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ABSTRACT

Dialogue systems require a great deal of different but complementary expertise
to assist, inform, and entertain humans. For example, different domains (e.g.,
restaurant reservation, train ticket booking) of goal-oriented dialogue systems
can be viewed as different skills, and so does ordinary chatting abilities of chit-
chat dialogue systems. In this paper, we propose to learn a dialogue system that
independently parameterizes different dialogue skills, and learns to select and
combine each of them through Attention over Parameters (AoP). The experimental
results show that this approach achieves competitive performance on a combined
dataset of MultiWOZ (Budzianowski et al., 2018), In-Car Assistant (Eric et al.,
2017), and Persona-Chat (Zhang et al., 2018). Finally, we demonstrate that each
dialogue skill is effectively learned and can be combined with other skills to
produce selective responses.

1 INTRODUCTION

Unlike humans who can do both, goal-oriented dialogues (Williams & Young, 2007; Young et al.,
2013) and chit-chat conversations (Serban et al., 2016a; Vinyals & Le, 2015) are often learned with
separate models. A more desirable approach for the users would be to have a single chat interface
that can handle both casual talk and tasks such as reservation or scheduling. This can be formulated
as a problem of learning different conversational skills across multiple domains. A skill can be
either querying a database, generating daily conversational utterances, or interacting with users in a
particular task-domain (e.g. booking a restaurant). One challenge of having multiple skills is that
existing datasets either focus only on chit-chat or on goal-oriented dialogues. This is due to the fact
that traditional goal-oriented systems are modularized (Williams & Young, 2007; Hori et al., 2009;
Lee et al., 2009; Levin et al., 2000; Young et al., 2013); thus, they cannot be jointly trained with
end-to-end architecture as in chit-chat. However, recently proposed end-to-end trainable models (Eric
& Manning, 2017; Madotto et al., 2018; Wu et al., 2019; Reddy et al., 2018; Yavuz et al., 2018) and
datasets (Bordes & Weston, 2017; Eric et al., 2017) allow us to combine goal-oriented (Budzianowski
et al., 2018; Eric et al., 2017) and chit-chat (Zhang et al., 2018) into a single benchmark dataset with
multiple conversational skills as shown in Table 1.

A straight forward solution would be to have a single model for all the conversational skills, which
has shown to be effective to a certain extent by (Zhao et al., 2017) and (McCann et al., 2018).
Putting aside the performance in the tasks, such fixed shared-parameter framework, without any
task-specific designs, would lose controllability and interpretability in the response generation. In
this paper, instead, we propose to model multiple conversational skills using the Mixture of Experts
(MoE) (Jacobs et al., 1991) paradigm, i.e., a model that learns and combine independent specialized
experts using a gating function.

For instance, each expert could specialize in different dialogues domains (e.g., Hotel, Train, Chit-
Chat etc.) and skills (e.g., generate SQL query). A popular implementation of MoE (Shazeer et al.,
2017; Kaiser et al., 2017) uses a set of linear transformation (i.e., experts) in between two LSTM
(Schmidhuber, 1987) layers. However, several problems arise with this implementation: 1) the model
is computationally expensive as it has to decode multiple times each expert and make the combination
at the representation-level; 2) no prior knowledge is injected in the expert selection (e.g., domains);
3) Seq2Seq model has limited ability in extracting information from a Knowledge Base (KB) (i.e.,
generated by the SQL query) (Eric et al., 2017), as required in end-to-end task-oriented dialogues
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Table 1: An example from the dataset which includes both chit-chat and task-oriented conversations.
The model has to predict all the Sys turn, which includes SQL query and generating response from a
the Memory content, which is dynamically updated with the queries results. The skills are the prior
knowledge needed for the response, where Persona refers to chit-chat.

Spk. Conversation Skills
Usr: Can you help me find a cheap 2 star hotel?

Sys: SELECT * FROM hotel WHERE pricerange=‘cheap’
AND stars=2 AND type=‘hotel’ SQL+HOTEL

Mem: (Result table from the SQL query, with real entities.)
Sys: Arms is a 2 star hotel in the centre. Shall I book a room for you? HOTEL
Usr: Yes, thank you!
Sys: Sure, for how many people should I book it for? HOTEL

· · ·

Sys: Hello! How are you today? PERSONA
Usr: I am good thank you! Do you like to ski? I really like it.
Sys: No, I like to code in Haskell. Do you like to code? PERSONA

systems (Bordes & Weston, 2017). The latter can be solved by using more advanced multi-hop
models like the Transformer (Vaswani et al., 2017), but the remaining two need to be addressed.
Hence, in this paper we:

• propose a novel Transformer-based (Vaswani et al., 2017) architecture called Attention over
Parameters (AoP). This model parameterize the conversational skills of end-to-end dialogue
systems with independent decoder parameters (experts), and learns how to dynamically select and
combine the appropriate decoder parameter sets by leveraging prior knowledge from the data such
as domains and skill types;

• proof that AoP is algorithmically more efficient (Appendix A1) compared to forwarding all the
Transformer decoders and then mix their output representation, like is normally done in MoE.
Figure 1 illustrates the high-level intuition of the difference;

• empirically show the effectiveness of using specialized parameters in a combined dataset of Multi-
WOZ (Budzianowski et al., 2018), In-Car Assistant (Eric et al., 2017), and Persona-Chat (Zhang
et al., 2018), which to the best of our knowledge, is the first evaluation of this genre i.e. end-to-end
large-scale multi-domains/skills. Moreover, we show that our model is highly interpretable and is
able to combine different learned skills to produce compositional responses.

