
Memorization in Overparameterized Autoencoders

Adityanarayanan Radhakrishnan 1 Mikhail Belkin 2 Caroline Uhler 1

Abstract

Interpolation of data in deep neural networks has
become a subject of significant research inter-
est. We prove that over-parameterized single
layer fully connected autoencoders do not merely
interpolate, but rather, memorize training data:
they produce outputs in (a non-linear version of)
the span of the training examples. In contrast
to fully connected autoencoders, we prove that
depth is necessary for memorization in convo-
lutional autoencoders. Moreover, we observe
that adding nonlinearity to deep convolutional
autoencoders results in a stronger form of mem-
orization: instead of outputting points in the span
of the training images, deep convolutional au-
toencoders tend to output individual training im-
ages. Since convolutional autoencoder compo-
nents are building blocks of deep convolutional
networks, we envision that our findings will shed
light on the important question of the inductive
bias in over-parameterized deep networks.

1. Introduction
As deep convolutional neural networks (CNNs) become
ubiquitous in computer vision thanks to their strong per-
formance on a range of tasks (Goodfellow et al., 2016), re-
cent work has begun to analyze the role of interpolation
(perfectly fitting training data) in such networks (Arpit
et al., 2017; Zhang et al., 2017). These works show that
deep overparametrized networks can interpolate training
data even when the labels are random. For an overparam-
eterized model, there are typically infinitely many interpo-
lating solutions. Thus it is important to characterize the
inductive bias of an algorithm, i.e., the properties of the
specific solution chosen by the training procedure.

1Laboratory for Information & Decision Systems, and Insti-
tute for Data, Systems, and Society, Massachusetts Institute of
Technology 2Department of Computer Science and Engineering,
Ohio State University. Correspondence to: Adit Radhakrish-
nan <aradha@mit.edu>, Mikhail Belkin <mbelkin@cse.ohio-
state.edu>, Caroline Uhler <cuhler@mit.edu>.

In this paper we study autoencoders (Goodfellow et al.,
2016), i.e. maps ψ : Rd → Rd that are trained to satisfy

ψ(x(i)) ≈ x(i) with x(i) ∈ Rd, 1 ≤ i ≤ n.

Autoencoders are typically trained by solving

arg min
ψ∈Ψ

n∑
i=1

‖ψ(x(i))− x(i)‖2

by gradient descent over a parametrized function space Ψ.
There are many interpolating solutions to the autoencoding
problem in the overparametrized setting. We characterize
the inductive bias as memorization when the autoencoder
output is within the span of the training data and strong
memorization when the output is close to one of the training
examples for almost any input.

Studying memorization in the context of autoencoders is
relevant since (1) components of convolutional autoen-
coders are building blocks of many CNNs; (2) layerwise
pre-training using autoencoders is a standard technique
to initialize individual layers of CNNs to improve train-
ing (Belilovsky et al., 2019; Bengio et al., 2007; Erhan
et al., 2010); and (3) autoencoder architectures are used
in many image-to-image tasks such as image segmenta-
tion, image impainting, etc. (Ulyanov et al., 2017). While
the results in this paper hold generally for autoencoders,
we concentrate on image data, since this allows identifying
memorization by visual inspection of the input and output.

To illustrate the memorization phenomenon, consider lin-
ear single layer fully connected autoencoders. This au-
toencoding problem can be reduced to linear regression
(see Appendix A). It is well-known that solving over-
parametrized linear regression by gradient descent initial-
ized at zero converges to the minimum norm solution (see,
e.g., Theorem 6.1 in (Engl et al., 1996)). This minimum
norm solution translated to the autoencoding setting corre-
sponds to memorization of the training data: after training
the autoencoder, any input image is mapped to an image
that lies in the span of the training set.

In this paper, we prove that the memorization property
extends to nonlinear single layer fully connected autoen-
coders.

We proceed to show that memorization extends to deep



Memorization in Overparameterized Autoencoders

Figure 1. U-Net Autoencoder trained on a single image from CI-
FAR10 for 2000 iterations. When fed random sized white squares,
a standard Gaussian, or new images from CIFAR10 the model
outputs the training image.

(but not shallow) convolutional autoencoders. As a strik-
ing illustration of this phenomenon consider Figure 1. Af-
ter training a U-Net architecture (Ronneberger et al., 2015),
which is commonly used in image-to-image tasks (Ulyanov
et al., 2017), on a single training image, any input image is
mapped to the training image. Related ideas were concur-
rently explored for autoencoders trained on a single exam-
ple in (Zhang et al., 2019).

The main contributions of this paper are as follows. Build-
ing on the connection to linear regression, we prove that
single layer fully connected nonlinear autoencoders pro-
duce outputs in the “nonlinear” span (see Definition 2) of
the training data. Interestingly, we show in Section 3 that
in contrast to fully connected autoencoders, shallow convo-
lutional autoencoders do not memorize training data, even
when adding filters to increase the number of parameters.
In Section 4, we observe that our memorization results
for linear CNNs carry over to nonlinear CNNs. Further,
nonlinear CNNs demonstrate a strong form of memoriza-
tion: the trained network outputs individual training images
rather than just combinations of training images. We end
with a short discussion in Section 5. Appendices E, F, G,
and H provide additional details concerning the effect of
downsampling, early stopping, and initialization on memo-
rization in linear and nonlinear convolutional autoencoders.

2. Memorization in Single Layer Nonlinear
Fully Connected Autoencoders

In this section, we characterize memorization properties of
nonlinear single layer fully connected autoencoders initial-
ized at zero. A nonlinear single layer fully connected au-
toencoder satisfies φ(Ax(i)) ≈ x(i) for 1 ≤ i ≤ n, where φ
is a non-linear function (such as the sigmoid function) that
acts element-wise with x(i)

j ∈ range(φ), where x(i)
j denotes

the jth element of x(i) for 1 ≤ i ≤ n, 1 ≤ j ≤ d.

In the following, we provide a closed form solution for the
matrix A when initialized at A(0) = 0 and computed using

gradient descent on the mean squared error loss, i.e.

min
A∈Rd×d

1

2

n∑
i=1

(x(i) − φ(Ax(i)))T (x(i) − φ(Ax(i))). (1)

Let φ−1(y) be the pre-image of y ∈ R of minimum `2 norm
and for each j ∈ {1, 2, . . . d} let

x′j = arg max
1≤i≤n

|φ−1(x
(i)
j )|.

In the following, we provide three mild assumptions that
are often satisfied in practice under which a closed form
formula for A can be derived in the nonlinear overparame-
terized setting.

