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Abstract

Current deep learning based detection models tackle detection and segmentation tasks by
casting them to pixel or patch-wise classification. To automate the initial mass lesion de-
tection and segmentation on the whole mammographic images and avoid the computational
redundancy of patch-based and sliding window approaches, the conditional generative ad-
versarial network (cGAN) was used in this study. Subsequently, feeding the detected regions
to the trained densely connected network (DenseNet), the binary classification of benign
versus malignant was predicted. We used a combination of publicly available mammo-
graphic data repositories to train the pipeline, while evaluating the model’s robustness
toward our clinically collected repository, which was unseen to the pipeline.
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1. Introduction

Breast mass lesions are mostly dense and appear in grey to white pixel intensity values
on mammograms, with various size, distribution, shape and density. Computer-Aided
Detection (CADe) and Diagnosis (CADi) systems based on deep learning (DL) methods
have been improved with regards to their performances but still cannot identify all can-
cerous cases (Hamidinekoo et al., 2018a). DL can be applied directly on the whole im-
age or in a patch-based approach. Majority of the approaches proposed for mass detec-
tion (Hamidinekoo et al., 2018a) use a patch-based method for training and a sliding win-
dow approach for testing. These methods basically involve patch classification followed
by localisation, which are time-consuming with substantial redundancy for overlapping
patches. To avoid the computational redundancy of these approaches, we proposed using
the cGAN (Isola et al., 2017) to increase the efficiency by training on whole mammographic
images.

The contribution of this work was to develop an automatic detection and segmentation
model (CADe model) using images from multi-centres and detect mass abnormalities on our
clinically collected unseen mammograms. To complete our pipeline, the detected regions
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were fed into the DenseNet (Huang et al., 2017) (CADi model) to predict the benign or
malignant nature of the detected regions.

2. Methodology

2.1. Datasets

Four multi-centred, publicly available mammographic databases were used to build the
CADe and CADi models. The combination of them is referred to as Set-1. After building
the CADe and CADi models, their performances were evaluated using an unseen dataset,
called Set-2. This dataset was clinically collected from the Norfolk & Norwich University
hospital, UK. The information about these datasets are summarised in Table 1. In the pre-
processing step, all images were segmented into background and tissue and the intensity
values of the segmented regions were normalised (Hamidinekoo et al., 2018b).

For building the CADe, an additional dataset was created from the raw images in Set-1,
where Gaussian noise with σ = 2 was added to increase the number of samples.

For building the CADi, Regions of Interest (RoIs) were extracted with size equal to
double the square bounding box of the lesion to include the neighbourhood information.
These extractions were scaled to 256×256 followed by random crops of 224×224, which were
used for training the CADi (Hamidinekoo et al., 2017).

2.2. Model Architecture

CADe development Mass detection and segmentation on mammograms can be defined
as translating each image into the corresponding semantic label map representing mass
lesion in the breast tissue. Therefore, we propose using the conditional GAN (cGAN) (Isola
et al., 2017) in order to apply a specific condition on the input images to train a conditional
generative model for the CADe. In the architecture of the utilised cGAN, a U-Net-based
structure and a convolutional PatchGAN classifier were used as the generator and the
discriminator, respectively. Both the generator and the discriminator used modules of the
form convolution-BatchNorm-ReLu. The generator was trained to generate mask images
from the mammographic images, which were expected to be similar to the mask images of
the real observed images from Set-1 samples. The cGAN-based CADe model was trained
on the prepared training set via the stochastic gradient descent (SGD) solver with learning
rate=0.00004 and batch-size=16 (using parameter tuning) for epochs=50. When several
regions were detected, connected component analysis was used in the post-processing section
and the three largest detected regions were extracted as RoIs.

Table 1: Utilised databases containing mass lesions.

Set-1: used for training the CADe and CADi models Set-2: used for testing
BCDR-F03 (Lopez
et al., 2012)

BCDR-D01 (Lopez
et al., 2012)

DDSM (Heath et al.,
2001)

Inbreast (Moreira
et al., 2012)

Private-Dataset

Number of cases 341 51 975 102 103

Number of images 664 105 1930 102 210

Benign images 369 69 1023 34 46

Malignant images 295 36 907 68 164

Resolution (bits/pixel) 8 14 12, 16 14 12, 14

Image mode digitised digital digitised digital digital

View MLO, CC MLO, CC MLO, CC MLO, CC MLO, CC

Age distribution 58.4±15.3 57.7±13.5 58.9±11.5 - 60.9±17.7
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CADi development Based on a comparative study (Hamidinekoo et al., 2018b), among
the well-known deep CNNs, the DenseNet was found as an appropriate model for mass
classification due to its key characteristic to bypass signals from the preceding layers to
the subsequent layers. In our implementations, the DenseNet’s growth rate was set to 4
to construct 4 dense-blocks and 3 transition layers in the architecture. In this model, the
final Softmax classifier made a binary decision based on the created features. The rest
of the model’s parameters (kernel, stride and padding sizes) were kept as default (Huang
et al., 2017). The objective of training for the CADi was to minimise the difference error
between the network prediction and the expected output (benign vs. malignant). DenseNet
was trained via the SGD solver with Gamma=0.1, momentum=0.9 and weight-decay=10−5

along with batch-size=8 (based on our hardware specifications), a dynamic learning rate
with initial value=0.001 for 30 epochs. We used transfer learning with the ImageNet dataset,
whilst the network was fine-tuned using Set-1. The trained CADi was able to classify images
in the validation set with the accuracy of 76% and 90% and the AUC of 0.78 and 0.87 on
the combination of digitised+digital images and only digital images, respectively.