2 RELATED WORK

Dialogue Task-oriented dialogue models (Gao et al., 2018) can be categorized in two types: module-
based (Williams & Young, 2007; Hori et al., 2009; Lee et al., 2009; Levin et al., 2000; Young et al.,
2013) and end-to-end. In this paper, we focus on the latter which are systems that train a single model
directly on text transcripts of dialogues. These tasks are tackled by selecting a set of predefined
utterances (Bordes & Weston, 2017; Liu & Perez, 2017; Wu et al., 2017; 2018; Williams et al., 2017;
Seo et al., 2017) or by generating a sequence of tokens (Madotto et al., 2018; Wen et al., 2017;
Serban et al., 2016b; Zhao et al., 2017; Serban et al., 2017). Especially in the latter, copy-augmented
models (Eric & Manning, 2017; Madotto et al., 2018; Wu et al., 2019; Reddy et al., 2018; Yavuz
et al., 2018) are very effective since extracting entities from a knowledge base is fundamental. On
the other hand, end-to-end open domain chit-chat models have been widely studied (Serban et al.,
2016a; Vinyals & Le, 2015; Wolf et al., 2019). Several works improved on the initially reported
baselines with various methodologies (Kulikov et al., 2018; Yavuz et al., 2018; Hancock et al., 2019;
Lucas et al., 2009; Joshi et al., 2017; Zemlyanskiy & Sha, 2018; Dinan et al., 2019). Finally, (Zhao
et al., 2017) was the first attempt of having an end-to-end system for both task-oriented models and
chit-chat. However, the dataset used for the evaluation was small, evaluated only in single domain,
and the chit-chat ability was added manually through rules.
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Figure 1: Comparisons between Single model, Mixture of Experts (MoE)(Jacobs et al., 1991), and
Attention over Parameters (AoP).

Mixture of Expert & Conditional Computation The idea of having specialized parameters, or
so-called experts, has been widely studied topics in the last two decades (Jacobs et al., 1991; Jordan
& Jacobs, 1994). For instance, different architecture and methodologies have been used such as
SVM (Collobert et al., 2002), Gaussian Processes (Tresp, 2001; Theis & Bethge, 2015; Deisenroth &
Ng, 2015), Dirichlet Processes (Shahbaba & Neal, 2009), Hierarchical Experts (Yao et al., 2009),
Infinity Number of Experts (Rasmussen & Ghahramani, 2002), and sequential expert addition (Aljundi
et al., 2017). More recently, the Mixture Of Expert (Shazeer et al., 2017; Kaiser et al., 2017) model
was proposed which added a large number of experts between two LSTMs (Schmidhuber, 1987). To
the best of our knowledge, none of these previous works applied the results of the gating function
to the parameters itself. On the other hand, there are Conditional Computational models which
learn to dynamically select their computation graph (Bengio et al., 2013; Davis & Arel, 2013).
Several methods have been used such as reinforcement learning (Bengio et al., 2016), a halting
function (Graves, 2016; Dehghani et al., 2019; Figurnov et al., 2017), by pruning (Lin et al., 2017;
He et al., 2018) and routing/controller function (Rosenbaum et al., 2018). However, this line of work
focuses more on optimizing the inference performance of the model more than specializing parts of it
for computing a certain task.

Multi-task Learning Even though our model processes only input sequence and output sequences
of text, it actually jointly learns multiple tasks (e.g. SQL and BOOK query, memory retrieval,
and response generation), thus it is also related to multi-task learning (Caruana, 1997). Interested
readers may refer to (Ruder, 2017; Zhou et al., 2011) for a general overview on the topic. In Natural
Language Processing, multi-task learning has been applied in a wide range of applications such as
parsing (Collobert et al., 2011; Hashimoto et al., 2017; Ruder et al., 2017), machine translation in
multiple languages (Johnson et al., 2017), and parsing image captioning and machine translation (Lu-
ong et al., 2016). More interestingly, DecaNLP (McCann et al., 2018) has a large set of tasks that
are cast to question answering (QA), and learned by a single model. In this work, we focus more on
conversational data, but in future works, we plan to include these QA tasks.

3 METHODOLOGY

We use the standard encoder-decoder architecture and avoid any task-specific designs (Madotto et al.,
2018; Wu et al., 2019; Reddy et al., 2018), as we aim to build a generic conversation model for both
chit-chat and task-oriented dialogues. More specifically, we use a Transformer (Vaswani et al., 2017)
for both encoder and decoder.