Assumption 1. For all j ∈ {1, 2, . . . , d} it holds that

(a) 0 < x
(i)
j < 1 for all 1 ≤ i ≤ n;

(b) x(i)
j < φ(0) (or x(i)

j > φ(0)) for all 1 ≤ i ≤ n;

(c) φ satisfies one of the following conditions:

(1) if φ−1(x′j) > 0 , then φ is strictly convex and
monotonically decreasing on [0, φ−1(x′j)];

(2) if φ−1(x′j) > 0 , then φ is strictly concave and
monotonically increasing on [0, φ−1(x′j)];

(3) if φ−1(x′j) < 0 , then φ is strictly convex and
monotonically increasing on [φ−1(x′j), 0];

(4) if φ−1(x′j) < 0 , then φ is strictly concave and
monotonically decreasing on [φ−1(x′j), 0].

Assumption (a) typically holds for un-normalized images.
Assumption (b) is satisfied for example when using a min-
max scaling of the images. Assumption (c) holds for many
nonlinearities used in practice including the sigmoid and
tanh functions.

To prove memorization for overparametrized nonlinear sin-
gle layer fully connected autoencoders, we first show how
to reduce the non-linear setting to the linear setting.

Theorem 1. Let n < d (overparametrized setting). Under
Assumption 1, solving (1) to achieve φ(Ax(i)) ≈ x(i) using
a variant of gradient descent (with an adaptive learning
rate as described in Supplementary Material B) initialized
at A(0) = 0 converges to a solution A(∞) that satisfies the
linear system A(∞)x(i) = φ−1(x(i)) for all 1 ≤ i ≤ n.

The proof is presented in Supplementary Material B. Given
our empirical observations using a constant learning rate,
we suspect that the adaptive learning rate used for gradient
descent in the proof is not necessary for the result to hold.

As a consequence of Theorem 1, the single layer nonlinear
autoencoding problem can be reduced to a linear regression



Memorization in Overparameterized Autoencoders

problem. This allows us to define a memorization property
for nonlinear systems by introducing nonlinear analogs of
an eigenvector and the span.

Definition 1 (φ-eigenvector). Given a matrix A ∈ Rd×d
and element-wise nonlinearity φ, a vector u ∈ Rd is a φ-
eigenvector of A with φ-eigenvalue λ if φ(Au) = λu.

Definition 2 (φ-span). Given a set of vectors U =
{u1, . . . ur} with ui ∈ Rd and an element-wise nonlinear-
ity φ, let φ−1(U) = {φ−1(u1) . . . φ−1(ur)}. The nonlin-
ear span of U corresponding to φ (denoted φ-span(U))
consists of all vectors φ(v) such that v ∈ span(φ−1(U)).

The following corollary characterizes memorization for
nonlinear single layer fully connected autoencoders.

Corollary (Memorization in non-linear single layer fully
connected autoencoders). Let n < d (overparametrized
setting) and let A(∞) be the solution to (1) using a vari-
ant of gradient descent with an adaptive learning rate
initialized at A(0) = 0. Then under Assumption 1,
rank(A(∞)) = dim(span(X)); in addition, the training
examples x(i), 1 ≤ i ≤ n, are φ-eigenvectors of A(∞) with
eigenvalue 1 and φ(A(∞)y) ∈ φ-span(X) for any y ∈ Rd.

Proof. Let S denote the covariance matrix of the training
examples and let r := rank(S). It then follows from The-
orem 1 and the minimum norm solution of linear regres-
sion that rank(A(∞)) ≤ r. Since in the overparameterized
setting, A(∞) achieves 0 training error, the training exam-
ples satisfy φ(A(∞)x(i)) = x(i) for all 1 ≤ i ≤ n, which
implies that the examples are φ-eigenvectors with eigen-
value 1. Hence, it follows that rank(A(∞)) ≥ r and thus
rank(A(∞)) = r. Lastly, since the φ-eigenvectors are the
training examples, it follows that φ(A(∞)y) ∈ φ-span(X)
for any y ∈ Rd.

3. Role of Depth for Memorization in
Convolutional Autoencoders

In contrast to single layer autoencoders discussed in the
previous section, we now show that shallow linear convo-
lutional autoencoders in general do not memorize training
data even in the overparametrized setting; hence depth is
necessary for memorization in convolutional autoencoders.

For the following discussion of convolutional autoen-
coders, let the training samples be images in Rs×s. While
all our results also hold for color images, we dropped the
color channel to simplify notation.

Theorem 2. A single filter convolutional autoencoder with
kernel size k and k−1

2 zero padding trained to autoencode
an image x ∈ Rs×s using gradient descent on the mean
squared error loss learns a rank s2 solution.

The proof is presented in Supplementary Material C. The

main ingredient of the proof is the construction of the ma-
trix A to represent a linear convolutional autoencoder. An
algorithm for obtaining A for any linear convolutional au-
toencoder is presented in Supplementary Material D. The-
orem 2 implies that even in the overparameterized setting,
a single layer single filter convolutional autoencoder will
not memorize training data. For example, a network with a
kernel of size 5 and a single training image of size s = 2
is overparametrized, since the number of parameters is 25
while the input has dimension 4. However, in contrast to
the non-convolutional setting, Theorem 2 implies that the
rank of the learned solution is 4, which exceeds the num-
ber of training examples; i.e., memorization does not occur.

As explained in the following, this contrasting behavior
stems from the added constraints imposed on the matrix
A through convolutions, in particular the zeros forced by
the structure of the matrix. A concrete example illustrating
this constraint is provided in Supplementary Material D.
We now prove that these forced zeros prevent memoriza-
tion in single layer single filter convolutional autoencoders.
The following lemma shows that a single layer matrix with
just one forced zero cannot memorize arbitrary inputs.
Lemma 1. A single layer linear autoencoder, represented
by a matrix A ∈ Rd×d with a single forced zero entry can-
not memorize an arbitrary v ∈ Rd.
The proof follows directly from the fact that in the lin-
ear setting, memorization corresponds to projection onto
the training example and thus cannot have a zero in a
fixed data-independent entry. Since single layer single fil-
ter convolutional autoencoders have forced zeros, Lemma 1
shows that these networks cannot memorize arbitrary in-
puts. Next, we show that shallow convolutional autoen-
coders still contain forced zeros regardless of the number
of filters that are used in the intermediate layers.
Theorem 3. At least s − 1 layers are required for memo-
rization (regardless of the number of filters per layer) in a
linear convolutional autoencoder with filters of kernel size
3 applied to images of size s× s.
This lower bound follows by analyzing the forced zero pat-
tern of As−1, which corresponds to the operator for the
s − 1 layer network. Importantly, Theorem 3 shows that
adding filters cannot make up for missing depth, i.e., over-
parameterization through depth rather than filters is neces-
sary for memorization in convolutional autoencoders. The
following corollary emphasizes this point.
Corollary. A 2-layer linear convolutional autoencoder
with filters of kernel size 3 and stride 1 for the hidden rep-
resentation cannot memorize images of size 4×4 or larger,
independently of the number of filters.
This shows that depth is necessary for memorization in
convolutional autoencoders. In Appendix E, we provide
empirical evidence that depth is sufficient for memoriza-
tion, and refine the lower bound from 3 to a lower bound



Memorization in Overparameterized Autoencoders

(a) Network from Figure 3a modified with leaky ReLU activations after every convolutional layer trained on 10 examples of CIFAR10.

