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Abstract

In off-policy deep reinforcement learning, it is usually hard to collect sufficient
successful experiences with sparse rewards to learn from. Hindsight experience
replay (HER) enables an agent to learn from failures by treating the achieved state
of a failed experience as a pseudo goal. However, not all the failed experiences
are equally useful to different learning stages, so it is not efficient to replay all of
them or uniform samples of them. In this paper, we propose to 1) adaptively select
the failed experiences for replay according to the proximity to true goals and the
curiosity of exploration over diverse pseudo goals, and 2) gradually change the
proportion of the goal-proximity and the diversity-based curiosity in the selection
criteria: we adopt a human-like learning strategy that enforces more curiosity in
earlier stages and changes to larger goal-proximity later. This “Goal-and-Curiosity-
driven Curriculum Learning” leads to “Curriculum-guided HER (CHER)”, which
adaptively and dynamically controls the exploration-exploitation trade-off during
the learning process via hindsight experience selection. We show that CHER
improves the state of the art in challenging robotics environments.

1 Introduction

Deep reinforcement learning (RL) has been an effective framework addressing a rich repertoire of
complex control problems. In simulated domains, deep RL can train agents to perform a diverse array
of challenging tasks [Mnih et al., 2015, Lillicrap et al., 2015, Duan et al., 2016]. In order to train
reliable agents, it is critical to not only design a reward faithfully reflecting how successful the task is,
but also (re)shape the reward [Ng et al., 1999] to provide dense feedback that can efficiently guide
the policy optimization towards a better solution in the given environment. Unfortunately, many of
the capabilities demonstrated by the current reward engineering are often limited to specific tasks in
specified environments. Moreover, the quality of reward shaping heavily relies on both the choice of
RL algorithm and domain-specific knowledge. For situations where we do not know what admissible
behavior may look like, for example, using LEGO bricks to build a desired architecture, it is difficult
to apply reward engineering. Therefore, it is essential (but also challenging) to develop smarter and
more general algorithms which can directly learn from unshaped and usually sparse reward signals,
where the sparsity is caused by the insufficiency of successful experiences (which are expensive to
collect). Hindsight Experience Replay (HER) [Andrychowicz et al., 2017] proposes to additionally
leverage the rich repository of the failed experiences, by replacing the desired (true) goals of training
trajectories with the achieved goals of the failed experiences. With this modification, any failed
experience can have a nonnegative reward.

The achieved goals of failed experiences can be significantly different to each other: their proximity to
the desired goal varies so learning how to reach a pseudo goal distant from the true one cannot directly
help the targeted task; they also carry different information about the manipulation environment.
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Hence, they have distinct levels of difficulty to be learned and their contributions to a task vary across
different learning stages. Nevertheless, they are treated equally in HER: they are uniformly sampled
to replace the desired goals; and the resulted training trajectories with the replaced goals have the
same weight in training. However, not all the failed experiences are equally useful to improve the
agent: some provide limited helps to reach the true goal; while some are too similar to each other and
thus redundant to be all learned.

In human education, a delicately designed curriculum can significantly improve the learning quality
and efficiency. Inspired by this, curriculum learning [Bengio et al., 2009] and its applications [Khan
et al., 2011, Basu and Christensen, 2013, Spitkovsky et al., 2009] propose to train a model on a
designed sequence of training samples/tasks, i.e., a curriculum, which leads to improvement on both
learning performance and efficiency. In each learning stage, the training samples are selected either
by a human expert or an adaptive algorithm, and the selection can be either pre-defined before training
begins or determined by the learning progress itself on the fly [Kumar et al., 2010]. Most curriculum
learning methods, e.g., self-paced learning and its variants [Tang et al., 2012a, Supancic III and
Ramanan, 2013, Tang et al., 2012b], adopt the strategy of selecting a few easier training samples at
beginning and an increased amount of more difficult ones later on. Recent works [Zhou and Bilmes,
2018, Zhou et al., 2018] show that diversity also needs to be considered in curriculum generation.
Curriculum learning has been explained as a form of continuation scheme [Allgower and Georg,
2003] that addresses a hard task by solving a sequence of tasks moving from easy to hard, and uses
the solution to each task as the warm start for the next slightly harder task. Such continuation schemes
can reduce the impact of local minima within neural networks [Bengio et al., 2013, Bengio, 2014].