Let us define the sequence of tokens in the dialogue history as D = {d1, . . . , dm} and the dynamic
memory content as a sequence of tokens M = {m1, . . . ,mz}. The latter can be the result of a
SQL query execution (e.g., table) or plain texts (e.g., persona description), depending on the task.
The dialogue history D and the memory M are concatenated to obtain the final input denoted by
X = [D;M ] = {x1, . . . , xn=m+z}. We then denote Y = {y1, . . . , yk} as the sequence of tokens
that the model is expected to produce. Without loss of generality, Y can be both plain text and
SQL-like queries. Hence, the model has to learn when to issue database queries and when to generate
human-like responses. Finally, we define a binary skill vector V = {v1, . . . , vr} that specifies the
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type of skills required to generate Y . This can be considered as a prior vector for learning to select
the correct expert during the training1. For example, in Table 1 the first response is of type SQL
in the Hotel domain, thus the skill vector V will have vSQL = 1 and vHotel = 1, while all the other
skill/domains are set to zero 2. More importantly, we may set the vector V to have multiple ones to
enforce the model to compose skills to achieve a semantic compositionality of different experts.

3.1 ENCODER-DECODER

To map the input sequence to the output sequence, we use a standard Transformer (Vaswani et al.,
2017) and denote the encoder and decoder as TRSenc and TRSdec, respectively. The input of a
Transformer is the embedded representation of the input words; thus, we define a word embedding
matrix E ∈ Rd×|V | where d is the embedding size and |V | is the cardinality of the vocabulary. The
input X , with its positional embedding (Appendix A2 for more information), are encoded as the
following equation:

H = TRSenc(E(X)), (1)
where H ∈ Rdmodel×n, and E. Then the decoder receives the target sequence shifted by one Y:k−1 =
{<SOS>, y1, . . . , yk} as the input. Using teacher-forcing (Williams & Zipser, 1989), the model is
trained to produce the correct sequence Y . The output of the decoder is produced as follow:

O = TRSdec(E(Y:k−1), H), (2)

where O ∈ Rdmodel×k. Finally, a distribution over the vocabulary is generated for each token by an
affine transformation W ∈ Rdmodel×|V | followed by a Softmax function.

P (Y |X) = Softmax(OTW ), (3)

In addition, P (Y |X) is mixed with the encoder-decoder attention distribution to enable to copy
token from the input sequence as in (See et al., 2017). The model is then trained to minimize a
standard cross entropy loss function and at inference time to generate one token at the time in an
auto-regressive manner (Graves, 2013). Hence, the training loss is defined as:

LP (Y |X) = −
k∑
t=1

log (P (Y |X)t (yt)) . (4)

3.2 ATTENTION OVER PARAMETERS

The main idea is to produce a single set of parameters for decoder TRSdec by the weighted sum of
r independently parameterized decoders. This process is similar to attention (Luong et al., 2015)
where the memories are the parameters and the query is the encoded representation. Let us define
Θ = [θ1, . . . , θr] as the list of parameters for r decoders, since a TRSdec is represented by its
parameters θ. Since each θ can be sized in the order of millions, we assign the corresponding key
vectors to each θ, similar to key-value memory networks (Miller et al., 2016). Thus, we use a key
matrix K ∈ Rdmodel×r and a Recurrent Neural Networks (RNN), in this instance a GRU (Cho et al.,
2014), to produce the query vector by processing the encoder output H . The attention weights for
each decoders’ parameters is computed as follow:

q = RNN(H) (5)
α = Softmax(qK) (6)

where q ∈ Rdmodel and α ∈ Rr is the attention vectors where each αi is the score corresponding to
θi. Hence, the new set of parameters is computed as follow:

θ∗ =

r∑
i

αiθi (7)

The combined set of parameters θ∗ are then used to initialize a new TRSdec, and Equation 2
will be applied to the input based on this. Equation 6 is similar to the gating function proposed

1the vector V will be absent during the testing
2With the assumption that at each index in V is assigned a semantic skill (e.g. SQL position i)
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in (Shazeer et al., 2017; Jacobs et al., 1991), but the resulting scoring vector α is applied directly to the
parameter instead of the output representation of each decoder. This indeed makes the computation
algorithmically faster since the forward computation is done only once and summing r elements of
size |θ| is linear compared to forwarding r multiplications with the input. Interested readers may
refer to Appendix A1 for the proof. Importantly, if we apply α to each of the output representation
Oi generated by the TRSidec, we end up having a Transformer-based implementation of MoE 3. We
call this model as Attention over Representation (AoR).

Moreover, an additional loss term is used to supervise the attention vector α by using the prior
knowledge vector V . Since multiple decoder parameters can be selected at the same time, we use a
binary cross-entropy to train each αi. Thus a second loss is defined as:

LV = −
r∑
i=1

[vi × logσ(qK)i + (1− vi)× log(1− σ(qK)i)] (8)

The final loss is the summation of LP (Y |X) and LV .

Finally, in AoP, but in general in the MoE framework, stacking multiple layers (e.g., Transformer)
leads to models with a large number of parameters, since multiple experts are repeated across layers.
An elegant workaround is the Universal Transformer (Dehghani et al., 2019), which loops over an
unique layer and, as shown by (Dehghani et al., 2019), holds similar or better performance than a
multi-layer Transformer. In our experiment, we report a version of AoP that uses this architecture,
which for instance does not add any further parameter to the model.