(b) Network from Figure 3a trained on 10 examples of CIFAR10.

Figure 2. A comparison of memorization between (a) nonlinear and (b) linear convolutional autoencoders. When trained on 10 examples,
one from each class of CIFAR10, the nonlinear autoencoder demonstrates a stronger form of memorization by outputting specific training
examples instead of linear combinations of training examples when applied to new inputs.

of d s
4

9 e layers needed to identify memorization in linear
convolutional autoencoders. While the number of layers
needed for memorization are large according to this lower
bound, in Appendix F, we show empirically that down-
sampling through strided convolution allows a network to
memorize with far fewer layers.

4. Strong Memorization in Nonlinear
Convolutional Autoencoders

We now provide evidence that our observations regarding
memorization in linear convolutional autoencoders extend
to the nonlinear setting. In Figure 2a, we observe that a
downsampling nonlinear convolutional autoencoder with
leaky ReLU activations (described in Figure 3a) strongly
memorizes 10 examples, one from each class of CIFAR10.
That is, given a new test example from CIFAR10, samples
from a standard Gaussian, or random sized color squares,
the model outputs an image visually similar to one of the
training examples instead of a combination of training ex-
amples. This is in contrast to deep linear convolutional au-
toencoders; for example, in Figure 2b, we see that training
the linear model from 3a leads to the model outputting lin-
ear combinations of the training examples. These results
suggest that for deep nonlinear convolutional autoencoders
the training examples are strongly attractive fixed points.

5. Conclusions and Future Work
This paper identified the mechanism behind memorization
in autoencoders. While it is well-known that linear regres-

sion converges to a minimum norm solution when initial-
ized at zero, we tied this phenomenon to memorization
in non-linear single layer fully connected autoencoders,
showing that they produce output in the nonlinear span of
the training examples. Furthermore, we showed that con-
volutional autoencoders behave quite differently since not
every overparameterized convolutional autoencoder mem-
orizes. Indeed, we showed that overparameterization by
adding depth or downsampling is necessary and empiri-
cally sufficient for memorization in the convolutional set-
ting, while overparameterization by extending the number
of filters in a layer does not lead to memorization.

Interestingly, we observed empirically that the phe-
nomenon of memorization is pronounced in the non-linear
setting, where nearly arbitrary input images are mapped to
output images that are visually identifiable as one of the
training images rather than a linear combination thereof as
in the linear setting. While the exact mechanism for this
strong form of memorization in the non-linear setting still
needs to be understood, this phenomenon is reminiscent
of FastICA in Independent Component Analysis (Hyvri-
nen & Oja, 1997) or more general non-linear eigenprob-
lems (Belkin et al., 2018b), where every “eigenvector”
(corresponding to training examples in our setting) of cer-
tain iterative maps has its own basin of attraction. We con-
jecture that increasing the depth may play the role of in-
creasing the number of iterations in those methods.

Since the use of deep networks with near zero initializa-
tion is the current standard for image classification tasks,
we expect that our memorization results also carry over to



Memorization in Overparameterized Autoencoders

these application domains. We note that memorization is a
particular form of interpolation (zero training loss) and in-
terpolation has been demonstrated to be capable of gener-
alizing to test data in neural networks and a range of other
methods (Zhang et al., 2017; Belkin et al., 2018a). Our
work could provide a mechanism to link overparameteriza-
tion and memorization with generalization properties ob-
served in deep convolutional networks.

Acknowledgements
Adityanarayanan Radhakrishnan was supported by Na-
tional Science Foundation (DMS-1651995). Caroline Uh-
ler was partially supported by National Science Founda-
tion (DMS-1651995), Office of Naval Research (N00014-
17-1-2147 and N00014-18-1-2765), IBM, and a Sloan Fel-
lowship. Mikhail Belkin acknowledges support from NSF
(IIS-1815697 and IIS-1631460).

References
Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,

E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,
A., Bengio, Y., and Lacoste-Julien, S. A closer look at
memorization in deep networks. In International Con-
ference on Machine Learning (ICML), 2017.

Belilovsky, E., Eickenberg, M., and Oyallon, E. Greedy
layerwise learning can scale to ImageNet, 2019.
arXiv:1812.11446.

Belkin, M., Hus, D., Ma, S., and Mandal, S. Reconciling
modern machine learning and the bias-variance trade-
off, 2018a. arXiv:1812.11118.

Belkin, M., Rademacher, L., and Voss, J. Eigenvectors of
orthogonally decomposable functions. SIAM Journal on
Computing, 47(2):547–615, 2018b.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
Greedy layer-wise training of deep networks. In Neural
Information Processing Systems (NIPS), 2007.

Engl, H. W., Hanke, M., and Neubauer, A. Regularization
of inverse problems, volume 375. Springer Science &
Business Media, 1996.

Erhan, D., Bengio, Y., Courville, A., ne Manzagol, P.-A.,
Vincent, P., and Bengio, S. Why does unsupervised pre-
training help deep learning? Journal of Machine Learn-
ing Research (JMLR), 11:625–660, 2010.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learn-
ing, volume 1. MIT Press, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into
rectifiers: Surpassing human-level performance on Im-
ageNet classification. In International Conference on
Computer Vision (ICCV), 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Computer Vision and Pat-
tern Recognition (CVPR), 2016.

Hyvrinen, A. and Oja, E. A fast fixed-point algorithm for
independent component analysis. Neural Computation,
9(7):1483–1492, 1997.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. Automatic differentiation in PyTorch. 2017.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convolu-
tional networks for biomedical image segmentation. In
International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI), 2015.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. Deep image
prior, 2017. arXiv:1711.10925.

Xu, B., Wang, N., Chen, T., and Li, M. Empirical eval-
uation of rectified activations in convolution network,
2015. arXiv:1505.00853.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals,
O. Understanding deep learning requires rethinking gen-
eralization. In International Conference on Learning
Representations (ICLR), 2017.

Zhang, C., Bengio, S., Hardt, M., and Singer, Y. Identity
crisis: Memorization and generalization under extreme
overparameterization, 2019. arXiv:1902.04698.



