Generative Models for Simulating Mobility

Trajectories
Vaibhav Kulkarni Natasa Tagasovska
Department of Information Systems Department of Information Systems
UNIL-HEC Lausanne UNIL-HEC Lausanne
vaibhav.kulkarni@unil.ch natasa.tagasovskaQunil.ch
Thibault Vatter Benoit Garbinato
Department of Statistics Department of Information Systems
Columbia University UNIL-HEC Lausanne
tv22330Q@columbia.edu benoit.garbinato@unil.ch
Abstract

Mobility datasets are fundamental for evaluating algorithms pertaining to geo-
graphic information systems and facilitating experimental reproducibility. But
privacy implications restrict sharing such datasets, as even aggregated location-data
is vulnerable to membership inference attacks. Current synthetic mobility dataset
generators attempt to superficially match a priori modeled mobility characteristics
which do not accurately reflect the real-world characteristics. Modeling human
mobility to generate synthetic yet semantically and statistically realistic trajectories
is therefore crucial for publishing trajectory datasets having satisfactory utility level
while preserving user privacy. Specifically, long-range dependencies inherent to
human mobility are challenging to capture with both discriminative and generative
models. In this paper, we benchmark the performance of recurrent neural architec-
tures (RNNs), generative adversarial networks (GANs) and nonparametric copulas
to generate synthetic mobility traces. We evaluate the generated trajectories with
respect to their geographic and semantic similarity, circadian rhythms, long-range
dependencies, training and generation time. We also include two sample tests
to assess statistical similarity between the observed and simulated distributions,
and we analyze the privacy tradeoffs with respect to membership inference and
location-sequence attacks.

1 Introduction

The pervasiveness of mobile devices equipped with internet connectivity and global-positioning
functionality has resulted in an increasingly large amount of location-data on individuals. This data is
beneficial to address and validate spatiotemporal data-based problems; predictive and kNN queries,
object tracking, mobility modeling and location privacy among others. Due to the sensitive nature of
datasets containing mobility traces, sharing them with untrusted entities present privacy implications.
Trivial heuristics can be applied on such datasets to derive personally identifiable information of
individuals, even at aggregate levels [33].

Publicly accessible mobility datasets [39, 124} [14] are usually not adequate for large scale experimental
evaluations, compromising scalability tests. This issue incentivizes synthetic mobility trajectory
generators that simulate the behavior of moving objects required to attain comprehensive perfor-
mance valuations. In this context, one typically considers rigid and unnatural mobility models, not
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Table 1: Categorization of current approaches to generate synthetic trajectories and parameters.

Technique Model name Parameters considered
GSTD [34] statistical distributions (mean, skew, standard deviation)

Free movement G-TERD [26] speed, rotation-angle, direction
Oporto [8] start time, end time, velocity, orientation
Brinkoff [4] speed, street capacity, nearby object location, shortest path
SUMO [2] road length, headway time, lane change times

Road networks BerlinMOD [5] road network, trip start and end, Brinkoff model
ST-ACTS [9] Geo-dependency model
Hermoupolis [29] mobility pattern, road network, points of interest

. . MWGen [36] trip plan, road network, floor plan, routing graph

Multi environments MNTG [23] mgvgment model, moving objﬁ)scts, simulagti%)n It)ime

Markov models [3] semantic locations, geographic

Sequential models Semi-Markov models [1] stay points, transition paths

guaranteeing the existence or even cardinality of patterns within the synthetic population. Alternative
approaches rely on parametric sequential models [16] and Markov processes [3]] to learn and generate
trajectories. Such techniques also ignore the presence of long-range dependencies[20] inherent to
human mobility which features non-Markovian character 38} [17].

It is therefore imperative to generate context-dependent synthetic traces resembling the human-
mobility behavior at satisfactory utility levels while preserving user privacy. However, one of the
major challenges is the absence of quantitative methods for evaluating the realistic nature of synthetic
traces and the associated utility-privacy tradeoff.

To this end, we present several nonparametric approaches to generate large-scale synthetic trajectories
by training the models on a real-world dataset followed by hallucinating trajectories using the trained
model. We perform an extensive evaluation of the generated trajectories by assessing their geographic
and semantic similarity compared to the actual dataset. We use two sample metrics to obtain the
statistical similarity between datasets. We then quantify the presence of long-range dependencies
by computing the mutual-information decay and conduct privacy-leakage tests on the generated
trajectories. We conclude with a discussion on appropriate strategies and applicable evaluation
metrics based on our experimental results and tackle open questions and challenges.