4 EXPERIMENTS AND RESULTS

4.1 DATASET

To evaluate the performance of our model for different conversational skills, we propose to combine
three publicly available datasets: MultiWOZ (Budzianowski et al., 2018), Stanford Multi-domain
Dialogue (Eric et al., 2017) and Persona-Chat (Zhang et al., 2018).

Figure 2: Datasets statistics
SMD MWOZ Persona

#Dialogues 2425 8,438 12,875
#turns 12,732 115,424 192,690

Avg. turns 5.25 13.68 14.97
Avg. tokens 8.02 13.18 11.96

Vocab 2,842 24,071 20,343

MultiWOZ (MWOZ) is a human-to-human
multi-domain goal-oriented dataset annotated
with dialogue acts and states. In this dataset,
there are seven domains (i.e., Taxi, Police,
Restaurant, Hospital, Hotel, Attraction, Train)
and two APIs interfaces: SQL and BOOK. The
former is used to retrieve information about a
certain domain and the latter is used to book
restaurants, hotels, trains, and taxis. We refine this dataset to include SQL/BOOK queries and their
outputs using the same annotations schema as (Bordes & Weston, 2017). Hence, each response can
either be plain text conversation with the user or SQL/BOOK queries, and the memory is dynamically
populated with the results from the queries as the generated response is based on such information.
This transformation allows us to train end-to-end models that learns how and when to produce SQL
queries, to retrieve knowledge from a dynamic memory, and to produce plain text response. A
detailed explanation is reported in Appendix A4, together with some samples.

Stanford Multi-domain Dialogue (SMD) is another human-to-human multi-domain goal-oriented
dataset that is already designed for end-to-end training. There are three domains in this dataset (i.e.,
Point-of-Interest, Weather, Calendar). The difference between this dataset and MWOZ is that each
dialogue is associated with a set of records relevant to the dialogues. The memory is fixed in this case
so the model does not need to issue any API calls. However, retrieving the correct entities from the
memory is more challenging as the model has to compare different alternatives among records.

Persona-Chat is a multi-turn conversational dataset, in which two speakers are paired and different
persona descriptions (4-5 sentences) are randomly assigned to each of them. For example, “I am

3but with the additional prior over the expert
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Table 2: Results for the goal-oriented responses in both MWOZ and SMD. Last raw, and italicized,
are the Oracle results, and bold-faced are best in each setting (w and w/o Universal). Results are
averaged among three run (full table in Appendix A6).

Model F1 BLEU SQLAcc SQLBLEU BOOKAcc BOOKBLEU

Seq2Seq 38.37 9.42 49.97 81.75 39.05 79.00
TRS 36.91 9.92 61.96 89.08 46.51 78.41

MoE 38.64 9.47 53.60 85.38 37.23 78.55
AoR 40.36 10.66 69.39 90.64 52.15 81.15
AoP 42.26 11.14 71.1 90.90 56.31 84.08

TRS + U 39.39 9.29 61.80 89.70 50.16 79.05
AoP + U 44.04 11.26 74.83 91.90 56.37 84.15

AoP w/o LV 38.50 10.50 61.47 88.28 52.61 80.34
AoP+O 46.36 11.99 73.41 93.81 56.18 86.42

an old man” and “I like to play football” are one of the possible persona descriptions provided
to the system. Training models using this dataset results in a more persona consistent and fluent
conversation compared to other existing datasets (Zhang et al., 2018). Currently, this dataset has
become one of the standard benchmarks for chit-chat systems, thus, we include it in our evaluation.

For all three datasets, we use the training/validation/test split provided by the authors and we keep
all the real entities in input instead of using their delexicalized version as in (Budzianowski et al.,
2018; Eric et al., 2017). This makes the task more challenging, but at the same time more interesting
since we force the model to produce real entities instead of generic and frequent placeholders.
Table 2 summarizes the dataset statistics in terms of number of dialogues, turns, and unique tokens.
Finally, we merge the three datasets obtaining 154,768/19,713/19,528 for training, validation and,
test respectively, and a vocabulary size of 37,069 unique tokens.

4.2 EVALUATION METRICS

Goal-Oriented For both MWOZ and SMD, we follow the evaluation done by existing works (Eric
& Manning, 2017; Zhao et al., 2017; Madotto et al., 2018; Wu et al., 2017). We use BLEU4

score (Papineni et al., 2002) to measure the response fluency and Entity F1-Score (Wen et al.,
2017; Zhao et al., 2017) to evaluates the ability of the model to generate relevant entities from the
dynamic memory. Since MWOZ also includes SQL and BOOK queries, we compute the exact match
accuracy (i.e., ACCSQL and ACCBOOK) and BLEU score (i.e., BLEUSQL and BLEUBOOK).
Furthermore, we also report the F1-score for each domain in both MWOZ and SMD.