In this paper, we propose “Goal-and-Curiosity-driven Curriculum Learning” that dynamically and
adaptively controls the exploration-exploitation trade-off in selecting hindsight experiences for replay
by gradually changing the preference on 1) goal-proximity: how close the achieved goals are to the
desired goals; and 2) diversity-based curiosity: how diverse the achieved goals are in the environment.
Specifically, given a candidate subset of achieved goals for HER training, we define its proximity
as the sum of their similarities to the desired goals, and measure its diversity by a submodular
function [Fujishige, 2005], e.g., the facility location function [Cornuéjols et al., 1977, Lin et al., 2009].
In each episode, a subset of achieved goals are selected according to both its proximity and curiosity:
we prefer more curiosity for earlier episodes’ exploration and then gradually increase the proportion
of proximity in the selection criteria during later episodes. We apply this training framework, called
“Curriculum-guided HER (CHER)”, to train agents in the multi-goal setting of UVFA [Schaul et al.,
2015] and HER [Andrychowicz et al., 2017] (which assumes that the goal being pursued does not
influence the environment dynamics). In several challenging robotics environments (where deep RL
methods suffer from sparse reward problem), CHER outperforms the state-of-the-art approaches on
both the learning efficiency and final performance1.

2 Related Work

In recent works, curriculum learning with progressive training strategy has been introduced to different
scenarios of deep RL. Those methods differ in that they apply an increasing difficulty/complexity
scheduling to different components of the training loop, e.g., the initial positions [Florensa et al.,
2017], the required ✏-accuracy [Fournier et al., 2018], the policies of intermediate agents used for
mixing [Czarnecki et al., 2018], the environments [Wu and Tian, 2017], the aid from built-in AI [Tian
et al., 2017], the reward [Justesen and Risi, 2018], and new tasks with masked sub-goals [Eppe et al.,
2018]. These works show that curriculum learning can effectively improve deep RL for challenging
tasks including robotics manipulation, game-bot, and simulated environment such as OpenAI Gym.
HER can also be explained as a form of implicit curriculum learning, since the achieved goals of
failed experiences are easier to achieve than the desired goals. The last work mentioned above
improves HER but requires extra efforts in each epoch to evaluate the difficulty of sub-goals and
train the new tasks with sub-goals. It is not practical for tasks with complex goals, such as the hand
manipulation tasks studied in this paper.

Another line of recent work [Burda et al., 2019, Pathak et al., 2017, Savinov et al., 2019, Frank et al.,
2013] investigates the curiosity-driven exploration of deep RL agents within interactive environments.
In particular, they either replace or augment the extrinsic (but usually sparse) reward by a dense

1Our code is available at https://github.com/mengf1/CHER.
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intrinsic reward measuring the curiosity or uncertainty of the agent at a given state. Thereby, the
agent is encouraged to explore unseen scenarios and unexplored regions of the environment. It has
been shown that such curiosity driven strategy can improve the learning efficiency, mitigate the sparse
reward problem, and successfully learn challenging tasks even without extrinsic reward. Different
from curriculum learning approaches, which are usually goal-oriented with focus on exploitation,
curiosity-driven approaches can be unsupervised/self-supervised with more focus on exploration.
Comparing to our strategy, they reshape the reward but do not dynamically and adaptively change the
proportion of curiosity in the reward during training.

A number of RL methods leveraging hindsight experiences have been proposed since HER. Hindsight
Policy Gradient (HPG) [Rauber et al., 2019] extends the idea of training goal-conditional agents on
hindsight experiences to on-policy RL setting. Dynamic Hindsight Experience Replay (DHER) [Fang
et al., 2019] assembles failed experiences to train policies handling dynamic goals rather than static
ones studied in HER. On top of HER, Competitive Experience Replay (CER) [Liu et al., 2019]
introduces a competition between two agents for better exploration. To handle raw-pixel inputs, Nair
et al. [2018] minimize a pixel-MSE given visual observations with an extra cost of training a VAE.
Zhao and Tresp [2018] focus on hindsight trajectories containing higher energy than others and claim
that they are more valuable to training. Unlike the above works, our curriculum learning scheme can
be generalized to a variety of settings and environments for more efficient goal-conditional RL.

3 Methodology

In this section, we will briefly introduce HER and multi-goal RL at first. Then, we will study the
selection criteria applied to hindsight experiences. An efficient selection algorithm is introduced
afterwards. In the end, we will present CHER with scheduled goal-proximity and diversity-based
curiosity in the selection criteria.

3.1 HER and Multi-Goal RL

We study an agent operating in a multi-goal environment with sparse reward [Schaul et al., 2015,
Andrychowicz et al., 2017]. At each time step t, the agent gets an observation (or state) st from the
environment and takes an action at in response by applying its policy ⇡(st) (deterministic policy maps
st to at = ⇡(st), while stochastic policy samples at ⇠ p(at|st) = ⇡(st)), then it receives a reward
signal rt = r(st, at) and gets the next state st+1 sampled from the transition probability p(·|st, at).
Given a behavior policy ⇡(·), the agent can generate a trajectory ⌧ = {(s0, a0), · · · , (sT�1, aT�1)}
of any length T , with each step t associated with a transition tuple (st, at, rt, st+1). In many RL
tasks, the reward only depends on whether the trajectory finally reaches a desired goal g or not.
Hence, only the successful trajectories get nonnegative rewards. Since ⇡(·) is not fully-trained and
has low success rate, the collected successful trajectories are usually insufficient for training, which
results in the sparse reward problem.

