considering both weight
precision values and the number of channels for various modern networks architectures (variants of

1Width-multiplier grows or shrinks the number of channels across the layers with identical proportion for a
certain network, e.g., grow the number of channels for all the layers by 2×.
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ResNet, VGG, and MobileNet) and datasets (CIFAR and ImageNet) and have the following non-
trivial and novel contributions:

• We are the first to empirically show that when considering channel counts, lower precision
weight values outperform higher precision weight values in a Pareto sense (accuracy vs.
model size) for networks with standard convolutions. This is intriguing since it implies that
scaling up (in terms of model size) along the channel count dimension is more effective for
accuracy than the precision value dimension.

• We are the first to show that the fan-in channel counts per output filter for a convolution
layer determine the effectiveness of accuracy improvement when the model is scaled along
the weight precision dimension and provide both theoretical and empirical reasoning for
this.

• We are the first to show that with a simple model scaling rule (the proposed DualPrecision),
one can achieve a more accurate model (given the same model size) even compared to
mixed-precision prior art that uses deep reinforcement learning to search for layer-wise
weight precision values. Moreover, the results are validated on the large-scale dataset, i.e.,
ImageNet. This is a manifestation of our two previous findings.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3
discusses the methodology used to discover our findings. Section 4 shows lower precision values are
preferable for networks with standard convolutions. Section 5 discusses how fan-in channel count
per output filter affects precision scaling for convolution layers. Section 6 discusses DualPrecision,
our simple yet effective model scaling rule. Section 7 concludes the paper.

2 RELATED WORK

Several techniques for improving the efficiency of CNNs have been recently proposed. For in-
stances, pruning removes the redundant connections of a trained neural network (Zhuang et al.
(2018); Ye et al. (2018); Theis et al. (2018); Li et al. (2017); Frankle & Carbin (2019); Chin et al.
(2019); Yu et al. (2018)), neural architecture search (NAS) tunes the number of channels, size of
kernels, and depth of a network (Tan et al. (2018); Stamoulis et al. (2019); Cai et al. (2018); Sta-
moulis et al. (2018)), and convolution operations can be made more efficient via depth-wise con-
volutions (Howard et al. (2017)), group convolutions (Huang et al. (2017); Zhao et al. (2019b)),
and shift-based convolutions (He et al. (2019); Wu et al. (2018a)). In addition to the aforemen-
tioned techniques, network quantization introduces an opportunity for hardware-software co-design
to achieve better efficiency for CNNs.

There are in general two directions for weight quantization in prior literature, post-training quan-
tization (Nagel et al. (2019); Meller et al. (2019); Zhao et al. (2019a); Sheng et al. (2018)) and
quantization-aware training (Rastegari et al. (2016); Zhu et al. (2017); Jacob et al. (2018); Jung et al.
(2019); Yuan et al. (2019); Hou & Kwok (2018); Choi et al. (2018)). The former assumes training
data is not available when quantization is applied. While being fast and training-data-free, its per-
formance is worse compared to quantization-aware training. In contrast, our work falls under the
category of quantization-aware training.

In quantization-aware training, (Rastegari et al. (2016)) introduces binary neural networks, which
lead to significant efficiency gain by replacing multiplications with XNOR operations, but at the
expense of significant accuracy degradation. Later, (Zhu et al. (2017)) propose ternary quantization
and (Zhou et al. (2016); Jacob et al. (2018)) bridge the gap between floating-point networks and
binarized neural networks by introducing fixed-point quantization. Building upon prior art, the vast
majority of existing work focuses on reducing the accuracy degradation by improving the training
strategy (Zhou et al. (2017); Yang et al. (2019); Louizos et al. (2019); Ding et al. (2019)) and better
quantization schemes (Jung et al. (2019); Wang et al. (2019); Yuan et al. (2019)). However, prior
art studies quantization by fixing the network architecture, which may lead to sub-optimal precision
decisions in terms of Pareto efficiency (model size vs. accuracy).

Related to our work, Mishra et al. (2018) have also considered the impact of channel count in quan-
tization. In contrast, our work has the following novel features. First, we find that in CNNs with
standard convolutions, lower precision values outperform higher ones in a Pareto sense. Second, we
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find that the Pareto optimal precision value depends on the number of input channels per output filter
and provide theoretical insights for it. Last, we propose an algorithm to select the precision values
of a given network which as a result outperforms 8 bit fixed-point and mixed-precision baselines.