Chit-Chat We compare perplexity, BLEU score, F1-score (Dinan et al., 2019), and Consistency
score of the generate sentences with the human-generated prediction. The Consistency score is
computed using a Natural Language Inference (NLI) model trained on dialogue NLI (Sean et al.,
2018), a recently proposed corpus based on Persona dataset. We fine-tune a pre-trained BERT
model (Devlin et al., 2018) using the dialogue DNLI corpus and achieve a test set accuracy of 88.43%,
which is similar to the best-reported model in (Sean et al., 2018). The consistency score is defined as
follow:

NLI(u, pj) =

 1 if u entails pj
0 if u is independent of pj
−1 if u contradicts pj

C(u) =

m∑
j

NLI(u, pj) (9)

where u is a generated utterance and pj is one sentence in the persona description. In Sean et al.
(2018), the authors showed that by re-ranking the beam search hypothesis using the DNLI score
(i.e., C score), they achieved a substantial improvement in dialogue consistency. Intuitively, having a
higher consistency C score means having a more persona consistent dialogue response.

4Using the multi-bleu.perl script
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4.3 BASELINES

In our experiments, we compare Sequence-to-Sequence (Seq2Seq) (See et al., 2017), Transformer
(TRS) (Vaswani et al., 2017), Mixture of Expert (MoE) (Shazeer et al., 2017) and Attention over
Representation (AoR) with our proposed Attention over Parameters (AoP). In all the models, we used
the same copy-mechanism as in (See et al., 2017). In AoR instead of mixing the parameters as in
Equation 7, we mix the output representation of each transformer decoder (i.e. Equation 2). For
all AoP, AoR, and MoE, r = 13 is the number of decoders (experts): 2 skills of SQL and BOOK,
10 different domains for MWOZ+SMD, and 1 for Persona-Chat. Furthermore, we include also
the following experiments: AoP that uses the gold attention vector V , which we refer as AoP w/
Oracle (or AoP + O); AoP trained by removing the LV from the optimization (AoP w/o LV ); and as
aforementioned, the Universal Transformer for both AoP (AoP + U) and the standard Transformer
(TRS + U) (i.e., 6 hops). All detailed model description and the full set of hyper-parameters used in
the experiments are reported in Appendix A5.

4.4 RESULTS

Table 2 and Table 3 show the respectively evaluation results in MWOZ+SMD and Persona-Chat
datasets. From Table 2, we can identify four patterns. 1) AoP and AoR perform consistently better
then other baselines which shows the effectiveness of combining parameters by using the correct
prior V ; 2) AoP performs consistently, but marginally, better than AoR, with the advantage of an
algorithmic faster inference; 3) Using Oracle (AoP+O) gives the highest performance in all the
measures, which shows the performance upper-bound for AoP. Hence, the performance gap when not
using oracle attention is most likely due to the error in attention α (i.e., 2% error rate). Moreover,
Table 2 shows that by removing LV (AoP w/o LV ) the model performance decreases, which confirms
that good inductive bias is important for learning how to select and combine different parameters
(experts). Additionally, in Appendix A6, we report the per-domain F1-Score for SQL, BOOK and
sentences, and Table 3 and Table 2 with the standard deviation among the three runs.

Figure 3: Results for the Persona-Chat dataset.
Model Ppl. F1 C BLEU
Seq2Seq 39.42 6.33 0.11 2.79

TRS 43.12 7.00 0.07 2.56
MoE 38.63 7.33 0.19 2.92
AoR 40.18 6.66 0.12 2.69
AoP 39.14 7.00 0.21 3.06

TRS + U 43.04 7.33 0.15 2.66
AoP + U 37.40 7.00 0.29 3.22

AoP w/o LV 42.81 6.66 0.12 2.85
AoP + O 40.16 7.33 0.21 2.91

Furthermore, from Table 3, we can notice
that MoE has the lowest perplexity and F1-
score, but AoP has the highest Consistency and
BLUE score. Notice that the perplexity reported
in (Zhang et al., 2018) is lower since the vocab-
ulary used in their experiments is smaller. In
general, the difference in performance among
different models is marginal except for the Con-
sistency score; thus, we can conclude that all
the models can learn this skill reasonably well.
Consistently with the previous results, when LV
is removed from the optimization, the models’
performance decreases.

Finally, in both Table 2 and Table 3, we report the results obtained by using the Universal Transformer,
for both AoP and the Transformer. By adding the layer recursion, both models are able to consistently
improve all the evaluated measures, in both Persona-Chat and the Task-Oriented tasks. Especially
AoP, which achieves better performance than Oracle (i.e. single layer) in the SQL accuracy, and a
consistently better performance in the Persona-Chat evaluation.

5 SKILL COMPOSITION

To demonstrate the effectiveness of our model in learning independent skills and composing them
together, we manually trigger skills by modifying α and generate 14 different responses for the same
input dialogue context. This experiment allows us to verify whether the model accurately captures the
meaning of each skill and whether it can properly learn to compose the selected parameters (skills).
Table 3 first shows the dialogue history along with the response of AoP on the top, and then different
responses generated by modifying α (i.e., black cells correspond to 1 in the vector, while the whites
are 0). By analyzing Table 3 5 we can notice that:
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Table 3: Selecting different skills thought the attention vector α results in a skill-consistent response.
AoP response activates SQL and Train.

