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Abstract
In this work, we consider the task of learning ef-
fective medical treatment policies for sepsis, a
dangerous health condition, from observational
data. We examine the performance of various re-
inforcement learning methodologies on this prob-
lem, varying the state representation used. We
develop careful baselines for the performance of
these methods when using different state repre-
sentations, standardising the reward function for-
mulation and evaluation methdology. Our results
illustrate that simple, tabular Q-learning and Deep
Q-Learning both lead to the most effective medi-
cal treatment strategies, and that temporal encod-
ing in the state representation aids in discovering
improved policies.

1. Introduction
In the field of data-driven healthcare, there is significant in-
terest in developing decision-support systems for clinicians.
Such systems take in a patient’s physiological information
at a point in time, and provide insight to the attending clin-
ician as to what treatment (medication types and dosages)
to prescribe the patient so as to maximally improve their
eventual outcome.

The reinforcement learning (RL) framework provides a
natural way to approach this problem. The medical treat-
ment process can be modelled as either a fully or partially-
observed Markov Decision Process (MDP), and RL algo-
rithms can be used to discover effective medical treatment
strategies. Indeed, prior literature has utilised RL to discover
treatment strategies for sepsis (Komorowski et al., 2018),
mechanical ventilation usage (Prasad et al., 2017), heparin
dosing (Nemati et al., 2016), and more.

Although RL has been used to tackle these problems in prior
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work, there exist relatively few baselines comparing how
different RL methods perform on the task of discovering
effective medical treatment strategies. Ideally, such base-
lines would control for potential sources of variability in
performance (e.g., the state representation used, the reward
function formulation, and the evaluation paradigm). Due
to the lack of such baselines, it is challenging to identify
what learning algorithms perform best, and where more
development is needed.

In this work, we develop careful benchmarks of perfor-
mance for different RL methods for the task of discovering
sepsis treatment policies, explored in recent prior work (Ko-
morowski et al., 2016; Raghu et al., 2017b; Komorowski
et al., 2018; Peng et al., 2018). We choose to focus on
this case study because of the medical significance of this
problem – sepsis treatment is a very challenging clinical
problem, and the condition is a leading cause of mortality
(Cohen et al., 2006; Vincent et al., 2006). Furthermore,
there is a lack of prior work on benchmarking different
methods for this task, and the dataset we consider is pub-
licly available (Komorowski et al., 2018). We standardise
the cohort, reward formulation, and evaluation paradigm
used, and compare the performance of different methods
and state representations, aiming to understand what mod-
elling choices and algorithms perform best.

Our investigation reveals that simple discretised state-space
models, developed by clustering the original state-space
and then using tabular Q-learning, and Deep Q-Learning
methods can learn potentially effective and clinically plau-
sible treatment policies. We demonstrate how temporally-
sensitive state representations can improve the performance
of such methods on this healthcare task. We also highlight
the importance of combining qualitative and quantitative
analysis when comparing the performance of RL methods
in real-life settings.

2. Preliminaries
2.1. Reinforcement Learning (RL)

We assume the reader is familiar with the standard charac-
terisation of the RL problem using Markov Decision Pro-
cesses, represented by the tuple 〈S,A, R, P, P0, γ〉, where
S is the state space, A is the action space, R(s, a, s′) is
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the reward function, P (·|s, a) is the transition probability
distribution, P0 is the initial state distribution, and γ ∈ [0, 1)
is the discount factor. The goal is to develop an agent that
learns a policy π(a|s) that maximises the expected return,
V π = EH∼PπH

[
R(H)

]
, where trajectories {Hi} are gener-

ated by the distribution over trajectories PπH (a function of
the policy π), and the return R(H) is the sum of discounted
rewards,

∑T−1
t=0 γtrt, from a particular trajectory H .

2.2. Medical case study – sepsis treatment

We consider developing benchmarks for RL methods on
a real-world medical dataset, explored in prior literature
(Komorowski et al., 2016; Raghu et al., 2017b; Komorowski
et al., 2018), dealing with the medical treatment of sepsis
patients in intensive care units (ICUs). This dataset contains
trajectories of patients with sepsis for their time in the ICU,
and has information at every point in time (discretised into
4 hour blocks) about a patient’s physiological state and the
treatments they were given by clinicians. It also contains a
patient’s eventual outcome (survival/mortality).