HER addresses the sparse reward problem by treating failures as successes and learning from the
failed experiences. For any off-policy RL algorithm (e.g., DQN [Mnih et al., 2015], DDPG [Lillicrap
et al., 2015], NAF [Gu et al., 2016], SDQN [Metz et al., 2017]), HER modifies the desired goals
g in the transition tuples for training to some achieved goals g0 sampled from the states in failed
experiences. The desired goal g is the actual goal that the agent aims to achieve, i.e., the real target.
An achieved goal g0 is a state that the agent has already achieved, e.g., the Cartesian position of
each fingertip on a robotic hand. Once g is replaced by a g0, the corresponding failed experience is
assigned a nonnegative reward and thus can contribute to learning policies.

3.2 Goal-and-Curiosity-driven Selection of Pseudo Goals

In HER, the achieved goals used to modify the desired goals are uniformly sampled from (a batch of)
previous experiences B. In contrast to uniform sampling, we propose to select a subset of achieved
goals A ✓ B according to 1) their proximity to the desired goals and 2) their diversity that reflects the
curiosity of an agent exploring different achieved goals in the environment. Although all the failed
experiences can be turned into success ones with pseudo goals, they can be very different in the above
two quantities, which however play important roles in guiding the learning process. In particular, a
large proximity enforces the training to proceed towards the desired goals, while a large diversity
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leads to more exploration of different states and regions in the environment. A desirable trade-off
between them is essential to the learning efficiency and generalization performance of resulted agents.

In our selection criteria, we select a subset of failed experiences to replay according to its proximity
and diversity, which are both defined based on a similarity function sim(·, ·) measuring the likeness
of two achieved goals in the interactive environment. Given a distance metric dis(·, ·) (e.g., Euclidean
distance), sim(·, ·) can be defined, for example, by the radial basis function (RBF) kernel with
bandwidth �, i.e.,

sim(x, y) , exp

✓
� dis(x, y)2

�2

◆
, (1)

while another option is a constant c minus the distance, i.e.,

sim(x, y) , c� dis(x, y), (2)
where c is large enough to guarantee that sim(x, y) � 0 for all possible (x, y). The choice of dis(·, ·)
is usually determined by the task and environment. For instance, in hand manipulation tasks, we can
define dis(gi, gj) as the mean distance between fingertips at time step i and fingertips at time step j.

We are now able to select a subset A of achieved goals with size up to k from buffered experiences B
by solving the following combinatorial optimization that maximizes both the proximity and diversity:

max
A✓B,|A|k

F (A) , �Fprox(A) + Fdiv(A). (3)

The first term Fprox(A), associated with a trade-off weight �, is a modular function

Fprox(A) ,
X

i2A

sim(gi, g), (4)

which reflects the proximity of the selected achieved goals g0 in A to its desired goal g. The
second term Fdiv(A) measures the diversity of the goals from A. We use the facility location
function [Cornuéjols et al., 1977, Lin et al., 2009] to compute Fdiv(A), i.e.,

Fdiv(A) ,
X

j2B

max
i2A

sim(gi, gj). (5)

Intuitively, we expect the achieved goals selected into A can represent all the goals from B. For each
gj from B, Fdiv(A) finds an achieved goal gi most similar to gj from A, and uses sim(gi, gj) to
measure how well A can represent gj . Hence, by summing up sim(gi, gj) over all the achieved goals
j 2 B, Fdiv(A) quantifies how representative of A w.r.t B. It has been widely used as a diversity
metric, because a large Fdiv(A) indicates that every goal in B can find a sufficiently similar goal in
A, in other words, A spans the space of B. A diverse subset A of achieved goals encourage the agent
to explore new states and unseen areas of the environment and thus learn to reach different goals.

The facility location function is a typical example from a large expressive family of submodular
functions that satisfies the diminishing return property: given a finite ground set V , any A ✓ B ✓ V
and an element v /2 B, v 2 V , they fulfill F ({v} [A)� F (A) � F ({v} [B)� F (B) (with abuse
of former notations A and B). Due to this property, they can naturally measure the diversity of a
set of items [Fujishige, 2005], and has been applied in a variety of diversity-driven tasks achieving
appealing results [Lin and Bilmes, 2011, Batra et al., 2012, Prasad et al., 2014, Gillenwater et al.,
2012, Fiterau and Dubrawski, 2012]. Although we choose facility location function to be Fdiv(A) in
this paper, other submodular functions are worth studying in our curriculum learning framework.