Sys: There are lots of trains to choose from! Where are you departing from?
Usr: I am departing from london heading to cambridge.
Sys: What time will you be travelling?
Usr: I need to arrive by 1530.
AoP: SELECT * FROM train WHERE destination=“cambridge” AND

day=“monday” AND arriveBy < “1530” and departure=“london”

SQ
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AoP responses using different parameter combination
I would be happy to book that for you.
I have found you a few to choose from. what time would ..
I have many options for you. is there a certain time you ...
Is there a certain area you would like?
what time would you like to leave?
okay I have two trains what time would you like to cambridge?
Where do you do for work ?
BOOK FROM taxi WHERE leaveAt>“1530” AND destination=..
BOOK FROM restaurant WHERE time=“1530” AND ...
BOOK FROM hotel WHERE people=“1” AND day=“monday”
BOOK FROM train WHERE people=“1” AND id_booking=’
SELECT * FROM restaurant WHERE food=“1530” ...
SELECT * FROM hotel WHERE type=“1530”
SELECT * FROM attraction WHERE name=“departure”

• The model learns the correct semantics of each skill. For instance, the AoP response is of type SQL
and Train, and by deactivating the SQL skill and activating other domain-skills, including Train, we
can see that the responses are grammatical and they are coherent with the selected skill semantics.
For instance, by just selecting Train, the generated answer becomes “what time would you like
to leave?” which is coherent with the dialogue context since such information has not been yet
provided. Interestingly, when Persona skill is selected, the generated response is conversational
and also coherent with the dialogue, even though it is less fluent.

• The model effectively learns how to compose multiple skills. For instance, when SQL or BOOK
are triggered the response produces the correct SQL-syntax (e.g. “SELECT * FROM ..” etc.). By
also adding the corresponding domain-skill, the model generates the correct query format and
attributes relative to the domain type (e.g. in SQL, Restaurant, the model queries with the relevant
attribute food for restaurants).

6 CONCLUSION

In this paper, we propose a novel way to train a single end-to-end dialogue model with multiple
composable and interpretable skills. Unlike previous work, that mostly focused on the representation-
level mixing (Shazeer et al., 2017), our proposed approach, Attention over Parameters, learns how
to softly combine independent sets of specialized parameters (i.e., making SQL-Query, conversing
with consistent persona, etc.) into a single set of parameters. By doing so, we not only achieve
compositionality and interpretability but also gain algorithmically faster inference speed. To train
and evaluate our model, we organize a multi-domain task-oriented datasets into end-to-end trainable
formats and combine it with a conversational dataset (i.e. Persona-Chat). Our model learns to
consider each task and domain as a separate skill that can be composed with each other, or used
independently, and we verify the effectiveness of the interpretability and compositionality with
competitive experimental results and thorough analysis.
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A APPENDIX

A.1 COMPUTATIONAL COST AOP

Corollary A.0.1. The computation cost of Attention over Parameters (AoP) is always lower than
Mixture Of Experts (MoE) as long as the processed sequence is longer than 1.

Proof. Let fθ : Rd → Rn a generic function parametrized by θ. Without loss of generality, we define
θ as a affine transformation W ∈ Rd×n. Let X ∈ Rt×d a generic input sequence of length t and d
dimensional size. Let the set F = [fθ1 , · · · , fθr ] be the set of r experts. Hence, the operation done
by MoE are:

MoE(X) = fθ1(X) + · · ·+ fθr (X) = XW1 + · · ·+XWr (10)
Thus the computational cost in term of operation isO(rtdn+rtn) since the cost of fθi(X) isO(tdn)
and it is repeated r times, and the cost of summing the representation is O(rtn). On the other hand,
the operation done by AoP are:

θ∗ = θ1 + · · ·+ θr = W1 + · · ·+Wr (11)
AoP(X) = fθ∗(X) = XW ∗ (12)

in this case the computational cost in term of operation is O((r + t)dn) since the cost of summing
the parameters is O(rdn) and the cost of fθ∗ is O(tdn). Hence, it is easy to verify that if t > 1 then:

rtdn+ rtn ≥ (rt)dn ≥ (r + t)dn (13)

Furthermore, the assumption of using a simple affine transformation W is actually an optimal case.
Indeed, assuming that the cost of parameters sum is equal to the number of operation is optimistic, for
instance already by using attention the number of operations increases but the number of parameters
remains constant.

A.2 EMBEDDED REPRESENTATION

+

+

Figure 4: Positional Embedding of the dialogue
history and the memory content.

Since the model input may include structured
data (e.g. DB records) we further define an-
other embedding matrix for encoding the types
and the segments as P ∈ Rd×|S| where S is
the set of positional tokens and |S| its cardinal-
ity. P is used to inform the model of the to-
ken types such as speaker information (e.g. Sys
and Usr), the data-type for the memory content
(e.g. Miles, Traffic etc.), and segment types like
dialogue turn information and database record
index (Wolf et al., 2019). Figure 4 shows an
example of the embedded representation of the
input. Hence, we denote XT and XR as the type and segment tokens for each token in input X ,
respectively.