Memorization in Overparameterized Autoencoders

A. Minimum Norm Solution for Linear Fully
Connected Autoencoders

In the following, we analyze the solution when using gradi-
ent descent to solve the autoencoding problem for the sys-
tem Ax(i) = x(i) for 1 ≤ i ≤ n with x(i) ∈ Rd. The loss
function is

L =
1

2

n∑
i=1

(Ax(i) − x(i))T (Ax(i) − x(i))

and the gradient with respect to the parameters A is

∂L

∂A
= (A− I)

n∑
i=1

(x(i)x(i)T ).

Let S =

n∑
i=1

(x(i)x(i)T ). Hence gradient descent with

learning rate γ > 0 will proceed according to the equation:

A(t+1) = A(t) + γ(I −A(t))S

= A(t)(I − γS) + γS

Now suppose that A(0) = 0, then we can directly solve the
recurrence relation for t > 0, namely

A(t) = I − (I − γS)t

Note that S is a real symmetric matrix, and so it has eigen-
decomposition S = QΛQT where Λ is a diagonal matrix
with eigenvalue entries λ1 ≥ λ2 ≥ . . . ≥ λr (where r is
the rank of S). Then:

A(t) = I −Q(I − γΛ)tQT

= Q(I − (I − γΛ)t)QT .

Now if γ < 1
λ1

, then we have that:

A(∞) = Q

[
Ir×r 0r×d−r

0d−r×r 0d−r×d−r

]
QT ,

which is the minimum norm solution.

B. Proof for Nonlinear Fully Connected
Autoencoder

In the following, we present the proof of Theorem 2 from
the main text.

Proof. As we are using a fully connected network, the rows
of the matrixA can be optimized independently during gra-
dient descent. Thus without loss of generality, we only con-
sider the convergence of the first row of the matrix A de-
noted A1 = [a1, a2, . . . ad] to find A(∞)

1 .The loss function
for optimizing row A1 is given by:

L =
1

2

n∑
i=1

(x
(i)
1 − φ(A1x

(i)))2.

Our proof involves using gradient descent on L but with
a different adaptive learning rate per example. That is, let
γ

(t)
i be the learning rate for training example i at iteration
t of gradient descent. Without loss of generality, fix j ∈
{1, . . . , d}. The gradient descent equation for parameter
aj is:

a
(t+1)
j = a

(t)
j +

n∑
i=1

γ
(t)
i x

(i)
j φ′(A

(t)
1 x(i))(x

(i)
j −φ(A

(t)
1 x(i)))

To simplify the above equation, we make the following
substitution

γ
(t)
i = − γi

φ′(A
(t)
1 x(i))

,

i.e., the adaptive component of the learning rate is the recip-
rocal of φ′(A(t)

1 x(i)) (which is nonzero due to monotonicity
conditions on φ). Note that we have included the negative
sign so that if φ is monotonically decreasing on the region
of gradient descent, then our learning rate will be positive.
Hence the gradient descent equation simplifies to

a
(t+1)
j = a

(t)
j +

n∑
i=1

γix
(i)
j (φ(A

(t)
1 x(i))− x(i)

j ).

Before continuing, we briefly outline the strategy for the re-
mainder of the proof. First, we will use assumption (c) and
induction to upper bound the sequence (φ(A

(t)
1 x(i))−x(i)

j )
with a sequence along a line segment. The iterative form of
gradient descent along the line segment will have a simple
closed form and so we will obtain a coordinate-wise up-
per bound on our sequence of interest A(t)

1 . Next, we show
that our upper bound given by iterations along the selected
line segment is in fact a coordinate-wise least upper bound.
Then we show thatA(t)

1 is a coordinate-wise monotonically
increasing function, meaning that it must converge to the
least upper bound established prior.

Without loss of generality assume, φ−1(x′k) > 0 for
1 ≤ k ≤ d. By assumption (c), we have that for x ∈
[0, φ−1(x

(i)
j )],

φ(x) < −
φ(0)− x(i)

j

φ−1(x
(i)
j )

x+ φ(0),

since the right hand side is just the line segment join-
ing points (0, φ(0)) and (φ−1(x

(i)
j ), x

(i)
j ), which must be

above the function φ(x) if the function is strictly convex.
To simplify notation, we write

si = −
φ(0)− x(i)

j

φ−1(x
(i)
j )

.

Now that we have established a linear upper bound on φ,
consider a sequenceB(t)

1 = [b
(t)
1 , . . . b

(t)
d ] analogous toA(t)

1



Memorization in Overparameterized Autoencoders

but with updates:

b
(t+1)
j = b

(t)
j +

n∑
i=1

γix
(i)
j (−siB(t)

1 x(i) + φ(0)− x(i)
j )

Now if we let γi = γ
si

, then we have

b
(t+1)
j = b

(t)
j −

n∑
i=1

γx
(i)
j (B

(t)
1 x(i) − φ−1(x

(i)
j )),

which is the gradient descent update equation with learn-
ing rate γ for the first row of the parameters B in solving
Bx(i) = φ−1(x(i)) for 1 ≤ i ≤ n. Since gradient de-
scent for a linear regression initialized at 0 converges to the
minimum norm solution (see Appendix A), we obtain that
B

(t)
1 x(i) ∈ [0, φ−1(x′1)] for all t ≥ 0 when B(0)

1 = 0.

Next, we wish to show that B(t)
j is a coordinate-wise upper

bound forA(t)
1 . To do this, we first selectL such that

x
(i)
j

x
(i)
k

≤
L for 1 ≤ i ≤ n and 1 ≤ j, k ≤ d (i.e. L ≥ 1).

Then, we proceed by induction to show the following:

1. b(t)j > a
(t)
j for all t ≥ 2 and 1 ≤ j ≤ d.

2. For C(t)
1 = [c

(t)
1 , . . . c

(t)
d ] = B

(t)
1 − A

(t)
1 , c

(t)
l

c
(t)
j

≤ L for

1 ≤ l, j ≤ d and for all t ≥ 2 .

To simplify notation, we follow induction for a(t)
1 and b(t)1

and by symmetry our reasoning follows for a(t)
j and b(t)j for

2 ≤ j ≤ d.

Base Cases :

1. Trivially we have a(1)
1 = b

(1)
1 = 0 and so A(0)

1 x =

B
(0)
1 x = 0.

2. We have that: a(1)
1 = b

(1)
1 =

n∑
i=1

γix
(i)
1 (φ(0) − x(i)

1 ).

Hence we have A(1)
1 x = B

(1)
1 x.

