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ABSTRACT

Recently, various networks that operate directly on point clouds have been pro-1

posed. It is of interest to us what features are utilized in those classifiers for their2

predictions. In this paper, we propose a novel approach to visualize important3

features used in classification decisions from point cloud networks. Following4

ideas in visualizing 2-D convolutional networks, our approach is based on gradu-5

ally smoothing parts of the point cloud to remove certain shape features, and then6

evaluating the resulting point cloud on the original network to see whether the per-7

formance has dropped or remained the same. From these it can be seen whether8

certain parts are important to the point cloud classification. A main technical con-9

tribution of the paper is to propose an algorithm for smoothing point cloud shapes10

based on moving least squares and curvature flow. This algorithm can smoothly11

transition from the original point cloud to a either a uniform sphere, or a disk if the12

original shape is on a plane. With this algorithm, we can obtain a saliency map by13

adapting the Integrated-Gradients Optimized Saliency (I-GOS) algorithm, a state-14

of-the-art perturbation-based visualization techniques, to 3-D shapes. Experiment15

results revealed insights into these classifiers.16

1 INTRODUCTION17

Recently, direct deep learning on unstructured 3-D point clouds has gained significant interest. Many18

point cloud networks have been proposed. PointNet and PointNet++ utilizes max-pooling followed19

by multi-layer perceptron PointConv (Wu et al., 2019) realizes a real convolution operation on point20

clouds. DGCNN (Wang et al., 2018) builds on PointNet++ (Qi et al., 2017) by learning features21

from edges instead of vertices. SPLATNet (Su et al., 2018) embeds features into a high-dimensional22

lattice and applies convolution on the lattice. Other works such as (Xu et al., 2018; Atzmon et al.,23

2018; Li et al., 2018; Fey et al., 2018; Tatarchenko et al., 2018) all have their own merits. As with 2-24

D image classifiers, we are curious about what indeed these models have learned. Following (Fong25

& Vedaldi, 2017)’s definition of explanations as meta-predictors, we want to explain those models26

by identifying which parts of a shape contribute most to the final score, and which parts the least.27

A natural representation of this explanation is a saliency map, which associates each point in the28

point cloud with an importance score. To show that a saliency map is valid, following the deletion29

and insertion metric proposed by (Petsiuk et al., 2018), we should expect the predicted score to drop30

quickly when we “cover up” those parts with highest importance score from the network, and to rise31

quickly when we gradually “reveal” only those parts with highest importance score to the network.32

Here we put “cover up” and “reveal” in quotes because they have not been defined yet on 3-D data. It33

is easy to “cover up” some parts of a 2-D image: simply turn those pixels into grey or black, or apply34

the a significant Gaussian blur to those pixels. It is not easy to extend this notion to 3-D point clouds,35

since however we move the points, they will always be part of the point cloud, and thus contributing36

to the underlying shape. Current point-based deep networks may not be robust enough to generalize37

to new point clouds after these operations. For example, not all point cloud networks accept inputs38

with varying number of points, hence unable to adapt deleting points. Prior work (Zheng et al.,39

2018) proposed an approximation of point deletion to simply moving those “deleted” points to the40

median position of the point cloud. However, their argument for the validity of this operation is41

true only when the network has a max-pooling layer that directly operates on point positions. Such42

an assumption cannot be made for a model-agnostic algorithm. Additionally, during the process of43
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moving the points toward the median position, extra unnatural geometric structures appear, e.g., a44

car might suddenly have a pointy bump on its surface pointing inward. This non-smooth data is45

not within the training distribution of the point cloud network, hence their performance on it are46

undefined and will likely suffer. In practice, we often see point cloud classifiers give significantly47

lower predictions on point clouds with such unnatural geometric structures, which may work for the48

task of generating adversarial examples in (Zheng et al., 2018), but does not bring real understanding49

of the features those networks use to classify the point cloud.50

Our goal is to perform this “cover up” process in a manner so that the resulting point cloud is51

still part of the training distribution. For this, we attempt to smoothly morph the 3-D shape to52

remove distinctive shape features. As an example, for an airplane one thought would be to smoothly53

eliminate the wings to some other shape. Such kind of smoothing and fairing have been well-54

established on 3-D meshes. However, we have not found a satisfactory approach that directly applies55

on point clouds, which usually have very sparse and irregular sampling distribution.56

In this paper, we propose a new algorithm for smoothing point clouds. For each point in the point57

cloud, we fit a local plane from its neighborhood. Under some assumptions we prove that the58

distance from the point to its local plane can be used to approximate the local curvature. This allows59

us to utilize a mean-curvature-flow-based algorithm similar to (Desbrun et al., 1999) to smooth the60

shape. Our new algorithm does not rely on explicit edges which are not available in point clouds, and61

is practically capable of smoothing many different shapes to a sphere with constant mean curvature.62

With the new smoothing tool, we adapt a recent 2-D heatmap algorithm called I-GOS (Qi et al.,63

2019) onto point clouds. We experiment our method on PointConv (Wu et al., 2019) and DGCNN64