3 METHODOLOGY

We conduct all of our experiments on image classification datasets including CIFAR-100 and Ima-
geNet. All the experiments are trained from scratch to ensure different precision values are trained
equally long. While we do not start from a pre-trained model, we note that our baseline fixed-
point models (i.e., 4 bit for CIFAR and 8 bit for ImageNet) achieve iso-accurate results compared to
their floating-point counterparts. For all the experiments on CIFAR, we run the experiments three
times and report the mean and standard deviation. The training hyper-parameters are detailed in
Appendix A.

3.1 QUANTIZATION

While our work focuses on weight quantization, we still quantize the activations since they are
normally quantized for efficient deployment (Jacob et al. (2018)). For activation quantization, we
use the technique proposed in prior art (Jacob et al. (2018)) and use 4 bit for CIFAR-100 and 8 bit
for ImageNet experiments. We note that the precision value is chosen such that iso-accurate results
can be achieved when compared to the floating-point baselines.

For weight quantization, we use a straight-through estimator (Bengio et al. (2013)) to conduct
quantization-aware training. Specifically, for precision beyond 2 bit (b > 2), we use the follow-
ing quantization function for weights during the forward pass:

Q(Wi,:) = bclamp(Wi,:,−ai, ai)
si

e × si, si =
ai

2b−1 − 1
, (1)

where b·e denotes the round-to-nearest-neighbor function, W ∈ RCout×d, d = CinKwKh denotes
the real-value weights for the ith output filter of a convolution layer that has Cin channels and
Kw × Kh kernel size. a ∈ RCout denotes the vector of clipping factors which are selected to
minimize ‖Q(Wi,:)−Wi,:‖22 by assuming Wi,: ∼ N (0, σ2I). More details about the determination
of ai is in Appendix B.

For special cases such as 2 bit and 1 bit, we use schemes proposed in prior art. Specifically, let us
first define:

¯|Wi,:| =
1

d

d∑
j=1

|Wi,j |. (2)

For 2 bit precision, we follow trained ternary networks (Zhu et al. (2017)) and define the quantization
function as follows:

Q(Wi,:) = (sign(Wi,:)�Mi,j)×
( ¯|Wi,:|

)
Mi,j =

{
0, Wi,j < 0.7 ¯|Wi,:|.
1, otherwise.

(3)

For 1 bit precision, we follow DoReFaNets (Zhou et al. (2016)) and define the quantization function
as follows:

Q(Wi,:) = sign(Wi,:)×
( ¯|Wi,:|

)
. (4)

For the backward pass for all the precision values, we use a straight-through estimator as in prior art
to make the training differentiable. That is,

Q(Wi,:)

∂Wi,:
= I. (5)

In the sequel, we quantize the first and last layers to 8 bit. They are fixed throughout the experiments.
We note that it is a common practice to leave the first and the last layer un-quantized (Zhou et al.
(2016)), however, we find that using 8 bit can achieve iso-accurate results.
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3.2 COST METRICS

To measure the cost of CNN models, we use the size of the model (Csize) defined as:

Csize =

O∑
i=1

b(i)Cin(i)Kw(i)Kh(i) (6)

where O denotes the total number of filters and b(i) denotes the precision for filter i, Cin(i) denotes
the number of channels for filter i, andKw(i) andKh(i) denote the kernel height and width for filter
i. We choose model size as a metric because it is relevant to both machine learning and systems
community. Specifically, model size is of interest for the machine learning community since it
represents a proxy of model complexity. On the other hand, for the systems community, model size
is related to latency and energy for CNNs with weight fetch dominating memory accesses (e.g., the
streaming inference scenario where inference is done with single data instance per batch). We note
that this metric is also adopted in the MicroNet Challenge (Gale et al. (2019)) held at NeurIPS 2019.

4 DIFFERENT PRECISION VALUES HAVE DIFFERENT PARETO EFFICIENCY

To be precise in the following discussion, we define Pareto domination as follows:

Definition 4.1 (Pareto domination) When comparing precision valuesA andB for a network fam-
ily F , we say A Pareto dominates B if,

Acc(N(A, s)) > Acc(N(B, s)) ∀s,

where Acc evaluates the validation accuracy of a network, N(A, s) uses width-multiplier to find a
network in F such that it has A precision value and s model size.