2 Related Work

provides a summary of existing trajectory generators, where they formulate the synthetic
trajectory simulation as an optimization problem, solved by genetic algorithms under the constraint
of a priori determined parameters. A fundamental issue is the selection and definition of the
parameter space that controls the evolution of the moving objects. The stringent and classified
network connections thus influence the realistic nature of the generated trajectories. In several cases,
there is no correlation between the future direction of movement and the past locations. Repeated
visits to a given location within a short span of time are also observed due to the bounding parameters.
Therefore, the symbolic nature of these frameworks result in an implicit location-dependent context,
which compromises the realistic nature of the generated activity patterns. To address these drawbacks
associated with parametric modeling, Ouyang et al. [28]] propose a GAN-based approach to generate
trajectories, where the discriminator is based on a convolutional neural network (CNN) [19]. Similarly,
we explore other deep learning architectures based on RNNs known to model sequential data better
than CNNs [31]. We also investigate generative models based on the nonparametric copulas of [7].

3 Synthesizing Trajectories using Generative Modeling

First we explore the benefits of applying deep learning architectures to synthesize mobility trajecto-
ries. RNNs use their hidden memory representation to process input sequences and we select four
architectures: (1) Char-RNN (SRNN) [1L1]], (2) RNN-LSTM [12], (3) recurrent highway networks
(RHN) [40]], and (4) pointer sentinel mixture model (PSMM) [22]]. For GANSs, where two neural
networks compete in a zero-sum game framework, we select two architectures: (1) SGAN [37],
and (2) RGAN [6]]. These architectures differ in their capacity to manipulate their internal memory
representation and propagate gradients along the network. In addition to neural-network based
solutions, we also evaluate copulas; a seldom explored generative model in the machine learning
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Figure 1: TopN visited locations for real and synthetic trajectories generated by each method. We
select N = 50 out of a total of 286 locations. The red curve shows the distribution for the true dataset.

community. Given a bivariate random vector (X7, X2), Sklar’s theorem [33] states that the joint
densityﬂ is f(z1,22) = f1(z1) fa(ze)e(F1(21), Fo(x2)), where f and f; are the marginal densities,
F;; the marginal distributions, and c the copula density. In other words, the bivariate density can be
uniquely described by the product between its marginal densities and a copula density representing its
dependence structure. A useful consequence of this representation is that, by taking the logarithm on
both sides, estimation of the joint density can be performed in two steps: the marginal distributions
first, and the copula afterwards. In a nutshell, copulas allow to flexibly specify the marginal and joint
behavior of random variables.

An important aspect in the generative context is that, because U = F(X) ~ U(0,1) for any
continuous random variable with distribution F', the copula is a distribution with uniform margins.
Hence, from a copula sample (U;, Us), one obtains a sample on the original scale using the inverse
cumulative distributions via (X1, X») = (F; '(Uy), F; * (Us)). For further details on copulas, we
refer the reader to [[13]]. In this paper, we combine the kernel-based nonparametric copulas of [7] with
the empirical distribution function of the margins obtain highly flexible models.

Data representation Given a dataset of n mobility trajectories, where a trajectory T, of an individual
u is a temporally ordered sequence of tuples, such that, T,, = ((I1,t1), (I2,t2)...(ln, ts)), where
l; = (lat;,lon;),0 < i < n, the latitude-longitude coordinate pair and ¢, the timestamp such that
ti+1 > t;. We first transform the location data onto a uniform grid for dimensionality reduction
using a technique that preserves spatial localityﬂ thus translating T, into a 2-D trace S(t) =
((e1,t1), (c2,t2)...(Cn,tn)), where ¢; is the geo-hash of the projected cell ID and the timestamp ¢;.

4 Experiments, Results and Discussion

Experimental setup A complete trajectory sequence can be generated by iteratively feeding the
current output trajectory sequence as input for the next step to the trained model. RNNs are trained
on the geo-hashes and timestamps of all the individuals present in the dataset in a deterministic
framework. GANSs are first trained to model and then successively reproduce the traces in the
same representation, which is mapped back to the (lat;,lon;) coordinates. We use the standard
implementations of the predictive algorithms and hyper-parameters as described in their respective
papers. To use copulas as generative models, we rely on the rvinecopulib package [25], whose vine
routine implements the automatic kernel-based fitting of the dependence structure.

Dataset Experiments are performed using the Nokia mobile dataset [18]] that consists of mobility
trajectories of individuals collected in Switzerland. We use a total of 70M data points to train the
considered models.