Since F (A) in Eq. (3) is a weighted sum of a non-negative (the similarity is non-negative) modular
function Fprox(A) and a submodular function Fdiv(A), it is monotone non-decreasing submodular.
Although exactly solving Eq. (3) is NP-hard, a near-optimal solution can be achieved by the greedy
algorithm with a worst-case approximation factor ↵ = 1� e�1 [Nemhauser et al., 1978], as a result
of the submodularity of F (A). The greedy algorithm starts with A ;, and selects the next goal
i 2 B\A bringing the largest improvement F (i|A) , F (i [A)� F (A) to the objective F (A), i.e.,
A  A [ {i⇤} where i⇤ 2 argmaxi2B\A F (i|A), and this repeats until |A| = k. For the specific
F (A) defined in Eq. (3)-Eq. (5),

F (i|A) =� sim(gi, g) +
X

j2B

max

⇢
0, sim(gi, gj)�max

l2A
sim(gl, gj)

�
. (6)
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Algorithm 1 STOCHASTIC-GREEDY(k,m,�)
Require: experience buffer B

1: Input: k, m, �
2: Output: a minibatch A of size k
3: Sample a batch B of size O(mk) from B, and build a sparse K-nearest neighbor graph of B.
4: Initialize A ;;
5: for i = 0 to k � 1 do
6: Sample a subset b of size m from B\A;
7: for each transition tuple (st, at, rt, st+1) in b do
8: Calculate the utility score F (i|A) by Eq. (6) (using gi = g0t and g) based on the current

state st;
9: end for

10: Add to A the transition tuple that has the maximum utility score F (i|A);
11: end for

The evaluation of Fdiv(A) and F (i|A) requires the pairwise similarity of any two goals (gi, gj), and
can be expensive when the size of B is large. In practice, we can use kd-tree or ball-tree to build a
sparse K-nearest neighbor graph for the goals in B before running the greedy algorithm. It has been
shown in previous works [Wei et al., 2014] that a sufficiently good solution can be achieved even for
K as small as O(log |B|).

3.3 Lazier than Lazy Greedy for Efficient Selection

The greedy algorithm is simple to implement and usually outperforms other optimization methods,
e.g., those based on integer linear programming, but suffers from expensive computation requiring
O(|B|k) function evaluations. There exist several accelerations, e.g., lazy greedy [Minoux, 1978],
lazier than lazy greedy [Mirzasoleiman et al., 2015] and GreeDi [Mirzasoleiman et al., 2016], which
either has the same or close approximation factor but enjoys significant speedups.

We choose lazier than lazy greedy for the speedup of selecting failed experiences in CHER, because
it is compatible with the stochastic learning nature of most off-policy RL algorithms. Algorithm 1
shows the detailed procedures. In each step, from a random subset b of B\A (instead of B\A) it
selects the goal that results in the largest improvement F (i|A). According to [Mirzasoleiman et al.,
2015], when m = O(|B|/k log 1/✏), lazier than lazy greedy reduces the approximation factor ↵ of the
vanilla greedy algorithm by ✏, but only requires O(|B| log 1/✏)) evaluations of F (·).

3.4 Curriculum-guided Hindsight Experience Replay

The trade-off between proximity and diversity in the selection of achieved goals reflects the trade-off
between exploitation and exploration. Similar to the learning process of human, which requires
different proportions of exploitation and exploration in different learning stages, the preference of
proximity and diversity (or curiosity) in different episodes of deep RL also needs to vary. In the
earlier episodes, curiosity over diverse pseudo goals can help the agent to explore new states and
unseen areas. Thus it evolves RL for better generalization. However, diverse goals can distract the
learning of later episodes, in which the proximity to the desired goals is more important for the agent
since it has already accumulated sufficient knowledge about an environment and needs to focus on
learning how to achieve the true goals of a task. Another critical reason to avoid large proximity in
earlier episodes but promote it later is: the agent policy in earlier episodes cannot produce sufficient
number of pseudo goals close to the desired goals (otherwise the learning is almost accomplished and
we never suffer from sparse reward), but after adequate training it is able to do so later.

In the following, we propose “Goal-and-Curiosity-driven Curriculum (GCC) Learning” as an effective
learning scheme for CHER. It starts from learning to reach different achieved goals with large
diversity, and gradually turns the focus on how to progressively approach the achieved goals with
large proximity to the desired goals. This is achieved by smoothly increasing the weight � of the
proximity term in F (A) of Eq. (3). For the tasks in this paper, we use an exponentially increasing �
over the course of training, i.e.,

� = (1 + ⌘)��0, (7)
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Algorithm 2 Curriculum-guided HER (CHER)
Require: off-policy RL algorithm A, experience buffer B

1: Input: mini-batch size k, m, �0, reward function r(·)
2: Initialize A, B  ;, � �0;
3: for episode = 0, 1, · · · ,M � 1 do
4: Sample an initial goal g and an initial state s0
5: for t = 0, · · · , T � 1 do
6: Sample an action at from the behavioral policy of A, i.e., at ⇠ ⇡(st|g);
7: Execute action at and observe a new state st+1;
8: end for
9: for t = 0, · · · , T � 1 do