We study three kinds of commonly adopted CNNs, namely, ResNets with Basic Block (He et al.
(2016)), VGG (Simonyan & Zisserman (2014)), and MobileNetV2 (Sandler et al. (2018)). These
networks differ in the convolution operations, connections, and filter counts. For ResNets, we ex-
plored the network from 20 layers up to 56 layers in a step of six layers. For VGG, we investigate
VGG with eleven layers. Additionally, we also study MobileNetV2, which is a mobile-friendly net-
work. We note that we modify the stride count in of the original MobileNetV2 to match the number
of strides of ResNet for CIFAR. The used architectures are discussed in detail in Appendix C.

For CIFAR-100, we only study precision values below 4 bit since the latter can achieve iso-accurate
results compared to its floating-point counterpart. Specifically, we consider 4 bit, 2 bit, and 1 bit
precision values. To compare the Pareto efficiency of different precision values, we use the width-
multiplier to align the model size among them. For example, one can make a 1-bit CNN 2× wider
to align with the model size of a 4-bit CNN 2. For each network, we sweep the width-multiplier to
consider points at multiple model sizes. As it can be observed from Figure 1, across the three types
of networks we study, there exists some precision value that Pareto dominates others. For ResNets
and VGG, it is 1 bit. In contrast, for MobileNetV2, it is 4 bit. The results for ResNets and VGG are
particularly interesting, since we observe that the lower precision value Pareto dominates the higher
precision ones. This implies that for networks such as ResNets and VGG, scaling the model along
the channel dimension is always more preferable in accuracy-vs-size trade-off compared to scaling
the model along the weight precision value dimension.

5 THE OPTIMAL PRECISION VALUE DEPENDS ON THE NUMBER OF FAN-IN
CHANNELS

With the empirical results from Section 4, we have learned that lower precision values are better
for two of the networks we study but not for MobileNetV2, which has a reversed behavior. In this
section, we are interested in identifying the underlying cause for this different trend. Through a

2Increase the width of a layer increases the number of output filters for that layer as well as the number of
channels for the subsequent layer. Thus, number of parameters and number of operations grow approximately
quadratically with the width-multiplier.
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(a) ResNets (Layer 20 to 56 in a
step 6).

(b) VGG11 (c) MobileNetV2 (modified stride
for CIFAR)

Figure 1: Comparisons of the Pareto efficiency for different precision under three kinds of CNNs.
xWyA denotes x-bit weight quantization and y-bit activation quantization. The experiments are
done on the CIFAR-100 dataset. For each network, we sweep the width-multiplier to cover points
at multiple model sizes.

series of controlled experiments, we empirically identify that more channels per output filter leads
to lower optimal precision value. In addition, we provide theoretical insights behind this empirical
result.

5.1 DEPTH-WISE CONVOLUTION

Figure 2: The trade-off curves for Inv-ResNet26.

As it can be observed in Figure 1, MobileNetV2
is a special case where higher precision val-
ues Pareto dominate lower ones. When com-
paring MobileNetV2 to the other two networks,
there are many differences, including how con-
volutions are connected, how many convolution
layers are there, how many filters in each of
them, and how many channels for each con-
volution. To narrow down which of these im-
pacts the reversed trend, we first consider the
inverted residual blocks, i.e., the basic compo-
nent in MobileNetV2. To do so, we replace all
basic blocks (two consecutive convolutions) of
ResNet26 with the inverted residual blocks. We
refer to this new network as Inv-ResNet26. As
shown in Figure 2, the Pareto efficiency trend of Inv-ResNet26 resembles the one of MobileNetV2
and recall that in case of ResNet26, lower precision values Pareto dominate higher ones. Thus, we
can infer that the inverted residual block itself or its components are responsible for such a reversed
trend.

Since an inverted residual block is composed of a point-wise convolution and a depth-wise sepa-
rable convolution, we further consider the case of depth-wise separable convolution (DWSConv).
To identify whether DWSConv can cause the trend reversion, we use VGG11 as a starting point

(a) Variant A (b) Variant B (c) Variant C (d) Variant C without
quantizing depth-wise
convolutions

Figure 3: The trade-off curves for the three variants of VGG11 that we investigated.
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and gradually replace each of the convolution with DWSConv. We note that replacing all convolu-
tions with DSWConvs results in an architecture that resembles MobileNetV1 (Howard et al. (2017)).
Specifically, we introduce three variants of VGG11 that have an increasing number of convolutions
replaced by DWSConvs. Starting with the second layer, variant A has one layer replaced by DWS-
Conv, variant B has four layers replaced by DWSConvs, and variant C has all of the layers except
for the first layer replaced by DWSConvs (the architectures are detailed in Appendix C).