3. Results & Discussions

To evaluate CADe performance, each mammographic image (from Set-2) was fed to the
model and the probability map corresponding to the probable detected lesion was com-
puted and compared with their annotated images. Using the CADe, mass abnormal-
ities on mammographic images were detected with 34% accuracy, 34% precision, 32%
recall and an F.Score of 0.33. The detected RoIs were segmented with Dice Similarity
Coefficient=0.33±0.30 and Hausdorff Distance=8.33±2.49. Considering these results, the
detection and segmentation values did not look good. This was caused due to several
predictable reasons: (1) Mass segmentation is not explicitly undertaken in regular breast
screening. So, the available annotations for the Set-1 data repositories and Set-2 samples
were prone to subjectivity, which was not possible to consider due to the lack of such infor-
mation; (2) All the lesion boundaries that were provided by the Set-1, were roughly made.
But the annotated contours that were provided for the Set-2 samples were delicate and very
fine in texture and structure. The model was learned to find a rough boundary not a very
fine contour, which led to low DCS and large HD values; (3) All the training images used
in the Set-1, had single mass lesion on each individual image but there were a significant
number of testing samples (from the Set-2) with multiple lesions annotated on them; (4)
There were several new appearances in the testing samples that were not seen in the train-
ing set, like micro-calcification deposits or prosthesis as shown in Figure 1; (5) The Set-2
images were originally in DICOM format and using a thresholding approach were converted
to .png format. In our experiments we discovered that the value of the threshold applied
to this conversion was very important, which could affect the detection performance; (6)
Comparing the lesion size distributions of the annotated vs predicted lesions illustrated
that the model was able to detect smaller normalised lesion sizes in the range of (0,.1]. As
shown in the examples provided in Figure 1, some lesions were partially detected but were
not considered as an accepted performance in the evaluation section because of the low dice
score (DCS < 0.5). According to these reasons, many of the segmented bounding boxes (in
the testing set) were not accurately aligned with the annotated masses, but the preliminary
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Table 2: Comparing image-based classification performance using the model detected re-
gions vs. annotated lesions by the radiologist for 210 mammograms in Set-2.

Predicted Label

Patches From Actual Label Benign Malignant Per-class Accuracy Not Detected Prediction Accuracy

CADe(σ=2) Benign 15 10 60.00% 21
41.90%

Malignant 41 73 64.03% 50

Annotated lesions
Benign 36 10 78.26% -

73.33%
Malignant 46 118 71.95% -

Table 3: Comparing subject-based classification performance using the model detected re-
gions vs. annotated lesions by the radiologist for 103 subjects with biopsy proven diagnosis.

Predicted Label

Patches From Actual Label Benign Malignant Per-class Accuracy Wrong Detection & Diagnosis Diagnosis Accuracy

CADe(σ=2) Benign 11 6 64.70% 5
63.10%

Malignant 18 54 75.00% 9

Annotated lesions
Benign 9 11 45.00% -

78.64%
Malignant 11 72 86.74% -

results on 103 subjects showed the promise of this cGAN model for initial lesion localisation
to be combined in the traditional image processing techniques (i.e. initial seed point for the
region growing approach).

Table 2 compares confusion matrices of image based classification results on double the
square bounding box of the detected lesions (through CADe(σ=2)) with the actual pre-
detected mass lesions by our radiologist for Set-2. The quantitative results illustrated that
the trained CADi could classify pre-detected mass patches with the accuracy of 73.3%,
which demonstrated (1) its representational capacity to learn different abnormality features
from various digital and digitised training samples; (2) its robustness and generalisability for
an unseen data repository for the task of classification. However, comparing the classifica-
tion performance for the pre-detected lesions vs CADe(σ=2) detected regions, comparative
accuracy values were not obtained (73.33% on 210 images vs 41.90% on 139 images, re-
spectively). This suggested that the model was better to be used for the classification of
the lesions that were initially localised and segmented by the radiologist. Considering that
during the reading of screening mammograms, radiologists use multiple views, we combined
the results of different views for each patient. Giving the priority to the malignant predic-
tions, Table 3 states the diagnosis output. These results justified the use of radiologists’
annotated regions for gaining better output from this pipeline.

4. Conclusion

Our contribution in this paper was to implement an automated pipeline based on cGAN
and DenseNet models along with the required specifications to initially analyse whole mam-
mographic images. This model avoided the computational expense of currently used patch-
based or sliding window approaches, commonly used for large size images (i.e. mammo-
grams). This exploratory research work could be further extended to using DICOM data
instead of converting them into different formats in order to keep the wealth of original
captured data and decrease the model sensitivity to intensity variations.
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Figure 1: Examples of various detection, segmentation and classification performances on
Set-2. From left to right: 3 failed detections due to low DSC and 2 accepted detections and
classifications from class malignant and benign.
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