(Wang et al., 2018), two state-of-the-art point cloud networks. Results on the ModelNet40 dataset65

reveals that, different from image-based networks that often classify based on a small distinctive66

feature, point-based networks usually rely heavily on the entire shape to classify (usually more67

than 50% points need to be inserted for the score to be close to the original classification score, a68

proportion higher compared to 2-D images). However, certain important parts can be found so that69

once distorted, the score will drop quickly. Also, symmetry is very important for the networks to70

recognize certain classes. We believe that these results improve our understanding of those networks71

and may help improving their training in the future.72

2 RELATED WORK73

Classifier visualization Using saliency maps to visualize networks has attracted much research74

effort these years. There are two main categories of approaches: gradient-based and perturbation-75

based. Gradient-based approaches regard the gradients of the output score with respect to the input76

as the standard of measuring the contribution of the input ((Simonyan et al., 2013; Zeiler & Fergus,77

2014; Springenberg et al., 2014; Bach et al., 2015; Shrikumar et al., 2016; Sundararajan et al., 2017).78

Perturbation-based methods, on the other hand, perturbs the input and see which part of the input79

has the largest influence on the output. Object detectors in CNNs (Zhou et al., 2014), Real Time80

Image Saliency (Dabkowski & Gal, 2017), Meaningful Perturbation (Fong & Vedaldi, 2017), RISE81

(Petsiuk et al., 2018) and I-GOS (Qi et al., 2019) all belong to this family.82

As far as we know none of these methods have been tried on 3-D point cloud classifiers. (Zheng83

et al., 2018), is the only prior work we know that attempts to visualize point cloud networks. (Zheng84

et al., 2018) uses a gradient-based approach and calculates the gradients of the output score with85

respect to the straight line from median to the input points and regards those gradients as saliency. As86

mentioned in the introduction, their method is justified when the network has a max-pooling layer,87

where points shifted to the median would have no impact on the classification. Unfortunately this88

is not true for many point cloud networks, e.g. SpiderCNN (Xu et al., 2018) uses average pooling,89

while DGCNN (Wang et al., 2018) maxpools on edges instead of points. We build a model-agnostic90

approach hence cannot adopt their strategy.91

A close relative of visualization is adversarial attack. Recent works on adversarial attack on 3-D92

point cloud classifiers inlcude (Xiang et al., 2019) and (Liu et al., 2019). Their approaches usually93

include shifting existing points negligibly, or adding to the shape a small set of points that can be94

hidden in the human psyche. The difference between visualization and adversarial attack is that in95

visualization, we aim to stay as close as possible to the training distribution in order to not mislead96
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the classifier, which is generally quite brittle outside the training distribution. Adversarial attacks97

have no such constraints hence can fully exploit the brittleness of networks outside the training98

distribution. The insertion metric proposed in (Petsiuk et al., 2018) is a nice approach to evaluate99

whether a mask is adversarial or not, since it hinges on the ability of the classifier to successfully100

classify the object using only part of its features. Attacks generally create patterns that are not101

semantically meaningful, hence the classifier exposed only to those patterns is usually not possible102

to recover the correct category.103

3-D shape morphology There has been active research in smoothing and fairing 3-D structures. For104

mesh smoothing, (Taubin, 1995) has proposed a method based on diffusion and signal processing,105

and proved it to serve as a low-pass filter and is anti-shrinkage. However, as (Desbrun et al., 1999)106

pointed out, this diffusion method is flawed due to its unrealistic assumption about meshes. (Des-107

brun et al., 1999) proposed a scheme based on curvature flow, where a local “curvature normal” is108

computed at each vertex and the diffusion is based on it. Meshes are easier to smooth than point109

clouds because they provide readily estimated planes that can be used to compute curvature. Some110

noise-removal scheme that directly operates on point clouds were proposed in (Alexa et al., 2001)111

and (Mederos et al., 2003). Most of these methods are based on moving least-squares (Levin, 1998)112

with a local plane/surface fitting. However, the goals of these approaches are mainly removing113

noises, rather than gradually morphing the shape to one with constant curvature as in our goal.114

In terms of mathematical morphology, several work aimed to extend the well-known 2-D morpho-115

logical operations such as dilation / Minkowski sum to point clouds (Calderon & Boubekeur, 2014;116

Lien, 2007). In (Calderon & Boubekeur, 2014), a point set surface is fitted for the point cloud to117

get a signed distance function (SDF) representation for the point cloud, and then a point structuring118

element (PSE), which is a SDF itself, is fitted for each point using mean shift. Finally, the mor-119

phological projection of the point can be computed using the PSE. (Lien, 2007) proposed a purely120

point-based approach for defining the Minkowski sum for point clouds, which is fast and simple. In121

their approach, a structuring element (SE) is a set of vectors. For each point in the point cloud, all122

the vectors in the SE are added to it to get a new set of points. Then a decimation step is taken to123

remove the points inside the boundary. However, most of them require the shape to be closed and124

orientable, i.e., have an “inside” and an “outside”, an assumption we did not make since some of the125