3. Now for t = 2,

a
(2)
1 = a

(1)
1 +

n∑
i=1

γix
(i)
1 (φ(A

(1)
1 x(i))− x(i)

1 )

b
(2)
1 = b

(t)
1 +

n∑
i=1

γix
(i)
1 (−siB(1)

1 x(i) + φ(0)− x(i)
1 )

However, we know that B(1)
1 x(i) ∈ [0, φ−1(x′1)] and

since A(1)
1 = B

(1)
1 , A(1)

1 x(i) ∈ [0, φ−1(x′1)]. Hence,
b
(2)
1 > a

(2)
1 since the on the interval [0, φ−1(x′1)], φ

is bounded above by the line segments with endpoints
(0, φ(0)) and (φ−1(x

(i)
1 ), x

(i)
1 ). Now for the second

component of induction, we have:

c
(2)
j =

n∑
i=1

γix
(i)
j (−siB(1)

1 x(i) + φ(0)− φ(A
(1)
1 x(i)))

c
(2)
l =

n∑
i=1

γix
(i)
l (−siB(1)

1 x(i) + φ(0)− φ(A
(1)
1 x(i)))

To simplify the notation, let:

G
(1)
i = −siB(1)

1 x(i) + φ(0)− φ(A
(1)
1 x(i))

Thus, we have

c
(2)
l

c
(2)
j

=

n∑
i=1

γix
(i)
l G

(1)
i

n∑
i=1

γix
(i)
j G

(1)
i

=

n∑
i=1

γi
x

(i)
l

x
(i)
j

∏
p 6=i

x
(p)
j

G
(1)
i

n∑
i=1

γi
1∏

p 6=i

x
(p)
j

G
(1)
i

≤

n∑
i=1

γiL
1∏

p 6=i

x
(p)
j

G
(1)
i

n∑
i=1

γi
1∏

p 6=i

x
(p)
j

G
(1)
i

= L

Inductive Hypothesis: We now assume that for t = k,

b
(k)
1 > a

(k)
1 and soB(k)

1 x > A
(k)
1 x. We also assume c

(k)
i

c
(k)
j

≤
L.

Inductive Step: Now we consider t = k + 1. Since
b
(k)
1 = a

(k)
1 + c

(k)
1 for c(k)

1 > 0 and since x(i)
j ∈ (0, 1)

for all i, j, we have B(k)
1 x(i) = A

(k)
1 x(i) +

d∑
j=1

c
(k)
j x

(i)
j .



Memorization in Overparameterized Autoencoders

Consider now the difference between b(k+1)
1 and a(k+1)

1 :

c
(k+1)
1 = c

(k)
1 +

n∑
i=0

γix
(i)
1 (−siBk1x(i) + φ(0)− φ(A

(k)
1 x(i)))

= c
(k)
i +

n∑
i=0

γix
(i)
1 (−siA(k)

1 x(i) + φ(0)− φ(A
(k)
1 x(i)))

−
n∑
i=0

γix
(i)
1 si

d∑
j=1

c
(k)
j x

(i)
j

> c
(k)
1 −

n∑
i=0

γix
(i)
1 si

d∑
j=1

c
(k)
j x

(i)
j

≥ c(k)
1 −

n∑
i=0

γisi

d∑
j=1

c
(k)
j

= c
(k)
1 −

n∑
i=0

γisic
(k)
1

d∑
j=1

c
(k)
j

c
(k)
1

≥ c(k)
i −

n∑
i=0

γisic
(k)
1 Ld,

where the first inequality comes from the fact that
−sA(k)

1 x(i) + φ(0) is a point on the line that upper bounds
φ on the interval [0, φ−1(x′1)], and the second inequality
comes from the fact that each x

(i)
j < 1. Hence, with a

learning rate of

γi =
γ

si
with γ <

1

nLd
,

we obtain that c(k+1)
1 = b

(k+1)
1 − a(k+1)

1 > 0 as desired.
Hence, the first component of the induction is complete. To

fully complete the induction we must show that c
(k+1)
i

c
(k+1)
j

≤ L
for 1 ≤ l, j ≤ d. We proceed as we did in the base case:

c
(k+1)
l = c

(k)
l

+

n∑
i=1

γix
(i)
l (−siB(k)

1 x(i) + φ(0)− φ(A
(k)
1 x(i)))

c
(k+1)
j = c

(k)
j

+

n∑
i=1

γix
(i)
j (−siB(k)

1 x(i) + φ(0)− φ(A
(k)
1 x(i))).

To simplify the notation, let

G
(k)
i = −siB(k)

1 x(i) + φ(0)− φ(A
(k)
1 x(i)),

and thus

c
(k+1)
l

c
(k+1)
j

=

c
(k)
l +

n∑
i=1

γix
(i)
l G

(k)
i

c
(k)
j +

n∑
i=1

γix
(i)
j G

(k)
i

=

c
(k)
l

c
(k)
j

d∏
p=1

x
(p)
j

+

n∑
i=1

γi
x

(i)
l

x
(i)
j c

(k)
j

∏
p 6=i

x
(p)
j

G
(k)
i

1
d∏
p=1

x
(p)
j

+

n∑
i=1

γi
1

c
(k)
j

∏
p 6=i

x
(p)
j

G
(k)
i

≤

L
d∏
p=1

x
(p)
j

+

n∑
i=1

γi
L

c
(k)
j

∏
p 6=i

x
(p)
j

G
(k)
i

1
d∏
p=1

x
(p)
j

+

n∑
i=1

γi
1

c
(k)
j

∏
p 6=i

x
(p)
j

G
(k)
i

= L

This completes the induction argument and as a conse-

quence we obtain c(t)l > 0 and c
(t)
l

c
(t)
j

≤ L for all integers

t ≥ 2 and for 1 ≤ l, j ≤ d.

Hence, the sequence b(t)i is an upper bound for a(t)
i given

learning rate γ ≤ 1
nLd . By symmetry between the rows of

A, we have that, the solution given by solving the system
Bx(i) = φ−1(x(i)) for 1 ≤ i ≤ n using gradient descent
with constant learning rate is an entry-wise upper bound
for the solution given by solving φ(Ax(i)) = x(i) for 1 ≤
i ≤ n using gradient descent with adaptive learning rate
per training example when A(0) = B(0) = 0.

Now, since the entries of B(t) are bounded and since they
are greater than the entries of A(t) for the given learning
rate, it follows from the gradient update equation forA that
the sequence of entries of A(t) are monotonically increas-
ing from 0. Hence, if we show that the entries of B(∞) are
least upper bounds on the entries of A(t), then it follows
that the entries of A(t) converge to the entries of B(∞).

Suppose for the sake of contradiction that the least upper
bound on the sequence a(t)

j (the jth entry of the first row

of A) is a b(∞)
j − εj for ε = [ε1, . . . εd] with εj > 0 for

1 ≤ j ≤ d. Then

φ(A
(∞)
1 x(i)) = φ(B

(∞)
1 x(i) − εx(i))

for 1 ≤ i ≤ n. Since we are in the overparameterized
setting, at convergence A(∞)

1 must give 0 loss under the



Memorization in Overparameterized Autoencoders

mean squared error loss and so φ(B
(∞)
1 x(i)−εx(i)) = x

(i)
1 .