10: rt := r(st, at, g);
11: Store the tuple (st|g, at, rt, st+1|g) in B;
12: end for
13: for i = 0, 1, · · · , N � 1 do
14: Select a subset A of the achieved goals of B by Algorithm 1, i.e.,

A STOCHASTIC-GREEDY(k,m,�);
15: Initialize a minibatch Bi  ;;
16: for g0 2 A do
17: r0 := r(st, at, g0), where 9(st, at) 2 ⌧ : g0 has been achieved by ⌧ after t;
18: Store the tuple (st|g0, at, r0, st+1|g0) in Bi;
19: end for
20: Optimize A using minibatch Bi;
21: end for
22: � (1 + ⌘)�;
23: end for

where ⌘ 2 [0, 1] is a learning pace controlling the progress of the curriculum, � is the episode of the
off-policy RL, and �0 is the initial weight for proximity, which should be relatively small.

The complete procedures of “Curriculum-guided HER (CHER)” can be found in Algorithm 2.
Comparing to the vanilla HER, the major differences are at line-14, which selects the achieved goals
from the experience buffer according to proximity and diversity, and line-22, which increases the
weight for proximity as instructed by the curriculum. The algorithm can be generalized to improve
any off-policy RL method, and does not require any extra training on new tasks.

Although Algorithm 1 cannot exactly solve the combinatorial optimization in Eq. (3), it is worth
noting that the approximate solution can gradually approach the global optimal as the curriculum
proceeds and � increases. Increasing � makes F (A) close to a modular function. As a result, the
greedy solution approaches the top-k ranking, which is the optimal solution to modular maximization.
This trend can be theoretically analyzed by the curvature-dependent approximation bound of greedy
algorithm (which can easily extend to lazier than lazy greedy). It improves ↵ = 1� e�1 to ↵ = (1�
e�F )/F [Conforti and Cornuejols, 1984], where the curvature F 2 [0, 1] of F (A) is defined as

F , 1�min
j2B

F (j|B\j)

F (j)
. (8)

When F = 0, F (·) is modular, resulting in ↵ = 1 (which achieves the global optimum); and when
F = 1, F (A) is fully curved and ↵ = 1 � e�1. In CHER, when � is sufficiently large in later
episodes, we have F ! 0 and thus ↵ ! 1. We theoretically derive an upper bound F 

S
��+1

(where S is the curvature of Fdiv), which goes to zero when �!1 (see Appendix A).

4 Experiments

We evaluate CHER and compare to state-of-the-art baselines on several challenging robotic manipu-
lation tasks in simulated MuJoCo environments [Todorov et al., 2012]. In particular, we will use a
simple Fetch environment as a toy example and Shadow Dexterous Hand environments from OpenAI
Gym [Brockman et al., 2016]. It is worth noting that the Shadow Dexterous Hand environments are
also the most difficult environments amongst OpenAI’s robotics environments.
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FetchReach

(Toy example) HandReach HandManipulate


Block
HandManipulate


Egg
HandManipulate


Pen

Figure 1: The Fetch and four Shadow Dexterous Hand environments.

4.1 Environments

In Figure 1, there are FetchReach environment and four Shadow Dexterous Hand environ-
ments: HandReach, Block manipulation (HandManipulateBlockRotateXYZ-v0), Egg manipula-
tion (HandManipulateEggFull-v0) and Pen manipulation (HandManipulatePenRotate-v0). The
FetchReach environment is based on the 7-DoF (degrees of freedom) Fetch robotics arm with a
two-fingered parallel gripper. Each action at is a 3-dimensional vector specifying the desired gripper
movement in Cartesian coordinates and the gripper keeps closing during the process of reaching
some target location. Each observation is the state of the robot. In the simulated environments, the
shadow Dexterous Hand is an anthropomorphic robotic hand with 24 DoF, in which 20 joints can
be controlled independently whereas the remaining ones are coupled joints. In all the four hand
environments, each action at is a 20-dimensional vector containing the absolute position control for
all non-coupled joints of the hand. Each observation includes the 24 positions and the associated
velocities of the 24 joints. To represent an object that is manipulated, the environment provides the
object’s Cartesian position and rotation represented by a 7-dimensional vector, as well as its linear
and angular velocities. The rewards are sparse and binary: the agent receives a reward of 0 if the goal
has been achieved (within some task-specific tolerance) and �1 otherwise.

In FetchReach, the goal of reaching task is a 3-dimensional vector describing the target position of an
object (or the end-effector for reaching) and the achieved goal is the position of the gripper. We use
Euclidean distance for dis(gi, gj). In HandReach, the goal of reaching task is a target position and the
desired goal is the position of fingertips. In Block and Pen manipulations, the goal of manipulation
tasks is the rotation of a target pose and the achieved goal is the rotation of the block/pen. In Egg
manipulation, the goal of manipulation task is the rotation and location of a target pose and the
achieved goal is the rotation and location of the egg.