3-D points could form a 2-D plane with no interior.126

3 METHODS127

Throughout this paper we work on a point cloud with N points, denoted as P = {p1, . . . , pN},128

where pi ∈ R3 is a 3-tuple of x, y, z coordinates. Denote a neighborhood of pi as N (pi) and K as129

the size of the neighborhood.130

3.1 SMOOTHING POINT CLOUDS131

Our goal is to smoothly morph a point cloud into a new shape with constant mean curvature, such132

as a sphere, in that all the shape features such as edges and corners in the original point cloud would133

be eliminated. If the shape is already on a plane, then we aim to smooth it into a disk (so that its134

boundary has constant curvature). The total number of points should not change, and each point135

should be traceable from its initial position to its final position. In the following we first describe136

the classical Taubin smoothing Taubin (1995), then describe our algorithm.137

3.1.1 TAUBIN SMOOTHING138

The local Laplacian at a vertex pi is linearly approximated using the umbrella operator:139

L(pi) =
1

K

∑
j∈N (pi)

(pj − pi). (1)

This approximation assumes that the mesh unit-length edges and equal angles between two adjacent140

edges around a vertex (Desbrun et al., 1999), so that the discrete second derivative at pi on any141

direction ~u can be defined as:142

L~u(pi) =
1

2
(pi+1(~u)− pi)−

1

2
(pi − pi−1(~u)), (2)
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supposing pi−1 and pi+1 are the points right before and after pi along the direction ~u. Usually ~u is143

chosen along the line from a mesh vertex to one of its neighbors. The umbrella operator sums up144

the second derivatives in all different directions. Each vertex is then updated using the following145

scheme,146

p′i = pi + λL(pi) (3)
147

p′′i = p′i − µL(p′i) (4)
where 0 < λ < 1 and λ < µ. (Taubin, 1995) proves that this iterative algorithm serves as a low-pass148

filter and is anti-shrinkage. The intuition is that Eq. (3) attenuates the high frequencies and Eq. (4)149

magnifies the remaining low frequencies, thus preventing shrinkage. However, as (Desbrun et al.,150

1999) pointed out, this diffusion method is flawed due to its unrealistic assumption about meshes.151

3.1.2 OUR ALGORITHM152

(a) Applying 3-D version of our algorithm to a car shape.

(b) Applying 2-D version of our algorithm together with the 3-D version to a curtain shape.

Figure 1: Demonstrations of the smoothing algorithm on two shapes from ModelNet40

Suppose the underlying shape of the point cloud is a closed 2-manifold, in order to accommodate153

unevenly distributed points in point cloud data, we use a curvature-flow-based method, inspired by154

(Desbrun et al., 1999) and (Alexa et al., 2001). We first fit a local plane H = {x : 〈x,n〉 + D =155

0, x ∈ R3},n ∈ R3, ||n|| = 1 for each point pi by minimizing the least-squares error:156

arg min
n,D

∑
j∈N (pi)

(〈pj ,n〉+D)
2 (5)

Under a special case we prove in Appendix A that the distance between pi and H can represent157

the local curvature. More generally, this distance is an approximation of the local curvature that158

can be computed efficiently. It is also possible to fit a quadratic surface so that the curvature can159

be computed analytically, however such a fit would be both slower to compute and more prone to160

overfitting, as we will show in the experiments.161

Let hi denote the position of pi after being projected ontoH (i.e. hi = pi− (〈pi,n〉+D) ·n). Then162

hi − pi is the vector pointing from the point pi to the plane H . Now we can accommodate (Taubin,163

1995)’s smoothing algorithm to point cloud data as follows:164

p′i = pi + λ (hi − pi) (6)
165

p′′i = p′i − µ (h′i − p′i) (7)
where 0 < λ < 1, λ < µ and h′i refers to the projection of p′i on a new plane H ′ fitted for p′i.166

Thus instead of moving the point toward the mean of its neighbors, we move it directly toward the167

locally fitted plane, which can be seen approximately as moving the point based on the local mean168

curvature, the approach championed by Desbrun et al. (1999). We call Eq. 6 the “erosion” round,169

and Eq. 7 the “dilation” round. Our algorithm has the same nice property as the one proposed by170

(Desbrun et al., 1999), which is that the vertices in an already flat shape (e.g., a curtain) will not be171

shifted by our algorithm, since pi will be equal to hi.172

An important novel implementation detail is that the size of the neighborhood we use increases as173

the smoothing goes further. In practice, after every 4 rounds of erosion and dilation, we expand174
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the neighborhood size by 20 points. The reason for this is twofold. On one hand, there might exist175

isolated neighborhoods in a point cloud (i.e. a set of points that is closed under theN (·) operation).176

If the curvature information cannot be propagated to the entire point cloud, the final result will not be177

smooth. On the other hand, a larger neighborhood speeds up the smoothing process. As mentioned178

in (Kobbelt et al., 1998), the time step restriction (0 < λ < 1) results in the need of hundreds of179

updates to cause a noticeable smoothing using the original implementation in (Taubin, 1995).180

To deal with degenerate cases where the point cloud is already on a plane, we further extend the181

algorithm to a 2D case(Fig. 1b). Here the aim is to make the boundary smooth, transforming the182

plane to a disk. In this case, assuming all the neighborhood points N (pi) are on the plane, we fit a183

line H ′ = {x : 〈x,n′〉 + C = 0, x ∈ R2},n′ ∈ R2, ||n′|| = 1 for wi = (0, 0) by minimizing the184

least-squares error:185

arg min
n′,C

∑
j∈N (pi)