We use the same basic modelling of the sepsis treatment
problem as in Raghu et al. (2017b); the medical treatment
process for a sepsis patient is framed as a continuous state-
space MDP. A patient’s state in each 4 hour block is repre-
sented as a vector of demographic features, vital signs, and
lab values. The action space, A, is of size 25 and is dis-
cretised over doses of two drugs commonly given to sepsis
patients (IV fluids and vasopressors). The reward r(s, a, s′)
is positive at intermediate timesteps when the patient’s well-
being improves, and negative when it deteriorates (dictated
by differences in key physiological parameters from s to s′).
At the terminal timestep of a patient’s trajectory, a positive
reward is assigned for survival, and a negative reward for
mortality.

When we use RL for learning treatment strategies, we are
restricted to only using observational data (as we have no
simulator), so apply batch-mode RL, sampling patient trajec-
tories from this fixed observational dataset during learning.

2.3. Related work

There is a large body of prior work considering the use of
RL methods to learn medical treatment strategies.

Prasad et al. (2017) used the Fitted-Q Iteration (FQI) algo-
rithm (Ernst et al., 2005) to learn treatment strategies for
mechanical ventilation weaning from observational data; the
authors compared the use of random forest models and neu-
ral networks to approximate the Q function. In contrast, we
consider the sepsis treatment problem, and survey a broader
set of methods, including discrete state-space models, FQI,
and deep Q-learning. We also consider the impact of the
state representation on the policy learned.

For the sepsis treatment problem, Komorowski et al. (2016;
2018) discretize the feature representation described in Sec-
tion 2.2 using k-means clustering, model the transition dis-
tribution of the MDP in this discrete space, and then use
Q-value iteration to discover an effective treatment policy.

Raghu et al. (2017b;a); Peng et al. (2018) use variants of
Deep Q-learning to learn medical treatment policies for sep-
sis. These methods use different preprocessing techniques
to generate state representations from the above physiolog-
ical features; for example, Raghu et al. (2017b) uses the
raw physiological features (following standardization) and
Peng et al. (2018) uses a recurrent autoencoder to capture
temporal information. Peng et al. (2018) also incorporates
a Mixture of Experts approach, combining the Deep Q-
learning policy with a kernel-based policy.

Raghu et al. (2018b) considers continuous state-space
model-based RL for sepsis treatment, by first fitting an
environment model to capture the transition dynamics of
the MDP and then using the Proximal Policy Optimization
algorithm (Schulman et al., 2017) to learn suitable treatment
policies. As a feature representation, this work uses a con-
catenation of the raw physiological features over several
timesteps to incorporate temporal information.

In this work, we also focus on the sepsis treatment prob-
lem, but aim to develop baselines for different RL methods
and state representations through standardising the reward
function and evaluation paradigm used.

3. Methods
We now present the state representations and RL methods
considered in this work, and discuss the evaluation method-
ology used to develop the performance baselines.

3.1. State representation and reward function

Prior work has used several different representations for a
patient’s physiological state, considering either the original
state — observed features at a point in time, as described
in Section 2.2 — the concatenated state — obtained by
concatenating the observed features from the last several
timesteps — or the autoencoded state — preprocessed us-
ing a recurrent autoencoder to incorporate temporal informa-
tion. We consider all three varieties of state preprocessing
in this work, in combination with different RL algorithms.
The autoencoder uses a one layer LSTM encoder and a one
layer LSTM decoder, with a hidden state size of 128, as in
Peng et al. (2018). To train the autoencoder, a batch of tra-
jectories is sampled from the training dataset, and gradients
are computed based on the mean squared error in predict-
ing the current state st given the embeddings up until time
t: x1, x2, . . . , xt. These embedddings are computed using
the LSTM encoder, which takes the original state sequence



RL for Sepsis Treatment: Baselines and Analysis

s1, s2, . . . , st as input.

Prior works also differ in terms of the reward function
used; for consistency, we adopt the reward formulation
from Raghu et al. (2017a), based on eventual outcome and
variation in important physiological features, due to its clear
clinical correspondence.