As shown in Figure 3, as the number of DWSConv increases (from variant A to variant C), the opti-
mal precision value shifts from 1 bit to 4 bit, which implies that depth-wise separable convolutions
or the layers within it are affecting the optimal precision value. To identify which of the layers of
the DWSConv (i.e., the depth-wise convolution or the point-wise convolution) is more important in
affecting the optimal precision value, we keep the precision value of depth-wise convolutions fixed
at 4 bit and quantize other layers. As shown in Figure 3d, the optimal curve shifts from 4 bit being
the best back to 1 bit, with a similarly performing 2 bit. Thus, depth-wise convolutions appear to
directly affect the optimal precision trends.

5.2 SENSITIVITY ANALYSIS

In our setup, to obtain a lower precision network that has the same model size as a higher pre-
cision network we follow two steps: (1) quantize the network weights to lower-precision val-
ues and (2) grow the network with width-multiplier to the model size of the higher-precision
one. The two steps introduce accuracy differences of ∆AccQ = Acclow − Acchigh and
∆AccG = Acclow,grown − Acclow, respectively. Since depth-wise convolutions introduce a
reverse trend in Pareto efficiency, which is the result of ∆AccQ + ∆AccG, the reason can poten-
tially be due to them being quantization-unfriendly, growing-unfriendly, or both.

To further diagnose the reason why depth-wise convolutions have a reverse Pareto efficiency trend,
we analyze the accuracy differences for networks with and without quantizing depth-wise convo-
lutions, i.e., Figure 3c and Figure 3d. Specifically, we use width-multipliers of 1×, 1.25×, 1.5×,
1.75×, and 2× for the 4-bit variant C as networks of higher precision. Thus, ∆AccQ is evaluated
against the corresponding 1-bit quantized model and ∆AccG is measured by comparing the 1-bit
model and its 2× grown counterpart. As shown in Table 1, when quantizing depth-wise convo-
lutions, ∆AccQ becomes more negative such that ∆AccQ + ∆AccG < 0. This implies that the
main reason for the optimal precision value change is that depth-wise convolutions are quantization-
unfriendly when going below 4 bit. We note that we expected that quantizing the depth-wise convo-
lutions would incur smaller ∆AccQ compared to their no-quantization baseline because we essen-
tially quantized more layers. However, depth-wise convolutions only account for 2% of the model
size but incur on average near 4× more accuracy degradation when quantized.

We note that Sheng et al. (2018) also find that depth-wise separable convolutions are quantization-
unfriendly. However, their results are based on post-training layer-wise quantization. As mentioned
in their work (Sheng et al. (2018)), the quantization challenges in their setting could be resolved by
quantization-aware training, which is the scheme considered in this work. As a result, our finding is
different and novel.

5.3 QUANTIZATION AND DEPTH-WISE CONVOLUTIONS

Having uncovered that depth-wise convolutions introduce large accuracy degradation when weights
are quantized below 4 bit, in this section, we investigate depth-wise convolutions from a quantization
perspective. When comparing depth-wise convolutions and standard convolutions in the context of

Table 1: Analysis of the impact of depth-wise convolutions with ∆AccQ = Acc1bit − Acc4bit and
∆AccG = Acc1bit,2×−Acc1bit by comparing variant C with and without quantizing the depth-wise
convolutions from 4 bit to 1 bit.

VARIANT C
1.00× 1.25× 1.50× 1.75× 2.00× AVERAGE

∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG

4 BIT DWCONV -1.54 +2.61 -2.76 +2.80 -1.77 +1.74 -1.82 +1.64 -1.58 +1.55 -1.89 +2.07
QUANT. ALL -8.60 +4.39 -7.60 +3.41 -7.74 +3.19 -8.61 +4.09 -7.49 +2.25 -8.01 +3.47
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quantization, they differ in the number of elements to be quantized, i.e., Cin = 1 for depth-wise
convolutions and Cin >> 1 for standard convolutions.