(〈wj ,n′〉+ C)
2 (8)

Let qi be wi’s projection on line H ′. We update wi in the same fashion as in the 3D case:186

w′i = wi + λ (qi − wi) (9)
187

w′′i = w′i − µ (q′i − w′i) (10)

Finally, we convert wi = (ui, vi) back to 3-D by calculating p′i = pi + ui~u + vi~v. In reality, due188

to noises, many points are not exactly on a plane. We project them to their local planes H first, and189

then calculate the uv-coordinates from their projected location hi. Note that we still shift the point190

from its original location pi, not its projected location hi. In actual implementation, the 2-D version191

is used together with the 3-D version and is always run first. For example, in an “erosion” round, we192

run Eq. (9) first, then Eq. (6); in a “dilation” round, we run Eq. (10) first, then Eq. (7). Empirically193

this seems to generalize well on both planar and non-planar surfaces and avoids introducing extra194

parameters to make a decision whether a neighborhood is on a plane.195

3.2 INTEGRATED-GRADIENTS OPTIMIZED SALIENCY (I-GOS)196

We summarize the I-GOS algorithm (Qi et al., 2019) which is a recent algorithm for visualizing deep197

networks. The goal in I-GOS is to optimize for a small and smooth mask so that when an image is198

masked, the prediction from the deep network drops significantly. I-GOS improves from conven-199

tional gradient descent approaches in that the optimization is solved with a mixture of conventional200

gradients and integrated gradients, where the integrated gradients point to a global optimum for the201

unconstrained problem of only minimizing the prediction on the image, so that the optimization can202

evade local optima and achieve better performance.203

We seek to adapt this algorithm to point clouds. Formally, let maskM be of the same size as the204

point cloud P , and initialized with all zeros (transparent). Let P0 be the fully smoothed point cloud205

(e.g. sphere) and letM0 be the baseline mask which is all ones, so that when applied to the shape,206

the shape becomes P0. Mask values are always between [0, 1], where 0 means no smoothing, 1207

means fully smoothing. We optimize the mask by minimizing the classification score on the masked208

point cloud, along with 2 regularizers:209

Loverall = λclsLcls + λl1Ll1 + λtvLtv (11)

where Lcls is defined as the integrated classification score loss along the straight path fromM0 to210

M:211

Lcls =

∫ 1

α=0

fc(Φ(P,M+ α(M0 −M)))dα (12)

where fc(·) represents the classifier on the class c to be visualized (usually the class with the highest212

predicted confidence) and Φ represents the action of applying the mask to the point cloud. where213

Ll1 =
1

N
||1 −M||1 and Ltv =

(
1

N

∑
M

1

K

∑
j∈N (pi)

|mj −mi|
)β

. the total variation (TV)214

regularization with β being a parameter, usually either 1 or 2. The L1 and TV regularizations are to215

make the mask small and smooth, hence making the resulting point cloud more likely to stay in the216

same distribution as the training and less likely to be adversarial.217
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Note that the gradients of Lcls w.r.tM are exactly the integrated gradients proposed by (Sundarara-218

jan et al., 2017). In actual implementation, this integration is approximated using summation:219

L̂cls =
1

S

∑
s=1

f(Φ(P,M+
s

S
(M0 −M))) (13)

where S is the number of intervals used.220

One difficulty in extending this algorithm to 3D point clouds is to implement Φ(·) as a smooth221

operation so that gradients can be taken w.r.t it. In 2-D images, we can simply use a weighted (by222

mi) average the value of a pixel with the baseline pixel value in the baseline image. However, in223

point clouds, the iterative smoothing algorithm we proposed in Sec. 3.1.2 is not smooth.224

In practice, we make Φ differentiable by precomputing 10 intermediate shapes with increasing level225

of smoothness. In practice, we approximate this process by saving 10 intermediate shapes with226

increasing level of smoothness. Then, a point p′i with a mask value mi ∈ [0, 1] applied on it can be227

represented as:228

p′i =

∑10
l=0 exp(−α‖10 ·mi − l‖2)pi,l∑10
l=0 exp(−α‖10 ·mi − l‖2)

(14)

where l refers to the l-th point cloud in our sequence of smoothed shapes (l = 0 refers to P0 and229

l = 10 refers to the original shape), Ψ(·) is a similarity function (a Gaussian kernel, in our case),230

pi,l refers to the position of the i-th point in the l-th point cloud.231

4 EXPERIMENT RESULTS232

We have conducted two types of experiments. First, since we are proposing a new smoothing algo-233

rithm, we compare against a number of baselines on the smoothing capability of those algorithms.234

In the second part, we utilize our extended I-GOS algorithm to visualize point cloud networks and235

compare with some baselines as well as performing some ablation studies on the visualization. All236

experiments are conducted on the test split of the ModelNet40 dataset, with the classifiers to be vi-237

sualized trained on the training split. 1024 points are randomly sampled from each shape, and only238

xyz location information is used in all experiments. All the parameters are fixed through the entire239

dataset. λ = 0.7, µ = 1.0, K grows from 20 to 60. We usually run the algorithm for 80 iterations240