This implies that B(∞)
1 x(i) − εx(i) is a pre-image of x(i)

1

under φ. However, we know that B(∞)
1 x(i) must be the

minimum norm pre-image of x(i)
1 under φ. Hence we reach

a contradiction to minimiality since B(∞)
1 x(i) − εx(i) <

B
(∞)
1 x(i) as εx(i) > 0. This completes the proof and so

we conclude that A(t) converges to the solution given by
autoencoding the linear system Ax(i) = φ−1x(i) for 1 ≤
i ≤ n using gradient descent with constant learning rate.

C. Single Layer Single Filter Convolutional
Autoencoder

In the following, we present the proof for Theorem 3 from
the main text.

Proof. A single convolutional filter with kernel size k and
k−1

2 zero padding operating on an image of size s × s can
be equivalently written as a matrix operating on a vector-
ized zero padded image of size (s + k − 1)2. Namely, if
C1, C2, . . . Ck2 are the parameters of the convolutional fil-
ter, then the layer can be written as the matrix

R
Rr:1

...
Rr:s−1

Rr:(s+k−1)

...
Rr:(2s+k−2)

...
Rr:((s+k−1)(s−1))

...
Rr:((s+k)(s−1)



,

where

R =
[
C1 . . . Ck 0s−1 . . . Ck2−k+1 . . . Ck2 0(s+k)(s−1)

]
and Rr:t denotes a right rotation of R by t elements.

Now, training the convolutional layer to autoencode exam-
ple x using gradient descent is equivalent to training R to
fit s2 examples using gradient descent. Namely, R must
satisfy Rx = x1, Rxl:1 = x2, . . . Rxl:(s+k−1)(s−1)+s−1 =
xs2 where xTl:t denotes a left rotation of xT by t elements.
As in the proof for Theorem 1, we can use the general form
of the solution for linear regression using gradient descent
from Appendix A to conclude that the rank of the resulting
solution will be s2.

D. Linearizing CNNs
In this section, we present how to extract a matrix form
for convolutional and nearest neighbor upsampling layers.
We first present how to construct a block of this matrix for
a single filter in Algorithm 1. To construct a matrix for
multiple filters, one need only apply the provided algorithm
to construct separate matrix blocks for each filter and then
concatenate them. We first provide an example of how to
convert a single layer convolutional network with a single
filter of kernel size 3 into a single matrix for 3× 3 images.

First suppose we have a 3 × 3 image x as input, which is
shown vectorized below:x1 x2 x3

x4 x5 x6

x7 x8 x9

→
[
x1 x2 x3 x4 x5 x6 x7 x8 x9

]T
Next, let the parameters below denote the filter of kernel
size 3 that will be used to autoencode the above example:A1 A2 A3

A4 A5 A6

A7 A8 A9

 .
We now present the matrix form A for this convolutional
filter such that A multiplied with the vectorized version
of x will be equivalent to applying the convolutional fil-
ter above to the image x (the general algorithm to perform
this construction is presented in Algorithm 1).



A5 A6 0 A8 A9 0 0 0 0
A4 A5 A6 A7 A8 A9 0 0 0
0 A4 A5 0 A7 A8 0 0 0
A2 A3 0 A5 A6 0 A8 A9 0
A1 A2 A3 A4 A5 A6 A7 A8 A9

0 A1 A2 0 A4 A5 0 A7 A8

0 0 0 A2 A3 0 A5 A6 0
0 0 0 A1 A2 A3 A4 A5 A6

0 0 0 0 A1 A2 0 A4 A5


Importantly, this example demonstrates that the matrix cor-
responding to a convolutional layer has a fixed zero pattern.
It is this forced zero pattern we use to prove that depth is
required for memorization in convolutional autoencoders.

In downsampling autoencoders, we will also need to lin-
earize the nearest neighbor upsampling operation. We pro-
vide the general algorithm to do this in Algorithm 2. Here,
we provide a simple example for an upsampling layer with
scale factor 2 operating on a vectorized zero padded 1 × 1
image:



Memorization in Overparameterized Autoencoders

Image
Size

#
Train.
Ex.

Heuristic
Lower
Bound
Layers

# of
Layers

# of
Filters

Per
Layer

# of
Params Spectrum

3×3 2 9 2 1 27 1, 1, .98, . . .
3×3 2 9 2 16 2592 1, 1, .99, . . .
3×3 2 9 2 128 149760 1, 1, .99, . . .

3×3 2 9 5 1 45 1, 1, .78, . . .
3×3 2 9 5 16 7200 1, 1, .72, . . .
3×3 2 9 5 128 444672 1, 1, .7, . . .

3×3 2 9 8 1 72 1, 1, .14, . . .
3×3 2 9 8 16 14112 1, 1, .1, . . .
3×3 2 9 8 128 887040 1, 1, .08, . . .

Table 1. Linear convolutional autoencoders with a varying num-
ber of layers and filters were initialized close to zero and trained
on 2 normally distributed images of size 3 × 3. Memorization
does not occur in any of the examples (memorization would be
indicated by the spectrum containing two eigenvalues that are 1
and the remaining eigenvalues being close to 0). Increasing the
number of filters per layer has minimal effect on the spectrum.



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


The resulting output is a zero padded upsampled version of
the input.

E. Deep Linear Convolutional Autoencoders
Memorize

While Theorem 3 provided a lower bound on the depth re-
quired for memorization, Table 1 shows that the depth pre-
dicted by this bound is not sufficient. In each experiment,
we trained a linear convolutional autoencoder to encode 2
randomly sampled images of size 3×3 with a varying num-
ber of layers and filters per layer. The first 3 rows of Table 1
show that the lower bound from Theorem 3 is not suffi-
cient for memorization (regardless of overparameterization
through filters) since memorization would be indicated by a
rank 2 solution (with the third eigenvalue close to zero). In
fact, the remaining rows of Table 1 show that even 8 layers
are not sufficient for memorizing two images of size 3× 3.

Image
Size

# of
Train.
Ex.

Heuristic
Lower
Bound
Layers

# of
Layers

# of
Params Spectrum

2×2 1 2 3 27 1, [< 10−2]

3×3 1 9 9 81 1, [< 10−2]

4×4 1 29 29 261 1, [< 10−3]

5×5 1 70 70 630 1, [< 10−5]

6×6 1 144 144* 1296 1, [< 2 · 10−2]

7×7 1 267 267* 2403 1, [< 4 · 10−3]

3×3 3 9 10 90 1, .98, .98, [< 10−2]

5×5 5 70 200* 1800 1, 1, 1, 1, 1, [< 10−3]

7×7 5 144 350* 3105 1, 1, 1, 1, 1, [< 10−2]

Table 2. Linear convolutional autoencoders with d s
4

9
e layers (as

predicted by our heuristic lower bound) with a single filter per
layer, initialized with each parameter as close to zero as possi-
ble, memorize training examples of size s × s similar to a single
layer fully connected system.The bracket notation in the spectrum
indicates that the magnitude of the remaining eigenvalues in the
spectrum is below the value in the brackets.