Why does the number of elements matter? In quantization-aware training, one needs to estimate
some statistics of the vector to be quantized (i.e., a in Equation 1 and ¯|w| in Equations 3,4) based on
the elements in the vector. The number of elements affect the robustness of the estimate that further
decides the quantized weights. More formally, we provide the following proposition.

Proposition 5.1 Let w ∈ Rd be a the weight vector to be quantized where wi has distribution
of N (0, σ2) ∀ i without assuming samples are drawn independently and d = CinKwKh. If the
average correlation of the weights is denoted by ρ, the variance of ¯|w| can be written as follows:

Var( ¯|w|) =
σ2

d
+

(d− 1)ρσ2

d
− 2σ2

π
. (7)

The proof is in Appendix D. This proposition states that, as the number of elements (d) increases,
the variance of the estimate can be reduced due to the first term. The second term depends on
the correlation between weights. Since the weights might not be independent during training, the
variance is also affected by their correlations.

We empirically validate Proposition 5.1 by looking into the sample variance of ¯|w| across the course
of training3 for different d values by growing (Kw,Kh) or Cin. To do so, we consider the 0.5×
VGG variant C by changing the number of elements of the depth-wise convolutions. Since d =
(Cin × Kw × Kh) for a convolution layer, we consider the original depth-wise convolution, i.e.,
d = 1 × 3 × 3 and increasing channels with d = 4 × 3 × 3 and d = 16 × 3 × 3, and increasing
kernel size with d = 1× 6× 6, , and d = 1× 12× 12. The numbers are selected such that growing
the channel has the same d for the corresponding higher kernel size.

Figure 4: The average estimate Var( ¯|w|) for each
depth-wise convolution under different d = (Cin ×
Kw ×Kh) values.

In Figure 4, we analyze the layer-level
sample variance by averaging it for all the
filters in the same layer. First, we ob-
serve that one can reduce the variance by
increasing the number of elements along
both the channel and kernel size dimen-
sions. Second, we find that increasing
the number of channels is more effective
than increasing the kernel size in reduc-
ing the variance, which could be due to
a different correlation of the weights, i.e.,
intra-channel weights have larger correla-
tion than inter-channel weights.

However, lower variance might not neces-
sarily imply lower quantization error for
the quantized models. Thus, we conduct the ∆Acc analysis for different d values. More specifi-
cally, we want to understand how d affects the accuracy difference between lower precision (1 bit)
and higher precision (4 bit) models (∆AccQ) and the accuracy difference between the lower pre-
cision (1 bit) and its grown (2×) counterpart (∆AccG). As shown in Table 2, we empirically find
that lower variance reflects larger ∆AccQ (less degradation). On the other hand, when comparing
channel counts and kernel sizes, we observe that increasing the number of channels is more effective
than increasing the kernel size in reducing accuracy degradation (larger ∆AccQ). Moreover, we find
that increasing kernel size reduces AccG more than increasing the number of channels; this may be
because a larger kernel is harder to optimize and the CIFAR dataset does not benefit from larger
receptive field. Indeed, from the last row of Table 2, we can observe that increasing the kernel size
reduces the accuracy for the 4 bit models.

Overall, from the Pareto efficiency perspective, we are interested in ∆Acc, which determines
whether the lower precision can have better accuracy when grown to the same model size as the

3We treat the calculated ¯|w| at each training step as a sample and calculate the sample variance across
training steps.
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Table 2: Analysis of the impact of d with ∆AccQ and ∆AccG for VGG variant C. ∆AccQ =
Acc1bit −Acc4bit and ∆AccG = Acc1bit,2× −Acc1bit.

VARIANT C (1× 3× 3) (1× 6× 6) (4× 3× 3) (1× 12× 12) (16× 3× 3)

∆AccQ −12.37± 1.16 −9.21± 0.68 −6.42± 0.41 −7.07± 0.16 −4.45± 0.49
∆AccG 8.72± 0.59 6.79± 0.88 7.20± 0.30 4.49± 0.45 5.40± 0.66
∆Acc −3.66± 0.58 −2.41± 0.27 0.79± 0.13 −2.58± 0.33 0.95± 0.39
Acc4bit 56.24± 0.37 55.63± 0.47 58.51± 0.39 53.31± 0.22 60.97± 0.30

higher precision model. In this case, we find empirically that, as the number of channels per output
filter increases, ∆Acc increases. This implies that higher fan-in channel counts per output filter can
benefit more from using lower weight precision values.