3.2. RL methods

We focus on commonly used methods in the literature such
as Q-value iteration, tabular Q-learning, Deep Q-learning,
and Fitted-Q Iteration (FQI), considering both neural net-
works and random forests as the Q function approximators.
We do not compare to continuous state-space model-based
RL, due to the difficulty in developing reasonable environ-
ment models in the continuous state-space (Raghu et al.,
2018b). As further description of the methods we consider:

• Q-value iteration (QVI): We consider each of the dif-
ferent state spaces mentioned before, discretise each
state space using k-means clustering (1000 cluster cen-
troids), and then fit a transition matrix based on the
observed data. The resulting MDP is solved using QVI
to discover an ‘optimal’ policy.

• Tabular Q-learning: the state space is discretised as
with QVI, and then standard batch-mode Q-learning
is applied (Watkins & Dayan, 1992); trajectories are
sampled from the training dataset and the Q-table is
updated.

• FQI: We compare both random forest FQI and neural
FQI, as in Prasad et al. (2017). The FQI algorithm is
run for 50 iterations for random forest FQI, and 20 iter-
ations for neural FQI. Each iteration alternates training
on the current data, and then bootstrapping to generate
new target values (Ernst et al., 2005). The random
forest used has 50 estimators, and is implemented in
scikit-learn (Pedregosa et al., 2011). The neural net-
work is a simple 2 layer MLP, with batch normalization
(Ioffe & Szegedy, 2015) and Leaky ReLU activation.
We note here that an improved version of FQI incorpo-
rating Double Q-learning (van Hasselt et al., 2015) and
more sophisticated sampling methods (e.g., Prioritized
Experience Replay (Schaul et al., 2015)) could prove
to be more effective; however, this was not tested in
our benchmarking.

• Deep Q-learning: a Deep Q-Network (DQN) (Mnih
et al., 2015) is used; the architecture is as in Raghu et al.
(2017b) – a 2 layer fully connected network with 256
and 128 hidden units respectively. The network uses
batch normalization, and leaky ReLU activations. The
final model is a Dueling Double-DQN (van Hasselt
et al., 2015), and uses Prioritized Experience Replay

(PER) (Schaul et al., 2015) to speed up learning. Dur-
ing training, we sample a batch of transitions from
the dataset (according to PER) and then use this to
compute a gradient update.

A basic search over parameters (training time, some archi-
tecture specifications, etc.) was conducted for the different
methods (using cross validation) before settling on this final
set of hyperparameters.

3.3. Evaluation

For evaluation, we are restricted to using only observational
data, so we utilise off-policy evaluation (OPE) methodolo-
gies (Precup et al., 2000). We consider two estimators,
Per-Horizon Weighted Importance Sampling (PHWIS) and
Per-Horizon Weighted Doubly Robust (PHWDR) (Jiang &
Li, 2016; Doroudi et al., 2017). We follow the guidelines
in (Raghu et al., 2018a) when constructing these estima-
tors; we model the behaviour policy (the clinical policy)
using approximate kNN (Indyk & Motwani, 1998) with 250
neighbours in the concatenated state space, and FQI with
random forests (50 estimators) for control variate terms. As
these estimators can be high variance, we use a bootstrap
procedure to estimate confidence intervals – for each policy,
we sample 200 patient trajectories from a held-out dataset,
compute the OPE estimates, and then repeat this process
500 times.

The policies we discover through these RL methods are
determinstic in nature. Deterministic policies are hard to
evaluate (Raghu et al., 2018a; Gottesman et al., 2018), due
to importance sampling weights in the aforementioned esti-
mators becoming zero, reducing the effective sample size
of the OPE estimators. We follow a similar procedure to
Komorowski et al. (2018) to soften the discovered policies,
so they take the desired action 96% of the time and a random
action the other 4% of the time.

4. Results
We now analyse the performance of the different methods,
from both a quantitative and qualitative standpoint.

4.1. Quantitative analysis

We present numerical results for the performance of the
different methods. We consider the mean and standard de-
viation (obtained via bootstrapping) under the PHWIS and
PHWDR estimators. We consider the different methodolo-
gies mentioned above, as well as the clinical policy, a policy
taking random actions at every timestep, and a policy taking
zero drug at every timestep.