4.2 Baselines

Our evaluation of different methods is based on DDPG. We use different methods to select/sample
hindsight experiences to replay and train policies on the environments issuing sparse rewards. We
compare CHER with the following baselines:

• DDPG [Lillicrap et al., 2015], a model-free RL algorithm for continuous control. It learns a
deterministic policy by a stochastic counterpart to explore during training.

• DDPG+HER [Andrychowicz et al., 2017], which samples hindsight experiences uniformly
for replay.

• DDPG+HEREBP [Zhao and Tresp, 2018], which uses an energy function to evaluate
trajectories and prioritize hindsight experiences with large energy.

The comparison between dense and sparse rewards has been presented in Plappert et al. [2018] and it
has shown the advantage of using sparse rewards.

4.3 Training Setting

For all environments except FetchReach, we train policies on a single machine with 20 CPU cores.
Each core generates experiences by using two parallel rollouts with MPI for synchronization. We train
each agent for 50 epochs with batch size 64. Hyperparameters are nearly the same as in Andrychowicz
et al. [2017]. In CHER, we use |B| = 128, |A| = k = 64 and |b| = m = 3 for Algorithm 1. We
evaluate the policies after each epoch by performing 10 deterministic test rollouts per MPI worker,
and then compute the test success rate by averaging across rollouts and MPI workers. In all cases, we
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(a) Performance for the toy example. (b) Goals at an earlier episode of CHER. (c) Goals at a later episode of CHER.

Figure 2: Toy example – FetchReach. (a) CHER learns much faster than other RL methods. (b) The
red points (selected achieved goals) compose a diverse and representative subset of the gray points
(all achieved goals), but some are not close to any green point (desired goals) since CHER prefers
diversity than proximity in earlier episodes. (c) Most red points are close to some green points due
to the large proximity in later episodes’ selection criteria, but some regions with many gray points
concentrated do not contain any red point since CHER prefers proximity more than diversity.

(a) HandReach (b) Block (c) Egg (d) Pen

Figure 3: Performance for all four hand environments (Block: �0 = 0; others: �0 = 1).

repeat each experiment with 5 different random seeds and report their performance by computing the
median test success rate as well as the interquartile range.

4.4 Toy Example

To quickly prove the concept of our idea, we first study it in a simple environment, FetchReach, as a
toy example. We train policies by using one CPU core.

Figure 2(a) depicts the median test success rate for the FetchReach environment. FetchReach is
known as a very simple environment and can be easily learned by our approach. The results show
that DDPG+CHER learns faster than all other baselines. Vanilla DDPG can also reach 100% success
rate at last but much later than DDPG+CHER. DDPG+HEREBP performs similarly to DDPG+HER
on this simple task.

Figure 2(b)(c) visualize the selected desired goals g (green stars), all the achieved goals B (grey
circles), and the achieved goals A ✓ B selected by Algorithm 1 (red triangles) at an earlier episode
(left) and a later episode (right) of DDPG+CHER. In the earlier episode, the achieved goals selected
into A averagely spread on the manifold of all the achieved goals B, implying that A is a diverse and
representative subset of B. There are regions that contain several selected goals far away from any
desired goal, since the proximity plays a minor role in earlier episodes while the diversity dominates
the selection criteria. In the later episode, in contrast, most of the achieved goals selected into A
gather around some desired goals, and there are regions where many unselected goals gather but none
is selected, which indicates that the proximity dominates over the diversity in the selection.

4.5 Benchmark Results

Figure 3 reports how the median test success rate achieved by all methods improves during learning in
the four hand environments. Similar to what is shown in the FetchReach environment, DDPG+CHER
significantly outperforms the other baselines. The results also show that DDPG can easily fail in
these environments, but DDPG+HER is able to learn partly successful policies in all environments.
Surprisingly, DDPG+CHER has got significant improvement on Egg and Pen manipulation tasks, as
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(a) HandReach (b) Block (c) Egg (d) Pen

Figure 4: Performance of DDPG+CHER with different initial �0 for all four hand environments.

(a) HandReach (b) Block (c) Egg (d) Pen

Figure 5: Ablation study of DDPG+CHER with � fixed (�fixed) for all four hand environments.

shown in Figures 3(c) and 3(d). These tasks are known to be difficult because the objects often drop
down. With curriculum learning equipped in CHER, the agent quickly learns the way of holding the
object. In summary, DDPG+CHER with curriculum learning that selects hindsight experiences for
replay effectively improves the performance of DDPG+HER.

Figure 4 reports the success rate of DDPG+CHER using different initialization �0 for �. It shows
that promoting different amount of proximity in selection affects the performance. When �0 = 0,
i.e., starting without any proximity preferred, the performance degrades. It also shows that too large
proximity does not improve the performance.