Next we provide a heuristic bound to determine the depth
needed to observe memorization (denoted by “Heuristic
Lower Bound Layers” in Tables 1 and 2). Theorem 3 and
Table 1 suggest that the number of filters per layer does not
have an effect on the rank of the learned solution. We thus
only consider networks with a single filter per layer with
kernel size 3. It follows from Section 2 that overparam-
eterized single layer fully connected autoencoders memo-
rize training examples when initialized at 0. Hence, we can
obtain a heuristic bound on the depth needed to observe
memorization in linear convolutional autoencoders with a
single filter per layer based on the number of layers needed
for the network to have as many parameters as a fully con-
nected network. The number of parameters in a single layer
fully connected linear network operating on vectorized im-
ages of size s×s is s4. Hence, using a single filter per layer
with kernel size 3, the network needs d s

4

9 e layers to achieve
the same number of parameters as a fully connected net-
work. This leads to a heuristic lower bound of d s

4

9 e layers
for memorization in linear convolutional autoencoders op-
erating on images of size s× s.

In Table 2, we investigate the memorization properties of
networks that are initialized with parameters as close to
zero as possible with the number of layers given by our
heuristic lower bound and one filter of kernel size 3 per
layer. The first 6 rows of the table show that all networks
satisfying our heuristic lower bound have memorized a sin-
gle training example since the spectrum consists of a single
eigenvalue that is 1 and remaining eigenvalues with mag-
nitude less than ≈ 10−2. Similarly, the spectra in the last
3 rows indicate that networks satisfying our heuristic lower
bound also memorize multiple training examples, thereby
suggesting that our bound is relevant in practice.

The experimental setup was as follows: All networks were
trained using gradient descent with a learning rate of 10−1,



Memorization in Overparameterized Autoencoders

Algorithm 1 Create Matrix for Single Convolutional Filter given Input with dimensions f × s× s
Input: parameters:= parameters of f trained 3 × 3 CNN filters, s:= width and height of image without zero padding,

f := depth of image, stride:= stride of CNN filter
Output: Matrix C representing convolution operation

1: function CREATEFILTERMATRIX(parameters, s, f, stride)
2: paddedSize← s+ 2
3: resized← s/stride
4: rowBlocks← zeros matrix size (f, (paddedSize)2)
5: for filterIndex← 0 to f − 1 do
6: for kernelIndex← 0 to 8 do
7: rowIndex← kernelIndex mod 3 + paddedSize

⌊
kernelIndex

3

⌋
8: rowBlocks[filterIndex][rowIndex]← parameters[filterIndex][kernelIndex]
9: end for

10: end for
11: C ← zeros matrix of size ((resized+ 2)2, f · paddedSize2)
12: index← resized+ 2 + 1
13: for shift← 0 to resized− 1 do
14: nextBlock ← zeros matrix of size (resized, f · paddedSize2)
15: nextBlock[0]← rowBlocks
16: for rowShift← 1 to resized− 1 do
17: nextBlock[rowShift]← rowBlocks shifted right by stride · rowShift
18: end for
19: C[index : index+ resized, :]← nextBlock
20: index← index+ resize+ 2
21: rowBlock ← zero shift rowBlock by paddedSize · stride
22: end for
23: return C
24: end function

until the loss became less than 10−6 (to speed up training,
we used Adam (Kingma & Ba, 2015) with a learning rate
of 10−4 when the depth of the network was greater than
10). For large networks with over 100 layers (indicated
by an asterisk in Table 2), we used skip connections be-
tween every 10 layers, as explained in (He et al., 2016),
to ensure that the gradients can propagate to earlier lay-
ers. Table 2 shows the resulting spectrum for each exper-
iment, where the eigenvalues were sorted by there magni-
tudes. The bracket notation indicates that all the remaining
eigenvalues have magnitude less than the value provided in
the brackets. Interestingly, our heuristic lower bound also
seems to work for deep networks that have skip connec-
tions, which are commonly used in practice.

The experiments in Table 2 indicate that over 200 layers
are needed for memorization of 7 × 7 images. In the next
section, we discuss how downsampling can be used to con-
struct much smaller convolutional autoencoders that mem-
orize training examples.

F. Role of Downsampling for Memorization in
Convolutional Autoencoders

To gain intuition for why downsampling can trade off
depth to achieve memorization, consider a convolutional
autoencoder that downsamples input to 1 × 1 representa-
tions through non-unit strides. Such extreme downsam-
pling makes a convolutional autoencoder equivalent to a
fully connected network; hence given the results in Sec-
tion 2 such downsampling convolutional networks are ex-
pected to memorize. This is illustrated in Figure 3: The
network uses strides of size 2 to progressively downsample
to a 1× 1 representation of a CIFAR10 input image. Train-
ing the network on two images from CIFAR10, the rank
of the learned solution is exactly 2 with the top eigenval-
ues being 1 and the corresponding eigenvectors being lin-
ear combinations of the training images. In this case, using
the default PyTorch initialization was sufficient in forcing
each parameter to be close to zero.

Memorization using convolutional autoencoders is also ob-
served with less extreme forms of downsampling. In fact,
we observed that downsampling to a smaller representa-
tion and then operating on the downsampled representation



Memorization in Overparameterized Autoencoders

Algorithm 2 Create Matrix for Nearest Neighbor Upsampling Layer

Input: s:= width and height of image without zero padding, f := depth of image, scale:= re-scaling factor for incoming
image

Output: Matrix U representing convolution operation

1: function CREATEUPSAMPLINGMATRIX(s, f, scale)
2: outputSize← s · scale+ 2
3: U ← zeros matrix of size (f · outputSize2, f · (s+ 2)2)
4: index← outputSize+ 1
5: for filterIndex← 0 to f − 1 do
6: for rowIndex← 1 to s do
7: for scaleIndex← 0 to scale− 1 do
8: for columnIndex← 0 to s do
9: row ← zeros vector of size (f(s+ 2)2)

10: row[columnIndex+ rowIndex(s+ 2) + filterIndex(s+ 2)2]← 1
11: for repeatIndex← 0 to scale− 1 do
12: U [index]← row
13: index← index+ 1
14: end for
15: end for
16: index← index+ 2
17: end for
18: end for
19: index← index+ 2 · outputSize
20: end for
21: return U
22: end function

with depth provided by our heuristic bound established in
Section E also leads to memorization. As an example, con-
sider the network in Figure 4a operating on images from
CIFAR10 (size 32 × 32). This network downsamples a
32 × 32 CIFAR10 image to a 4 × 4 representation after
layer 1. As suggested by our heuristic lower bound for 4×4
images (see Table 2) we use 29 layers in the network. Fig-
ure 4b indicates that this network indeed memorized the
image by producing a solution of rank 1 with eigenvalue 1
and corresponding eigenvector being the dog image.