The results that follow are presented in the format: method
name—state representation. Methods considered are Q-
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Value Iteration (QVI), Tabular Q-learning (TQL), Fitted Q-
Iteration with Random Forest (FQIRF), Fitted Q-Iteration
with Neural Network (FQINN), and Dueling Double Deep
Q-Network (DQN). In state representations, ‘O’ refers to
the original feature set, ‘A’ refers to autoencoder, and ‘C’
refers to concatenation of the current and previous three
timesteps’ states into a larger feature vector.

Table 1. Table showing off-policy evaluation performance (mean
and standard deviation) of different methods and state representa-
tions under the PHWIS and PHWDR estimators. Also included
are results for the clinician policy, a policy taking random actions,
and a policy prescribing zero drug at every timestep.

Method PHWIS PHWDR

TQL-O 10.1 ±2.3 10.0 ± 1.55
TQL-A 10.0 ± 2.5 9.87 ± 1.48
TQL-C 11.35 ± 1.56 10.4 ± 1.1
QVI-O 7.75 ± 3.23 8.99 ± 1.81
QVI-A 9.11 ± 2.91 9.39 ± 1.88
QVI-C 8.48 ± 2.99 9.08 ± 1.77
FQIRF-O 9.53 ±2.56 9.29 ± 1.80
FQIRF-A 9.86 ±2.56 9.76 ± 1.63
FQIRF-C 10.2 ± 2.1 9.97 ± 1.45
FQINN-O 8.72 ± 3.1 9.52 ± 1.91
FQINN-A 9.79 ± 2.58 9.79 ± 1.72
FQINN-C 8.64 ± 2.95 9.19 ± 1.96
DQN-O 9.83 ± 2.30 9.73 ± 1.56
DQN-A 11.0 ± 2.0 10.4 ±1.3
DQN-C 10.4 ± 2.2 10.0 ± 1.4

Clinician 9.82 ± 0.67 9.62 ± 0.63
Random drug 6.83 ± 3.51 8.41 ± 2.00
Zero drug 10.7 ± 2.1 10.5 ± 1.6

Table 1 shows the performance of the different methods.
Figure 1 shows boxplots representing the spread of perfor-
mance across different bootstraps for selected models that
performed best, for PHWIS and PHWDR respectively.

How do different RL methods perform? Considering
PHWIS and PHWDR, we see that all policies have quite
significant variance (a similar result seen in (Komorowski
et al., 2018)), so it is challenging to assert that methods
improve upon clinical performance. However, there seems
to be some improvement over the base clinical policy by
the better performing methods. TQL and DQN are the best-
performing approaches, as evidenced by the quantitative
results. QVI, at least with this framing of the problem,
achieves poor results – this may be due to the difficulty
in modelling the transition probability distribution in the
underlying MDP. The FQINN methods perform quite poorly
– the learned policies are quite different to the clinical policy
(examples of learned policies are shown in Figure 3); this
difference leads to poorer OPE results. FQIRF also suffers

from this problem, but to a lesser degree.

What impact does state representation have? The au-
toencoded and concatenated state representations improve
the average performance of most methods. Given that a
patient’s feature at a particular timestep is unlikely to be
sufficient to capture their entire physiological state, this tem-
poral encoding is well-motivated. The value of the state
representation is diminished when we perform clustering,
perhaps explaining the less-significant difference for TQL.
The effect of state representation is presented in the box
plot in Figure 2, comparing the PHWIS policy value for
different state representations for the DQN model, which is
more sensitive to the choice of state representation, being
a continuous state-space model. We see more clearly the
impact of the temporal representations.

Importantly, the state representations considered here are
those that have been used in prior work; evaluating other
state representations that are clinically-motivated is an im-
portant direction of future work.

Why does the zero-drug policy perform so well? Con-
sider the two types of patient trajectories – those where
patients survived (which will have positive returns), and
those were patients did not survive (which will have neg-
ative returns). In cases where patients survived, clinicians
may not prescribe any medication at particular times (the
zero-drug policy), because patients are generally healthier
and do not require medical interventions. Conversely, in
those trajectories in which patients do not survive, clinicians
rarely take the zero-drug policy, because these patients need
medical interventions to manage their condition. The impor-
tance sampling weights associated with survival trajectories
for the zero drug policy will be large, due to the general
agreement between the evaluation policy (zero-drug policy)
and the behaviour policy (clinician policy). The opposite is
true for the non-survival trajectories. There are relatively
few samples in the dataset with patients who did not survive
and were treated with the zero-drug policy, as this is not clin-
ically meaningful. Consequently, in the final estimator, for
the zero-drug evaluation policy, the survival trajectories will
be weighted highly, and the non-survival trajectories will
be downweighted significantly, leading to a high estimated
policy value. However, it is clear that not administering any
drug is not a clinically feasible policy.