(each iteration contains one “erosion” step and one “dilation” step).241

4.1 POINT CLOUD SMOOTHING242

Since there were few prior work that directly smooth point clouds, we compare against several other243

plausible baselines as well. We first note that directly applying Gaussian blur to the coordinates is244

not a valid baseline in point clouds, because Gaussian blur tends to smooth the coordinate values,245

they tend to push neighborhood points to all have the same coordinates, leading to a skeleton effect246

which is completely contrary to our goals. We mainly compare against 3 baselines:247

Meshing, then smoothing One natural idea is to convert the point cloud to a mesh and then apply248

mesh-based smoothing techniques such as (Desbrun et al., 1999) to the result. For our goals, we need249

to choose an algorithm that does not change the number of points and maintain a 1-1 correspondence250

with the original point cloud. We utilized a greedy projection triangulation algorithm (Marton et al.,251

2009), but due to the noisiness and sparsity of the point cloud, the meshing result is often not ideal,252

as well as the smoothing results (e.g. Fig. 3).253

Figure 2: A comparison between Taubin smoothing and our smoothing on 2-D point cloud. Left: A 2-D
ellipse point cloud with 202 unevenly distributed points. Middle: Taubin smoothing. Right: Our smoothing. In
the case of Taubin smoothing, highly concentrated areas are pushing points outward, resulting in an undesired
shape, while our algorithm is not influenced by point density.
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Directly applying mesh smoothing techniques to points. Instead of explicit meshing, we can use254

neighborhood function N (·) to construct an implicit mesh, i.e., assuming a point has an edge to255

each of the points in its neighborhood. Using this implicit mesh, mesh smoothing techniques can256

be directly to point clouds. However, the uneven distribution of points in a point cloud quite often257

distorts the result, in a method such as Taubin smoothing (Fig. 2). Though (Fujiwara, 1995) and258

(Desbrun et al., 1999) have proposed improvements for irregular meshes, they explicitly exploit edge259

information, which is not available in point cloud data (and requires explicit meshing as above).260

Fitting a quadratic surface. Another natural idea is to directly fit a quadratic surface to the local261

neighborhood instead of a plane as in our approach. A quadratic surface allows analytic computa-262

tion of the curvature hence then we can simply run algorithms based on mean curvature flow. We263

implemented the closed-form quadratic fitting algorithm following (Groshong et al., 1989). How-264

ever, as pointed out by (Andrews & Séquin, 2014), since quadratic surfaces have a large degree of265

freedom compared to planes (10 parameters compared to 4), even a small bit of noise will render an266

undesired quadratic type or direction. As illustrated in Fig. 4, the border of the car shape ends up267

consisting of quadratic lines curving outward instead of inward.268

Figure 3: Meshing a point cloud and
then applying Laplacian smoothing as
in (Taubin, 1995). Corresponding point
clouds attached above.

Figure 4: Fitting quadratic surfaces to local neighbor-
hoods and running mean-curvature-flow algorithm using
the mean curvature calculated using the surfaces.

For a quantitative comparison against these baselines, we propose two metrics to evaluate our269

smoothing algorithm based on the goals of equalizing the mean curvature of the surface. Assuming270

that the structure is not degenerate, the smoothing should eventually make the point cloud to be a271

sphere. Hence, we can evaluate the min-max ratio (MR), which is the ratio between the length on272

the long side and the short side of the point cloud. This is computed by first applying principal273

component analysis (PCA) to the point cloud and finding the top two principal components, say ~u274

and ~v. Then the ratio between ranges of the values are computed on these two principal directions:275

min~t(maxi(pi,~t)−mini(pi,~t))

max~t(maxi(pi,~t)−mini(pi,~t))
where ~t ∈ {~u,~v} and pi,~t denotes the i-th point’s component on ~t.276

The closer this ratio is to 1, the better.277

As another metric, we propose to evaluate distance distribution similarity (DDS) between one278

point cloud and its smoothed version after one iteration. This is computed by first computing the279

Kolmogorov-Smirnov statistic supx |Dl(x) − Dl−1(x)| where D(x) denotes the empirical distri-280

bution function of the distances, and then calculating the p-value of the statistic. The larger this281

p-value, the more similar the distributions are. In practice, ten intermediate point clouds with in-282

creasing level of blurriness are sampled. The metrics are calculated for all of them and the results283

are listed in Table 1. All the algorithms are evaluated on the entire ModelNet40 testing split, and the284

average of all the shapes is taken. It can be seen that both implicit and explicit meshing approaches285

are quite unstable by having extremely low DSS for some l. Also explicit meshing does not seem286

to improve MR at all. The quadratic surface fitting approach morphs the shapes as smoothly as our287

algorithm, but fails to morph the shape into a sphere at the very end.288

4.2 CLASSIFIER VISUALIZATION289

We experiment our adapted I-GOS algorithm on PointConv (Wu et al., 2019) and DGCNN (Wang290

et al., 2018), two state-of-the-art point cloud classifiers. Both networks have classification accuracy291