A.3 ATTENTION VISUALIZATION

Figure 5 shows the attention vector α over parameters for different generated sentences. In this figure,
and by analyzing more examples 5, we can identify two patterns:

• AoP learns to focus on the correct skills (i.e., SQL, BOOK) when API-calls are needed. From
the first example in Figure 5, we can see that the activations in α are consistent with those in the
correct attention vector P . There are also false positives, in which AoP puts too high weights
on BOOK when the correct response is plain text that should request more information from the
user (i.e., i can help you with that. when would you like to leave the hotel?). However, we can
notice that this example is, in fact, "almost correct" as triggering a booking API call may also be
considered a valid response. Meanwhile, the third example also fails to attend to the correct skill,

5Available in supplementary material and later online.
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AoP: You are welcome. Is there anything else I can help you with?

Ref.: Thank you and enjoy your stay!

Usr: Thank you for your help!

AoP: BOOK FROM taxi WHERE destination=’finches bed and breakfast’ AND departure=’ask’

Ref.: I can help you with that . when would you like to leave the hotel?

Usr: Thanks. I will also need a taxi from the hotel to the restaurant. Will you handle this?

AoP: SELECT * FROM hotel WHERE parking=’yes’ AND pricerange=’expensive’ AND stars=’3’

Ref.: SELECT * FROM hotel WHERE parking=’yes’ AND pricerange=’expensive’ AND stars=’3’

Usr: I would like to stay in an expensive 3 star place with free parking. Is there anything like that?

Figure 5: Attention over Parameters visualization, vector α for different reference (Ref.) and AoP
generated answers. Top rows (Usr) are the last utterances from each dialogue contexts.

but, in fact, generates a very fluent and relevant response. This is most likely because the answer is
simple and generic.

• The attention often focuses on multiple skills not directly relevant to the task. We observe this
pattern especially when there are other skill-related entities mentioned in the context or the response.
For example, in the second dialog example in Figure 5, we can notice that AoP not only accurately
focuses on taxi domain, but also has non-negligible activations for restaurant and hotel. This is
because the words “hotel" and “restaurant" are both mentioned in the dialogue context and the
model has to produce two entities of the same type (i.e. finches bed and breakfast and ask).

A.4 DATA PRE-PROCESSING

As mentioned in the main article, we convert MultiWOZ into an end-to-end trainable dataset. This
requires to add sql-syntax queries when the system includes particular entities. To do so we leverage
two annotations such as the state-tracker and the speech acts. The first is used to generate the a
well-formed query, including key and attribute, the second instead to decide when to include the
query. More details on the dialogue state-tracker slots and slots value, and the different speech acts
can be found in (Budzianowski et al., 2018).

A query is create by the slots, and its values, that has been updated in the latest turn. The SQL query
uses the following syntax:

SELECT ∗ FROM domain WHERE [slot_type = slot_value]∗

Similarly for the booking api BOOK the syntax is the following:

BOOK FROM domain WHERE [slot_type = slot_value]∗

In both cases the slot values are kept as real entities.

More challenging is to decide when to issue such apis. Speech acts are used to decide by using the
"INFORM-DOMAIN" and "RECOMMEND-DOMAIN" tag. Thus any response that include those
speech tag will trigger an api if and only if:

• there has been a change in the state-tracker from the previous turn
• the produced query has never been issued before

By a manual checking, this strategy results to be effective. However, as reported by (Budzianowski
et al., 2018) the speech act annotation includes some noise, which is reflected also into our dataset.

The results from the SQL query can be of more that 1K records with multiple attributes. Following
(Budzianowski et al., 2018) we use the following strategy:

• If no speech act INFORM or RECOMMEND and the number of records are more than 5, we use a
special token in the memory < TM >.
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• If no speech act INFORM or RECOMMEND and the number of records are less or equal than 5,
we put all the records in memory.
• If any speech act INFORM or RECOMMEND, we filter the records to include based on the act

value. Notice that this is a fair strategy, since all the resulting record are correct possible answers
and the annotators pick-up on of the record randomly (Budzianowski et al., 2018).

Notice that the answer of a booking call instead, is only one record containing the booking information
(e.g. reference number, taxi plate etc.) or "Not Available" token in case the booking cannot made.

A.5 HYPER-PARAMETERS AND TRAINING

We used a standard Transformer architecture (Vaswani et al., 2017) with pre-trained Glove embed-
ding (Pennington et al., 2014). For the both Seq2Seq and MoE we use Adam (Kingma & Ba, 2014)
optimizer with a learning rate of 1× 10−3, where instead for the Transformer we used a warm-up
learning rate strategy as in (Vaswani et al., 2017). In both AoP and AoR we use an additional
transformer layer on top the output of the model. Figure 6,7,8 shows the high level design MoE, AoR
and AoP respectively. In all the model we used a batch size of 16, and we early stopped the model
using the Validation set. All the experiments has been conducted using a single Nvidia 1080ti.

We used a small grid-search for tuning each model. The selected hyper-parameters are reported in
Table 4, and we run each experiment 3 times and report the mean and standard deviation of each
result.

Model d dmodel Layers Head Depth Filter GloVe Experts
Seq2Seq 100 100 1 - - - Yes -

TRS 300 300 1 2 40 50 Yes -
MoE 100 100 2 - - - Yes 13

AoP,AoR 300 300 1 2 40 50 Yes 13
TRS/AoP+U 300 300 6 2 40 50 Yes 13

Table 4: Hyper-Parameters used for the evaluations.
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A.6 MWOZ AND SMD WITH STD.