In Figure 5, we test the performance of DDPG+CHER with � fixed at different values, where � =INF
refers to proximity-only. Compared to DDPG+CHER using a curriculum of increasing � in Figure 3,
the performance of CHER can significantly vary when using different �fixed, and some can perform
much worse. In contrast, DDPG+CHER with a gradually increasing � usually results in a smoother
and more stable learning process that can rapidly learn to accomplish challenging tasks.

5 Conclusion

The main contributions of this paper are summarized as follows: (1) We introduce “Goal-and-
Curiosity-driven Curriculum Learning” for Hindsight Experience Replay (HER). To our knowledge,
the resulted Curriculum-guided HER (CHER) is the first work that adaptively selects failed experi-
ences for replay according to their compatibility and usefulness to different learning stages of deep
RL; (2) We show that a large diversity is beneficial to earlier exploration, while a large proximity to
the desired goals is essential for effective exploitation in later stages; (3) We show that the sample
efficiency and learning speed of off-policy RL algorithms can be significantly improved by CHER.
We attribute this to the global knowledge learning on a set of failed experiences, which breaks the con-
straint of local one-episode experience towards more robust strategies; (4) We apply CHER to several
challenging continuous robotics environments with sparse rewards, and demonstrate its effectiveness
and advantage over other HER-based approaches; (5) CHER does not make assumptions on tasks
and environments, and can potentially be generalized to other more complicated tasks, environments
and settings.

Acknowledgments

We would like to thank Tencent AI Lab and Robotics X for providing an excellent research environ-
ment that made this work possible. Also, we would like to thank the anonymous reviewers.

9



References
E. L. Allgower and K. Georg. Introduction to Numerical Continuation Methods. Society for Industrial

and Applied Mathematics, 2003.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
O. P. Abbeel, and W. Zaremba. Hindsight experience replay. In Advances in Neural Information

Processing Systems, pages 5048–5058, 2017.

S. Basu and J. Christensen. Teaching classification boundaries to humans. In AAAI Conference on

Artificial Intelligence, pages 109–115, 2013.

D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-best solutions in
markov random fields. In European Conference on Computer Vision, pages 1–16, 2012.

Y. Bengio. Evolving Culture Versus Local Minima, pages 109–138. Springer Berlin Heidelberg,
2014.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In International

Conference on Machine Learning, pages 41–48, 2009.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym, 2016.

Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A. Efros. Large-scale study of
curiosity-driven learning. In International Conference on Learning Representations, 2019.

M. Conforti and G. Cornuejols. Submodular set functions, matroids and the greedy algorithm: Tight
worst-case bounds and some generalizations of the rado-edmonds theorem. Discrete Applied

Mathematics, 7(3):251–274, 1984.

G. Cornuéjols, M. Fisher, and G. Nemhauser. On the uncapacitated location problem. Annals of

Discrete Mathematics, 1:163–177, 1977.

W. Czarnecki, S. Jayakumar, M. Jaderberg, L. Hasenclever, Y. W. Teh, N. Heess, S. Osindero, and
R. Pascanu. Mix match agent curricula for reinforcement learning. In International Conference

on Machine Learning, volume 80, pages 1087–1095, 2018.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pages 1329–
1338, 2016.

M. Eppe, S. Magg, and S. Wermter. Curriculum goal masking for continuous deep reinforcement
learning. arXiv preprint arXiv:1809.06146, 2018.

M. Fang, C. Zhou, B. Shi, B. Gong, J. Xu, and T. Zhang. DHER: Hindsight experience replay for
dynamic goals. In International Conference on Learning Representations, 2019.

M. Fiterau and A. Dubrawski. Projection retrieval for classification. In Advances in Neural Informa-

tion Processing Systems, pages 3023–3031. 2012.

C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel. Reverse curriculum generation for
reinforcement learning. In Conference on Robot Learning, volume 78, pages 482–495, 2017.

P. Fournier, O. Sigaud, M. Chetouani, and P.-Y. Oudeyer. Accuracy-based curriculum learning in
deep reinforcement learning. arXiv preprint arXiv:1806.09614, 2018.

M. Frank, J. Leitner, M. F. Stollenga, A. Förster, and J. Schmidhuber. Curiosity driven reinforcement
learning for motion planning on humanoids. In Frontiers in Neurorobotics, 2013.

S. Fujishige. Submodular functions and optimization. Annals of discrete mathematics. Elsevier, 2005.

10



J. Gillenwater, A. Kulesza, and B. Taskar. Near-optimal map inference for determinantal point
processes. In Advances in Neural Information Processing Systems, pages 2735–2743, 2012.

S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous deep q-learning with model-based
acceleration. In International Conference on Machine Learning, pages 2829–2838, 2016.