Evaluation We perform the evaluation of the generated trajectories using this dataset from four
distinct dimensions: (1) geographic and semantic similarity, (2) statistical similarity (3) long-range
dependencies and (4) privacy tests. In order to assess the geographic and semantic similarity, we
compare the probability distribution of visiting topN locations (visit-time and dwell-time) in the
generated trajectories for each technique compared to the true dataset (see [Figure T). Char-RNN,
RGAN and copulas have the closest fit to the true distribution indicating that the topN locations are
very well preserved in the respective synthetic datasets.

To evaluate the statistical similarity, we use Mean Maximum Discrepancy (MMD) [10] to test whether
one can reject the null hypothesis that a synthetic sample has the same distribution as the data. MMD
works by replacing the probability densities with embeddings that facilitate the computation of
distances between distributions. Note that defining distance metrics in the context of time series

't is usually stated for the distribution rather than the density and for random vectors of arbitrary dimension.
2Google S2: https://s2geometry.io/
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Figure 2: (a) long-range dependency test (symbols denote individual location coordinates), (b) privacy
test with location hiding as privacy preserving mechanism (red line indicates a random guess) (c¢)
sample trajectories generated by two best approaches (copulas (black) and SGANs (red)) follow
the road network for the most part and also synthesize stays at some locations indicating a point of
interest. Trajectory from the actual dataset in the same area is depicted in green.

data such as mobility trajectories is challenging due to the alignment concerns [6]. We thus consider
the time axis for alignment as done by Esteban et al. [6]. The results along with the training and
generation time for each approach is shown in where we observe that all approaches achieve
similar results in terms of MMD, with copulas standing out with a lower value. We can thus infer
that copulas can synthesize distributions with statistical characteristics closer to the observed ones.
Regarding the computational efficiency, copulas require a fraction of the time needed by NN-based
approaches.

Table 2: Mean and standard deviation of real vs. synthetic data (lower is better) from 30 repetitions.
Second row is CPU time indicating the training/fit+generation time.
Metric/Method Char-RNN RNN-LSTM RHN PSMM SGAN RGAN Copula

MMD 0.32(1e-3) 0.27(9e-4))  0.30(1le-3)  0.21(6e-4)  0.19(7e-4)  0.21(6e-4) 0.01(6e-4)
CPU time (sec) 9k+~10 10.3k+~14  12.7k+~15 10.5k+~15 11.2k+~15 11.5k+~14  6.5+0.76

Figure [2a) shows the result of long-range dependency test, in terms of mutual information decay [21}
20]]. We observe a power-law decay in case of GANs, copulas and RNN-LSTM indicating that they
account for the long-range dependencies in mobility trajectories. Figure [2b) shows the results of two
privacy tests: (1) location-sequence attack, and (2) membership interference attack. Given a synthetic
dataset, (1) answers to what level of accuracy can trajectories in the dataset be reconstructed [32]], and
(2) an adversary’s accuracy of inferring if a target individual contributed to the specific trajectory [30].
For these tests, we use the the location-privacy and mobility meter [32]], where obfuscation is
performed using the location hiding mechanism. Given a completely random distribution the accuracy
of a recovered user-information is 0, we therefore suspect that the privacy-based score is biased
towards representations which do not accurately capture the statistical properties of the true dataset.

5 Conclusion and Future Work

In this work, we propose and evaluate a variety of generative models to synthesize mobility trajectories.
To the best of our knowledge, this is the first study to do so using seven different approaches while
evaluating their realism across four dimensions. From the results and discussion, we observe that
regarding statistical and semantic properties, copulas have an advantage over all other methods.
Additionally, all NN-based methods are time consuming, which makes copulas favorable when
computational efficiency is important to the end-users. As future work, we will consider datasets
collected in bigger cities and generate larger synthetic datasets to evaluate the performance of these
models under high movement stochasticity. From curbing the privacy leakage of the true dataset
while maintaining utility, trajectory generation can be designed as an optimization problem with an
objective to jointly maximize statistical similarity and privacy. But it is still not clear how to assess
such property and adaptive/configurable metric, and is part of ongoing work [27]. While this paper
represents an initial comparative study of various generative models, a deeper understanding of their
performances will be needed to compute utility-privacy scores as applied to online services by Krause
and Horvitz [15] before publicly releasing the synthetic datasets. Another interesting avenue for
research is to apply transfer learning in order to map a mobility behavioral model captured in one city
on to another region.
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