above 92% on the ModelNet 40 test set. Fig. 5 shows some example masks generated by our292

algorithm for PointConv and DGCNN. These pictures reveal to us some interesting insight into293

the patterns used in the classifiers: for airplanes, the wings and the tails are crucial; for radios,294

the existence of the antenna is critical; for cars, the front and trunk arer important; for vases, the295

curvature at the neck is more important than the curvature at the bottom.296
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Table 1: Comparison of Point cloud smoothing algorithms. Mesh refers to meshing and smoothing, Taubin
refers to directly applying Taubin smoothing to point clouds. DDS below 0.05 are italicized, indicating extreme
unsmoothness. It can be seen both Taubin and Ours converged well, but Taubin is very unsmooth in the middle.
Quadratic is very smooth but does not converge in the end

Algorithm \level l 1 2 3 4 5 6 7 8 9 10

Mesh
MR 0.84 0.86 0.86 0.85 0.84 0.83 0.83 0.82 0.82 0.82
DDS 0.12 0.12 0.05 0.02 0.04 0.28 0.57 0.63 0.63 0.63

Taubin
MR 0.84 0.82 0.82 0.78 0.84 0.89 0.92 0.94 0.95 0.95
DDS 0.28 0.08 0.03 0.00 0.00 0.00 0.00 0.02 0.24 0.60

Quadratic
MR 0.80 0.79 0.80 0.80 0.80 0.80 0.81 0.81 0.81 0.81
DDS 0.38 0.64 0.77 0.86 0.91 0.94 0.96 0.98 0.97 0.97

Ours
MR 0.85 0.87 0.88 0.89 0.91 0.92 0.94 0.94 0.95 0.95
DDS 0.09 0.29 0.10 0.26 0.11 0.20 0.09 0.13 0.05 0.07

(a) Airplane. 0.0[1.0], 0.4[0.19], 0.3[0.94], 1.0[0.0].

(b) Bottle. 0.0[0.99], 0.3[0.02], 0.3[0.99], 1.0[0.0].

(c) Piano. 0.0[0.99], 0.3[0.00], 0.3[0.79], 1.0[0.0].

(d) Radio. 0.0[0.99], 0.3[0.11], 0.3[0.96], 1.0[0.04].

(e) Car. 0.0[1.0], 0.15[0.09], 0.3[0.99], 1.0[0.0].

(f) Cone. 0.0[0.84], 0.05[0.16], 0.2[0.72], 1.0[0.03].

(g) Person. 0[0.79], 0.1[0.15], 0.15[0.63], 1[0.05].
(h) Vase. 0.0[0.83], 0.3[0.19], 0.3[0.82], 1.0[0.0].

Figure 5: Example masks (best viewed in color). First four for PointConv, last four for DGCNN. Red indicates
high mask value, blue low. Within each group of pictures from left to right: original shape, least amount of
points smoothed to drop the prediction confidence below 0.2×original confidence, least points inserted for
rising the prediction above 0.8×original prediction confidence, 100% blurred. All the numbers below the
pictures are of the format: percentage blurred [prediction confidence].

We use the deletion and insertion metrics proposed by (Petsiuk et al., 2018) to evaluate the masks.297

For deletion, we gradually smooth the shape based on the mask. We then plot the curve of network298

prediction confidences on the different shapes and calculate area under the curve. insertion scores are299

also area under the curve, but retain points deemed as more important unsmoothed, and smooth the300

mosts unimportant points instead. We want the deletion score to be low, indicating that smoothing301

a small area would distract the classifier, and the insertion score curve to be high, indicating that302

the classifier can predict from a small amount of features. Experiment results averaged over all 40303

classes are shown in the last row of Table 3. Individual class results are attached in the Appendix.304

Red are the deletion curves, blue (reading from right to left) are the insertion curves.305

8



Under review as a conference paper at ICLR 2020

Table 2 shows the comparison between the two baseline methods and I-GOS: mask-only (Fong &306

Vedaldi, 2017) and ig-only (Sundararajan et al., 2017). mask-only learns the mask using gradients307

instead of integrated gradients. Each mask goes through 300 iterations under this method compared308

to 30 under I-GOS. ig-only directly takes the integrated gradient instead of an optimization process.309

From the table we can see that I-GOS performs much better than the baselines. Table 3 shows the310

ablation study for l1-loss and tv-loss (tv stands for total-variation). As we can see, both losses are311

useful for maximizing the performance of the algorithm.312

Table 2: Baseline methods for obtaining saliency mask compared to I-GOS using the deletion and insertion
metrics (averaged over 40 classes), conducted with the PointConv classifier

deletion insertion difference
mask-only 0.2318 0.2474 0.0156

ig-only 0.3751 0.3099 -0.0653
I-GOS 0.2684 0.4113 0.1429

Table 3: Results on PointConv and DGCNN averaged over 40 classes, as well as ablation study for l1-loss
and tv-loss using deletion and insertion metrics. As shown, both losses are necessary for maximizing the
performance of the algorithm