G. Strong Memorization in Nonlinear
Non-downsampling Autoencoders

We start by investigating whether the heuristic bound on
depth needed for memorization that we have established for
linear convolutional autoencoders carries over to nonlinear
convolutional autoencoders.

Example. Consider a deep nonlinear convolutional au-
toencoder with a single filter per layer of kernel size 3, 1
unit of zero padding, and stride 1 followed by a leaky ReLU
(Xu et al., 2015) activation that is initialized with parame-
ters as close to 0 as possible. In Table 2 we reported that its
linear counterpart memorizes 4× 4 images with 29 layers.

Figure 5 shows that also the corresponding nonlinear net-
work with 29 layers can memorize 4× 4 images. While the
spectrum can be used to prove memorization in the linear
setting, since we are unable to extract a nonlinear equiva-
lent of the spectrum for these networks, we can only provide
evidence for memorization by visual inspection.

This example suggests that our results on depth required for
memorization in deep linear convolutional autoencoders
carry over to the nonlinear setting. In fact, when training
on multiple examples, we observe that memorization is of a
stronger form in the nonlinear case. Consider the example
in Figure 6. We see that given new test examples, a non-
linear convolutional autoencoder with 5 layers trained on
2 × 2 images outputs individual training examples instead
of combinations of training examples.

H. Robustness of Memorization and Role of
Initialization

Memorization with Early Stopping. In all examples dis-
cussed so far, we trained the autoencoders to achieve nearly
0 error (less than 10−6). In this section, we provide empir-
ical evidence suggesting that the phenomenon of memo-
rization is robust in the sense of appearing early in train-



Memorization in Overparameterized Autoencoders

(a) Downsampling Network Architecture D1

(b) Network D1 trained on a CIFAR10 Dog.

Figure 3. Downsampling Network Architecture D1 trained on a
two images from CIFAR10 for 10000 iterations. Each parameter
of the network is initialized using the default PyTorch initializa-
tion. When fed standard Gaussian data the model outputs a linear
combination of training images since the corresponding solution
has spectrum 1, 1, [< 2 · 10−2].

(a) Downsampling Network Architecture D2

(b) Network D2 trained on a CIFAR10 Dog.

Figure 4. Downsampling Network Architecture D2 trained on a
single image from CIFAR10 for 10000 iterations. Each parameter
of the network is initialized at 1.8 · 10−3. When fed standard
Gaussian data the model outputs a multiple of the training image
since the corresponding solution has spectrum 1, [< 7 · 10−6].

ing, well before full convergence. The examples in Fig-
ure 7 using the network architecture shown in Figure 3a
(where the nonlinear version is created by adding Leaky
ReLU activation after every convolutional layer) illustrate
this phenomenon. Both linear and nonlinear convolutional
networks (that satisfy the heuristic conditions for memo-
rization discussed in Sections 3 and F) show memorization

throughout the training process.

As illustrated in Figure 7, networks in which training was
terminated early, map a new given input to the current rep-
resentation of the training examples. As shown in Figures
7a and 7b, the nonlinear autoencoder trained to autoencode
two images from CIFAR10 clearly outputs the learned rep-
resentations when given arbitrary test examples. As shown
in Figures 7c and 7d, memorization is evident throughout
training also in the linear setting, although the outputs are
noisier than in the nonlinear setting.

Initialization at Zero is Necessary for Memorization.
Section 2 showed that linear fully connected autoencoders
initialized at zero memorize training examples by learning
the minimum norm solution. Since in the linear setting the
distance to the span of the training examples remains con-
stant when minimizing the autoencoder loss regardless of
the gradient descent algorithm used, non-zero initialization
does not result in memorization. Hence, to see memoriza-
tion, we require that each parameter of an autoencoder be

Figure 5. A 29 layer network with a single filter of kernel size 3,
1 unit of zero padding, and stride 1 followed by a leaky ReLU
activation per layer initialized with every parameter set to 10−1

memorizes 4 × 4 images. Our training image consists of a white
square in the upper left hand corner and the test examples contain
pixels drawn from a standard normal distribution.

Figure 6. A 5 layer nonlinear network strongly memorizes 2 × 2
images. The network has a single filter of kernel size 3, 1 unit of
zero padding, and stride 1 followed by a leaky ReLU activation
per layer with Xavier Uniform initialization. The network also
has skip connections between every 2 layers. The training images
are orthogonal: one with a white square in the upper left corner
and one with a white square in the lower right corner. The test ex-
amples contain pixels drawn from a standard normal distribution.



Memorization in Overparameterized Autoencoders

(a) Nonlinear 100 iterations. (b) Nonlinear 1000 iterations.

(c) Linear 100 iterations. (d) Linear 1000 iterations.

Figure 7. The linear and nonlinear version of the network from
Figure 3a both memorize learned representations of training data
throughout the training process.

initialized as close to zero as possible (while allowing for
training).

We now briefly discuss how popular initialization tech-
niques such as Kaiming uniform/normal (He et al., 2015),
Xavier uniform/normal (Glorot & Bengio, 2010), and de-
fault PyTorch initialization (Paszke et al., 2017) relate to
zero initialization. In general, we observe that Kaim-
ing uniform/normal initialization leads to an output with
a larger `2 norm as compared to a network initialized using
Xavier uniform/normal or PyTorch initializations. Thus,
we do not expect Kaiming uniform/normal initialized net-
works to present memorization as clearly as the other ini-
tialization schemes. That is, for linear convolutional au-
toencoders, we expect these networks to converge to a so-
lution further from the minimum nuclear norm solution and
for nonlinear convolutional autoencoders, we expect these
networks to produce noisy versions of the training exam-
ples when fed arbitrary inputs. This phenomenon is demon-
strated experimentally in the examples in Figure 8.

(a) Output Norm: .0087 (b) Output Norm: .0079

(c) Output Norm: 9.67 (d) Output Norm: 17.64

Figure 8. Effect of popular initialization strategies on memoriza-
tion: Each figure demonstrates how the nonlinear version of the
autoencoder from Figure 3a (modified with Leaky ReLU activa-
tions after each convolutional layer) behaves when initialized us-
ing Xavier uniform/normal and Kaiming uniform/normal strate-
gies. We also give the `2 norm of the output for the training exam-
ple prior to training. Consistent with our predictions, the Kaiming
uniform/normal strategies have larger norms and the output for ar-
bitrary inputs shows that memorization is noisy.