6 DUALPRECISION: PRECISION SELECTION FOR CNNS

From previous results, we find that the optimal precision value depends on the number of fan-in
channels per output filter in a convolution layer and as the number of fan-in channels grows, the
optimal precision value becomes smaller. Together with the observation that convolution layers
in modern CNNs, except for depth-wise convolutions, have many channels per filter, we propose
DualPrecision, which uses one precision value (presumably higher) for depth-wise convolutions
and another precision value (presumably lower) for other convolution layers. Once the precision
values are found, we use width-multipliers to grow or shrink the network to the desired model size.

With this heuristic, the search space of precision selection becomes so small that grid search is
feasible, i.e., |B| × |B| for networks with depth-wise convolutions and |B| otherwise. B denotes
the set of considered precision values and is typically small, e.g., {1, 2, 4, 8}. We note that the
search space for mixed precision (Wang et al. (2019); Wu et al. (2018b)) is |B|L with L being the
number of layers. In DualPrecision, one can explore the grid more efficiently by using heuristics
that incorporate our findings. Specifically, we find that one precision value Pareto dominates others
and as a result, one can compare precision values at the regime of low computational cost so as to
train the network faster.

We evaluate the proposed DualPrecision with ResNet50 and MobileNetV2 on the ImageNet dataset.
Since we keep the precision of the first and last layer quantized at 8 bit, scaling them in terms of
width will grow the number of parameters much more quickly than other layers. As a result, we keep
the number of channels for the first and last channel fixed for the ImageNet experiments. We first
conduct grid search (|B| = {1, 2, 4, 8}) for ResNet50 and MobileNetV2 by scaling them down with
width-multipliers so as to make the grid search faster. Once the optimal precision is decided, we use
width-multipliers to traverse the trade-off curve. Specifically, we use the model size of the 0.25×
8-bit model to conduct grid search for both networks. For ResNet50, there are only four precision
values to be searched while MobileNetV2 has 16 such values. The grid search results are shown in
Appendix E.

Similar to our CIFAR experiments, we find that for networks with standard convolutions, i.e.,
ResNet50, the lower the precision value the better accuracy is. Thus, the selected precision is

Table 3: ImageNet results for DualPrecision. All the activations are quantized to 8 bit. We note
that the results for 8 bit are iso-accurate with their full-precision counterparts, which makes 8 bit a
strong baseline.

NETWORKS METHODS TOP-1 (%) Csize (106) TOP-1 (%) Csize (106) TOP-1 (%) Csize (106)

RESNET50
8 BIT 71.11 63.85 74.86 102.87 76.70 204.18

FLEXIBLE (WANG ET AL. (2019)) 74.30 63.60 76.04 102.90 77.23 204.18
DUALPRECISION (OURS) 75.44 63.13 76.70 102.83 77.58 204.08

MOBILENETV2
8 BIT 52.17 11.99 64.39 15.44 71.73 27.50

FLEXIBLE (WANG ET AL. (2019)) 55.20 12.10 65.00 15.54 72.13 27.71
DUALPRECISION (OURS) 59.51 12.15 68.01 15.53 73.91 27.56
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1 bit. On the other hand, for MobileNetV2, we find that 4 bit for standard convolution and 4 bit
for depth-wise convolution perform the best. We consider two baselines to benchmark the proposed
approach including 8-bit fixed-point and mixed-precision networks (Wang et al. (2019)) with width-
multipliers. For mixed-precision, we follow (Wang et al. (2019)) and use a reinforcement learning
approach to search for iso-accurate networks (iso- compared to the 8-bit fixed-point models). Then,
we use width-multipliers on top of the searched network to obtain models of different sizes. We
consider networks of three sizes, i.e., the size of 0.25×, 0.5× and 1× 8-bit fixed-point models. As
shown in Table 3, our proposed simple heuristic outperforms both baselines by a significant margin
for both networks considered.