PointConv DGCNN
deletion insertion difference deletion insertion difference

no l1, no tv 0.2833 0.3889 0.1056 0.1825 0.2212 0.0387
with l1, no tv 0.2710 0.3989 0.1279 0.1659 0.2264 0.0605
no l1, with tv 0.2677 0.4097 0.1420 0.1563 0.2234 0.0670

with l1, with tv 0.2684 0.4113 0.1429 0.1594 0.2315 0.0720

5 CONCLUSIONS AND FUTURE WORK313

In this paper, we proposed a classifier visualization approach by extending the I-GOS algorithm that314

visualizes 2D images. In order to smooth the point clouds without abrupt changes, we proposed315

a novel smoothing approach that gradually smooths the point clouds and eventually converge to316

a shape with constant mean curvature. Experiment results show that our algorithm outperforms317

baselines on both point cloud smoothing and classifier visualization. As compared with 2D results318

in Qi et al. (2019), the 3D shapes consistently show higher deletion metric and lower insertion319

metrics, indicating that point cloud networks use more parts than 2D image CNNs to classify. We320

hope those visualization results improve our understanding on these new networks.321
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Stéphane Calderon and Tamy Boubekeur. Point morphology. ACM Trans. Graph., 33(4):45:1–45:13,333

July 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601130.334

Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers. In Advances in335

Neural Information Processing Systems, pp. 6967–6976, 2017.336

9



Under review as a conference paper at ICLR 2020
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A CURVATURE APPROXIMATION PROOF409

Figure 6: Auxillary graph for proof in Appendix A. From left to right: point pi and its actual
neighbors (in blue), pi and its virtual neighbors (in red) and the fitted local plane H , enlarged graph
of pi and three of its neighbors, pi with hi, which is pi’s projection onto the fitted plane. hi is also
the center of the ring formed by the virtual neighbors.

Our proof will refer to Fig. 6. (Desbrun et al., 1999) has already showed that on a 3-D mesh, given410

a point pi and its neighbors, the local “carvature normal” can be calculated using411

1

4A

∑
j∈N (pi)

(cotαj + cotβj)(pj − pi) (15)

where A is the sum of the areas of the triangles having pi as common vertex and αj , βj are the two412

angles opposite to the edge eij (i.e. pj − pi). This arrangement is demonstrated Fig. 6.413

Since point cloud data are usually sparse and noisy, we want to utilize some mechanism to mitigate414

this sparsity and irregularity. Here, we first fit a local plane to pi’s neighborhood, and then we415
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define the notion of “virtual neighbors” as a means to fill in the gaps left by the “actual neighbors”.416

We assume the “virtual neighbors” distribute evenly and densely on a ring surrounding pi on the417

fitted plane H , each having the same distance k to pi (k is calculated using the average distance418

of the actual neighbors). Let pi’s projection on H be hi, which is at the center of the ring formed419

by the “virtual neighbors”. Let a be the distance from pi to each edge ej,j+1. Let b be half of420

the length of ej,j+1. Thus we can calculate A in Eq. 15 as n · ab. Since we assumed the points421

are distributed evenly, we have cotα = cotβ =
b

a
. Thus we have the curvature normal to be422

1

4A

∑
j(cotαj + cotβj)(pj − pi) =

1

4nab
· 2b

a

∑
j(pj − pi) =

1

2na2
∑
j(pj − pi).423

Note that the vector pj − pi is equal to (pi − hi) + (hi − pi), and it can be easily shown that424 ∑
j(pi − hi) = ~0. Thus we can continue derive the curvature normal to be

1

2na2
∑
j(pj − pi) =425

1

2na2
∑
j(hi − pi) =

n

2na2
(hi − pi) =

1

2a2
(hi − pi). Since we assume the points are distributed426

densely, thus we have as n → ∞, a → k. Hence, the curvature normal at pi can be approximated427

by the expression428

1

2k2
(hi − pi) (16)

where hi−pi is just the vector pointing from pi to the local planeH as in Eq. 6 and 7. This equation429

makes sense in that when the distance from pi to H is fixed, the further away the neighbors are, the430

“flatter” the surface at pi is.431

In our actual experimentation however, we found that due to the extremely irregular distribution of432

the point cloud data, the neighborhood distance is actually misleading sometimes rather than helpful.433

Thus, in our final algorithm, we abandon the distance information
1

2k2
and directly use the vector434

pointing from pi to plane H as our approximation for the local curvature.435

B CURVE FIGURES436

Table 4: Deletion score curve average and insertion score curve average for PointConv.

airplane bathtub bed bench bookshelf bottle bowl car chair cone
del. 0.5834 0.1859 0.1886 0.2557 0.3345 0.3084 0.2029 0.2917 0.4551 0.3720
ins. 0.6802 0.3052 0.3195 0.3343 0.4224 0.4907 0.3307 0.6385 0.6452 0.4672

cup curtain desk door dresser flowerpot glassbox guitar keyboard lamp
del. 0.1178 0.2386 0.1748 0.2112 0.1151 0.3486 0.0839 0.2331 0.2482 0.4263
ins. 0.3425 0.2315 0.2779 0.3261 0.2846 0.4730 0.1934 0.4470 0.3048 0.6227

laptop mantel monitor nightstand person piano plant radio rangehood sink
del. 0.2182 0.2283 0.2620 0.1429 0.1871 0.2872 0.7666 0.2601 0.2474 0.3175
ins. 0.3055 0.3728 0.4304 0.3545 0.2867 0.3822 0.8337 0.4626 0.3406 0.4408

sofa stairs stool table tent toilet tv stand vase wardrobe xbox
del. 0.2742 0.2521 0.1727 0.4009 0.3107 0.1933 0.1602 0.4210 0.0628 0.1446
ins. 0.3611 0.3779 0.3350 0.4656 0.7125 0.4644 0.2864 0.6709 0.1046 0.1644
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Table 5: Deletion score curve average and insertion score curve average for DGCNN.