N. Justesen and S. Risi. Automated curriculum learning by rewarding temporally rare events. IEEE

Conference on Computational Intelligence and Games, pages 1–8, 2018.

F. Khan, X. J. Zhu, and B. Mutlu. How do humans teach: On curriculum learning and teaching
dimension. In Advances in Neural Information Processing Systems, pages 1449–1457, 2011.

M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In Advances

in Neural Information Processing Systems, pages 1189–1197, 2010.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

H. Lin and J. A. Bilmes. A class of submodular functions for document summarization. In The

Annual Meeting of the Association for Computational Linguistics, pages 510–520, 2011.

H. Lin, J. A. Bilmes, and S. Xie. Graph-based submodular selection for extractive summarization.
In IEEE Automatic Speech Recognition and Understanding Workshop, Merano, Italy, December
2009.

H. Liu, A. Trott, R. Socher, and C. Xiong. Competitive experience replay. In International Conference

on Learning Representations, 2019.

L. Metz, J. Ibarz, N. Jaitly, and J. Davidson. Discrete sequential prediction of continuous actions for
deep rl. arXiv preprint arXiv:1705.05035, 2017.

M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In Optimization

Techniques, volume 7 of Lecture Notes in Control and Information Sciences, chapter 27, pages
234–243. Springer Berlin Heidelberg, 1978.

B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause. Lazier than lazy greedy.
In AAAI Conference on Artificial Intelligence, pages 1812–1818, 2015.

B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed submodular maximization.
Journal of Machine Learning Research, 17(238):1–44, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529, 2015.

A. V. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with
imagined goals. In Advances in Neural Information Processing Systems, pages 9191–9200, 2018.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions-I. Mathematical Programming, 14(1):265–294, 1978.

A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory and
application to reward shaping. In International Conference on Machine Learning, volume 99,
pages 278–287, 1999.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-supervised
prediction. In International Conference on Machine Learning, 2017.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. To-
bin, M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

11



A. Prasad, S. Jegelka, and D. Batra. Submodular meets structured: Finding diverse subsets in
exponentially-large structured item sets. In Advances in Neural Information Processing Systems,
pages 2645–2653, 2014.

P. Rauber, A. Ummadisingu, F. Mutz, and J. Schmidhuber. Hindsight policy gradients. In International

Conference on Learning Representations, 2019.

N. Savinov, A. Raichuk, D. Vincent, R. Marinier, M. Pollefeys, T. Lillicrap, and S. Gelly. Episodic
curiosity through reachability. In International Conference on Learning Representations, 2019.

T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value function approximators. In
International Conference on Machine Learning, pages 1312–1320, 2015.

V. I. Spitkovsky, H. Alshawi, and D. Jurafsky. Baby Steps: How “Less is More” in unsupervised de-
pendency parsing. In Advances in Neural Information Processing Systems Workshop on Grammar

Induction, Representation of Language and Language Learning, 2009.

J. S. Supancic III and D. Ramanan. Self-paced learning for long-term tracking. In Conference on

Computer Vision and Pattern Recognition, pages 2379–2386, 2013.

K. Tang, V. Ramanathan, L. Fei-fei, and D. Koller. Shifting weights: Adapting object detectors from
image to video. In Advances in Neural Information Processing Systems, pages 638–646, 2012a.

Y. Tang, Y.-B. Yang, and Y. Gao. Self-paced dictionary learning for image classification. In The

ACM International Conference on Multimedia, pages 833–836, 2012b.

Y. Tian, Q. Gong, W. Shang, Y. Wu, and C. L. Zitnick. Elf: An extensive, lightweight and flexible
research platform for real-time strategy games. In Advances in Neural Information Processing

Systems, pages 2659–2669, 2017.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

K. Wei, R. Iyer, and J. Bilmes. Fast multi-stage submodular maximization. In International

Conference on Machine Learning, 2014.

Y. Wu and Y. Tian. Training agent for first-person shooter game with actor-critic curriculum learning.
In International Conference on Learning Representations, 2017.

R. Zhao and V. Tresp. Energy-based hindsight experience prioritization. In Conference on Robot

Learning, pages 113–122, 2018.

T. Zhou and J. Bilmes. Minimax curriculum learning: Machine teaching with desirable difficulties
and scheduled diversity. In International Conference on Learning Representations, 2018.

T. Zhou, S. Wang, and J. A. Bilmes. Diverse ensemble evolution: Curriculum data-model marriage.
In Advances in Neural Information Processing Systems, pages 5905–5916. 2018.

12


	Introduction
	Related Work
	Methodology
	HER and Multi-Goal RL
	Goal-and-Curiosity-driven Selection of Pseudo Goals
	Lazier than Lazy Greedy for Efficient Selection
	Curriculum-guided Hindsight Experience Replay

	Experiments
	Environments
	Baselines
	Training Setting
	Toy Example
	Benchmark Results

	Conclusion