7 CONCLUSION

In this work, we discuss the Pareto efficiency of quantized convolutional neural networks (CNNs).
We find that a lower weight precision value produces a more accurate network than higher weight
precision one when the model size is aligned using a width-multiplier (i.e., growing or shrinking
the number of channels proportionally.) for CNNs with standard convolutions. Furthermore, from
both theoretical and empirical analyses, we find that the fan-in channel counts per output filter of a
convolution layer determine the optimal precision value for that layer, which explains our observed
phenomenon that depth-wise convolutions are less quantization-friendly compared to their standard
counterparts. Based on our findings, we propose DualPrecision, a simple yet effective heuristic for
precision selection of a given network. We show empirically that, when applied on ImageNet, Dual-
Precision outperforms the 8-bit fixed-point baseline and prior art in mixed-precision by a significant
margin.
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A TRAINING HYPER-PARAMETERS

For CIFAR, we use a learning rate of 0.05, cosine learning rate decay, linear learning rate warmup
(from 0 to 0.05) with 5 epochs, batch size of 128, total training epoch of 300, weight decay of 5e−4,
SGD optimizer with Nesterov acceleration and 0.9 momentum.

For ImageNet, we have identical hyper-parameters as CIFAR except for the following hyper-
parameters. Batch size of 256, 120 total epochs for MobileNetV2 and 90 for ResNets, weight
decay 4e−5, and 0.1 label smoothing.

B CLIPPING POINT FOR QUANTIZATION-AWARE TRAINING

As mentioned earlier, a ∈ RCout denotes the vector of clipping factors which is selected to minimize
‖Q(Wi,:) −Wi,:‖22 by assuming Wi,: ∼ N (0, σ2I). More specifically, we run simulations for
weights drawn from a zero-mean Gaussian distribution with several variances and identify the best
a∗i = arg minai

‖Qai
(Wi,:) −Wi,:‖22 empirically. According to our simulation, we find that one

can infer ai from the sample mean ¯|Wi,:|, which is shown in Figure 5. As a result, for the different

precision values considered, we find c =
¯|Wi,:|
a∗
i

via simulation and use the obtained c to calculate ai
on-the-fly throughout training.

Figure 5: Finding best ai for different precision values empirically through simulation using Gaus-
sian with various σ2.

C NETWORK ARCHITECTURES

For the experiments in Section 4, the ResNets used are detailed in Table 4. Specifically, for the
points in Figure 1a, we consider ResNet20 to ResNet56 with width-multipliers of 0.5×, 1×, 1.5×,
and 2× for the 4-bit case. Based on these values, we consider additional width-multipliers 2.4× and
2.8× for the 2-bit case and 2.5×, 3×, 3.5×, and 3.9× for the 1-bit case. We note that the right-most
points in Figure 1a is a 10× ResNet26 for the 4 bit case. On the other hand, VGG11 is detailed in
Table 6 for which we consider width-multipliers from 0.25× to 2× with a step of 0.25 for the 4 bit
case (blue dots in Figure 1b). The architecture of MobileNetV2 used in the CIFAR-100 experiments
follows the original MobileNetV2 (Table 2 in Sandler et al. (2018)) but we change the stride of
all the bottleneck blocks to 1 except for the fifth bottleneck block, which has a stride of 2. As a
result, we down-sample the image twice in total, which resembles the ResNet design for the CIFAR
experiments (He et al. (2016)). Similar to VGG11, we consider width-multipliers from 0.25× to 2×
with a step of 0.25 for MobileNetV2 for the 4 bit case (blue dots in Figure 1c).

13



Under review as a conference paper at ICLR 2020

Table 4: ResNet20 to ResNet56

LAYERS 20 26 32 38 44 50 56

STEM CONV2D (16,3,3) STRIDE 1

STAGE 1 3×

{
CONV2D(16, 3, 3) STRIDE 1

CONV2D(16, 3, 3) STRIDE 1
4× 5× 6× 7× 8× 9×

STAGE 2 3×

{
CONV2D(32, 3, 3) STRIDE 2

CONV2D(32, 3, 3) STRIDE 1
4× 5× 6× 7× 8× 9×

STAGE 3 3×

{
CONV2D(64, 3, 3) STRIDE 2

CONV2D(64, 3, 3) STRIDE 1
4× 5× 6× 7× 8× 9×

Table 5: Inv-ResNet26

STEM CONV2D (16,3,3) STRIDE 1

STAGE 1 4×


CONV2D(16× 6, 1, 1) STRIDE 1

DWCONV2D(16× 6, 3, 3) STRIDE 1

CONV2D(16, 1, 1) STRIDE 1

STAGE 2 4×


CONV2D(32× 6, 1, 1) STRIDE 1

DWCONV2D(32× 6, 3, 3) STRIDE 2

CONV2D(32, 1, 1) STRIDE 1

STAGE 3 4×


CONV2D(64× 6, 1, 1) STRIDE 1

DWCONV2D(64× 6, 3, 3) STRIDE 2

CONV2D(64, 1, 1) STRIDE 1

D PROOF FOR PROPOSITION 5.1

Based on the definition of variance, we have:

Var(
1

d

d∑
i=1

|wi|) := E

(1

d

d∑
i=1

|wi|

)2

−

(
E

1

d

d∑
i=1

|wi|

)2


= E

(1

d

d∑
i=1

|wi|

)2

− 2σ2

π


=

1

d2
E

(
d∑

i=1

|wi|

)2

− 2σ2

π

=
σ2

d
+
d− 1

d
ρσ2 − 2σ2

π
.

E GRID SEARCH ON IMAGENET

From Table 7, we can observe a trend similar to the CIFAR-100 experiments, i.e., for networks
without depth-wise convolutions, the lower precision the better, and for networks with depth-wise
convolutions, there are sweet spots for depth-wise convolution and other convolutions. Specifically,
the final precision value selected for MobileNetV2 is 4 bit for both depth-wise convolutions and
standard convolutions. On the other hand, the selected precision value for ResNet50 is 1 bit.
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Table 6: VGGs

VGG11 VARIANT A VARIANT B VARIANT C

CONV2D (64,3,3)

MAXPOOLING

CONV2D (128,3,3)

{
CONV2D(128, 1, 1)

DWCONV2D(128, 3, 3)

{
CONV2D(128, 1, 1)

DWCONV2D(128, 3, 3)

{
CONV2D(128, 1, 1)

DWCONV2D(128, 3, 3)

MAXPOOLING

CONV2D (256,3,3) CONV2D (256,3,3)

{
CONV2D(256, 1, 1)

DWCONV2D(256, 3, 3)

{
CONV2D(256, 1, 1)

DWCONV2D(256, 3, 3)

CONV2D (256,3,3) CONV2D (256,3,3)

{
CONV2D(256, 1, 1)

DWCONV2D(256, 3, 3)

{
CONV2D(256, 1, 1)

DWCONV2D(256, 3, 3)

MAXPOOLING

CONV2D (512,3,3) CONV2D (512,3,3)

{
CONV2D(512, 1, 1)

DWCONV2D(512, 3, 3)

{
CONV2D(512, 1, 1)

DWCONV2D(512, 3, 3)

CONV2D (512,3,3) CONV2D (512,3,3) CONV2D (512,3,3)

{
CONV2D(512, 1, 1)

DWCONV2D(512, 3, 3)

MAXPOOLING

CONV2D (512,3,3) CONV2D (512,3,3) CONV2D (512,3,3)

{
CONV2D(512, 1, 1)

DWCONV2D(512, 3, 3)

CONV2D (512,3,3) CONV2D (512,3,3) CONV2D (512,3,3)

{
CONV2D(512, 1, 1)

DWCONV2D(512, 3, 3)

MAXPOOLING

Table 7: Grid search of DualPrecision for MobileNetV2 and ResNet50 with the model size aligned
to the 0.25× 8 bit models. Each cell reports the top-1 accuracy of the corresponding model on
ImageNet.

PRECISION FOR MOBILENETV2 RESNET50
CONVS \ DWCONVS 8 BIT 4 BIT 2 BIT 1 BIT NONE

8 BIT 52.17 53.89 50.51 48.78 71.11
4 BIT 56.84 59.51 57.37 55.91 74.65
2 BIT 53.89 57.10 55.26 54.04 75.12
1 BIT 54.82 58.16 56.90 55.82 75.44

F MEMORY FOOTPRINT FOR INFERENCE

We calculate and report the memory footprint needed for the proposed DualPrecision models and
the baseline 8-bit models to do inference with a single image per batch. Specifically, the memory
footprint of inference equals the largest input feature maps plus the largest output feature maps plus
the weight sizes for the entire network. As shown in Figure 6, DualPrecision outperforms the base-
line. That is, considering the streaming inference setting (a single image per batch), DualPrecision
requires less memory to achieve equal accurate results compared to the 8-bit models.
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(a) Memory footprint for ResNet50. (b) Memory footprint for MobileNetV2.

Figure 6: Memory footprint needed for inference under the single-image-per-batch setting.

(a) Model size for ResNet50. (b) Model size for MobileNetV2.

Figure 7: The visualization of Table 3.
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