airplane bathtub bed bench bookshelf bottle bowl car chair cone
del. 0.3683 0.0683 0.1456 0.1473 0.2328 0.1501 0.1439 0.2661 0.3206 0.1905
ins. 0.4906 0.1158 0.1900 0.1980 0.2849 0.2972 0.1933 0.3740 0.4141 0.3338

cup curtain desk door dresser flowerpot glassbox guitar keyboard lamp
del. 0.0630 0.0714 0.1285 0.0674 0.0702 0.1082 0.0628 0.2503 0.1685 0.2269
ins. 0.0767 0.1511 0.1788 0.1413 0.0880 0.0983 0.0812 0.3875 0.2011 0.3464

laptop mantel monitor nightstand person piano plant radio rangehood sink
del. 0.0534 0.0782 0.2127 0.0860 0.1091 0.1554 0.6798 0.2013 0.1018 0.1196
ins. 0.0675 0.1077 0.2972 0.1262 0.4150 0.2031 0.7188 0.2466 0.1560 0.2267

sofa stairs stool table tent toilet tv stand vase wardrobe xbox
del. 0.1840 0.1677 0.1366 0.1761 0.1918 0.1362 0.0924 0.1706 0.0463 0.0584
ins. 0.2306 0.2285 0.1920 0.1932 0.2626 0.2498 0.1086 0.3781 0.0654 0.0745

C CURVE FIGURES437

(a) Airplane. (b) Bathtub. (c) Bed. (d) Bench.

(e) Bookshelf. (f) Bottle. (g) Bowl. (h) Car.

(i) Chair. (j) Cone. (k) Cup. (l) Curtain.

(m) Desk. (n) Door. (o) Dresser. (p) Flower pot.

Figure 7: Deletion and insertion curves for all 40 classes in ModelNet40 for PointConv. Horizontal
axis is the deletion percentage (top 5%, 10%, etc.), and vertical axis is the predicted class score. The
red line is the deletion curve which blurs points from highest mask values, and the blue line is the
insertion curve (if read from right to left) which blurs points from lowest mask values.
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(q) Glass box. (r) Guitar. (s) Keyboard. (t) Lamp.

(u) Laptop. (v) Mantel. (w) Monitor. (x) Night stand.

(y) Person. (z) Piano. (aa) Plant. (ab) Radio.

(ac) Range hood. (ad) Sink. (ae) Sofa. (af) Stairs.

(ag) Stool. (ah) Table. (ai) Tent. (aj) Toilet.

(ak) TV stand. (al) Vases. (am) Wardrobe. (an) Xbox.

Figure 7: Deletion and insertion curves for all 40 classes in ModelNet40 for PointConv. Horizontal
axis is the deletion percentage (top 5%, 10%, etc.), and vertical axis is the predicted class score. The
red line is the deletion curve which blurs points from highest mask values, and the blue line is the
insertion curve (if read from right to left) which blurs points from lowest mask values. (cont.)
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(a) Airplane. (b) Bathtub. (c) Bed. (d) Bench.

(e) Bookshelf. (f) Bottle. (g) Bowl. (h) Car.

(i) Chair. (j) Cone. (k) Cup. (l) Curtain.

(m) Desk. (n) Door. (o) Dresser. (p) Flower pot.

(q) Glass box. (r) Guitar. (s) Keyboard. (t) Lamp.

(u) Laptop. (v) Mantel. (w) Monitor. (x) Night stand.

(y) Person. (z) Piano. (aa) Plant. (ab) Radio.

Figure 8: Deletion and insertion curves for all 40 classes in ModelNet40 for DGCNN. Horizontal
axis is the deletion percentage (top 5%, 10%, etc.), and vertical axis is the predicted class score. The
red line is the deletion curve which blurs points from highest mask values, and the blue line is the
insertion curve (if read from right to left) which blurs points from lowest mask values.
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(ac) Range hood. (ad) Sink. (ae) Sofa. (af) Stairs.

(ag) Stool. (ah) Table. (ai) Tent. (aj) Toilet.

(ak) TV stand. (al) Vases. (am) Wardrobe. (an) Xbox.

Figure 8: Deletion and insertion curves for all 40 classes in ModelNet40 for DGCNN. Horizontal
axis is the deletion percentage (top 5%, 10%, etc.), and vertical axis is the predicted class score. The
red line is the deletion curve which blurs points from highest mask values, and the blue line is the
insertion curve (if read from right to left) which blurs points from lowest mask values. (cont.)
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