Model F1 BLEU SQLAcc SQLBLEU BOOKAcc BOOKBLEU

Seq2Seq 38.37 ± 1.69 9.42 ± 0.38 49.97 ± 3.49 81.75 ± 2.54 39.05 ± 9.52 79.00 ± 3.63
TRS 36.91 ± 1.24 9.92 ± 0.43 61.96 ± 3.95 89.08 ± 1.23 46.51 ± 5.46 78.41 ± 2.03

MoE 38.64 ± 1.11 9.47 ± 0.59 53.60 ± 4.62 85.38 ± 2.68 37.23 ± 3.89 78.55 ± 2.62
AoR 40.36 ± 1.39 10.66 ± 0.34 69.39 ± 1.05 90.64 ± 0.83 52.15 ± 2.22 81.15 ± 0.32
AoP 42.26 ± 2.39 11.14 ± 0.39 71.1 ± 0.47 90.90 ± 0.81 56.31 ± 0.46 84.08 ± 0.99

TRS + U 39.39 ± 1.23 9.29 ± 0.71 61.80± 4.82 89.70 ± 1.40 50.16±1.18 79.05± 1.42
AoP + U 44.04 ± 0.92 11.26 ± 0.07 74.83 ± 0.79 91.90 ± 1.03 56.37 ± 0.92 84.15 ± 0.32

AoP w/o LV 38.50 ± 1.15 10.50 ± 0.55 61.47 ± 0.15 88.28 ± 0.50 52.61 ± 0.56 80.34 ± 0.21
AoP+O 46.36 ± 0.92 11.99 ± 0.03 73.41 ± 0.59 93.81 ± 0.16 56.18± 1.55 86.42 ± 0.92

A.7 PERSONA RESULT WITH STD

Model Ppl. F1 C BLEU
Seq2Seq 39.42 ± 1.54 6.33 ± 0.58 0.11 ± 0.06 2.80 ± 0.09

TRS 43.12 ± 1.46 7.00 ± 0.00 0.07 ± 0.16 2.56 ± 0.07
MoE 38.63 ± 0.20 7.33 ± 0.05 0.19 ± 0.16 2.92 ± 0.48
AoR 40.18 ± 0.74 6.66 ± 0.05 0.12 ± 0.14 2.69 ± 0.34
AoP 39.14 ± 0.48 7.00 ± 0.00 0.21 ± 0.05 3.06 ± 0.08

TRS + U 43.04± 1.78 7.33± 0.57 0.15± 0.02 2.66±0.43
AoP + U 37.40±0.08 7.00±0.00 0.29± 0.07 3.22± 0.04

AoP w/o LV 42.81±0.01 6.66±0.57 0.12± 0.04 2.85± 0.21
AoP + O 40.16 ± 0.56 7.33 ± 0.58 0.21 ± 0.14 2.98 ± 0.05

A.8 DOMAIN F1-SCORE

Sentence Seq2Seq MoE TRS AoR AoP Aop+O
Taxi 71.77 75.97 73.92 76.07 76.58 78.30

Police 49.73 49.95 50.24 51.95 56.61 52.05
Restaurant 50.20 49.59 48.34 50.58 50.47 50.90

Hotel 46.82 45.37 43.38 45.51 46.40 44.47
Attraction 37.87 35.21 33.10 36.97 38.79 37.51

Train 46.02 41.72 41.28 44.33 46.32 45.93
Weather 40.38 27.06 18.97 44.77 51.94 55.23

Schedule 35.98 43.94 38.95 32.90 54.18 52.99
Navigate 18.57 21.34 6.96 12.69 12.18 16.56

BOOK
Taxi 23.16 32.28 30.70 41.93 46.66 43.15

Restaurant 45.02 28.26 49.72 55.70 58.51 57.70
Hotel 49.22 31.48 41.61 51.46 56.62 57.41
Train 55.86 56.38 57.51 57.51 59.15 60.80

SQL
Police 81.33 0.00 90.66 76.00 93.33 100.0

Restaurant 71.58 68.00 75.90 81.27 80.43 84.15
Hospital 62.22 15.55 58.89 71.11 76.67 83.33

Hotel 45.25 42.09 48.61 56.69 59.75 63.75
Attraction 65.48 67.69 65.91 70.61 76.22 74.93

Train 30.02 41.01 55.67 66.61 67.34 69.50

Table 5: Per Domain F1 Score.
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LSTM

LSTM
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Figure 6: Mixture of Experts (MoE) (Shazeer et al., 2017) model consist of r feed-forward neural
network (experts) which are embedded between two LSTM layers, a trainable gating network to
select experts.
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Figure 7: Attention over Representation (AoR) consist of a transformer encoder which encode the
source input and compute the attention over the skills. Then r transformer decoder layers computes
r specialized representation and the output response is generated based on the weighted sum the
representation. In the figure, we omitted the output layer.

Figure 8: Attention over Parameters (AoP) consist of a transformer encoder which encode the source
input and compute the attention over the skills. Then, r specialized transformer decoder layers
and a dummy transformer decoder layer parameterized by the weighted sum of the r specialized
transformer decoder layers parameters. In the figure, we omitted the output layer.
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