More generally, to summarize the problems with off-policy
evaluation on this task, there are two key areas to consider.
Firstly, there may be hidden confounders that influence the
clinician’s policy and patient outcome, in addition to the
features that are present in the dataset. This is insufficient
coverage of state representation. Secondly, as seen with the
zero-drug policy, the behaviour policy (clinician’s policy)
does not cover the state space thoroughly enough. This
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(a) PHWIS estimates (b) PHWDR estimates

Figure 1. PHWIS and PHWDR estimates for 500 bootstraps for different evaluation policies.

Figure 2. Impact of state representation on PHWIS estimates for
the DQN model.

is insufficient coverage of the behaviour policy. Both of
these issues severely affect the performance of importance
sampling methods, leading to the unreliable performance
observed. Related ideas have been expressed in Gottesman
et al. (2018).

Given these issues, it is important to not treat quantitative
evaluations as absolute, and also examine learned policies
qualitatively to understand what has been discovered.

4.2. Qualitative analysis

As the quantitative evaluation methodologies suffer from
high variance and specific failure cases (e.g. the zero-drug
evaluation policy), we also examine the policies learned
from a qualitative standpoint, aiming to understand which
policies are also clinically meaningful.

We consider the overall cumulative distribution of actions
for different severity patient states (based on a severity index,
the SOFA score). We compare the average total variation
distance between clinical and evaluation policies in these
states to validate that the evaluation policies are not deviat-
ing too far from the base clinical policy – large deviations
are (a) harder to evaluate (Gottesman et al., 2018) and (b)
likely result in clinically meaningless policies.

Table 2. Average total variation distance between clinical policy
and other policies, overall and stratified by patient severity (low,
mid, and high). The clinician policy is formed using the kNN
estimate used for evaluation.

Overall Low Mid High

TQL-C 0.717 0.724 0.703 0.782
DQN-A 0.733 0.745 0.715 0.811
Random drug 0.934 0.938 0.933 0.928
Zero drug 0.755 0.775 0.739 0.786

Table 2 shows the average total variation distance between
the clinical policy and selected learned policies for states
with different severity of sepsis (noted as low, mid, and high
severity). Figure 3 shows the distribution of actions for two
policies that performed well, stratified by patient severity.
Also shown is the clinical policy.

Comparing distributional distance and the policy histograms,
we see that both the TQL-C and DQN-A policies are on
average, closer to the clinician policy than the zero drug pol-
icy, although the difference is only slight in the high severity
regime. They also both share some key characteristics over-
all with the clinician’s policy, with both policies prescribing
higher dosage amounts of drugs, demonstrated by large ac-
tion counts for action indices 22-24. They appear to learn
some similar features to the clinical policy, especially in the
lower and medium severity regime.

5. Conclusion
In this work, we explored the task of developing baselines
for the performance of several RL methodologies on the task
of learning sepsis treatment strategies from observational
data. We considered a range of different state representa-
tions and policy learning algorithms, and found that sim-
ple, tabular Q-learning can be used to learn quite effective
policies, and is competitive with more complex continuous
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(a) Clinician policy

(b) Tabular Q-Learning policy

(c) DQN policy

Figure 3. Comparing the cumulative action distributions under three policies: clinician, Tabular Q-Learning, and Deep Q-Network.

state-space methods, such as Deep Q-Learning. Develop-
ing such baselines has also reinforced the importance of
informative state representations in learning good quality
policies, especially in this medical scenario.

We also demonstrated the importance of considering both
qualitative and quantitative evaluation when applying RL
to real-world problems. These analyses revealed how both
tabular Q-learning and Deep Q-learning could be used to
find treatment strategies that potentially improve on what
clinicians follow and advance the standard of patient care.
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