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Abstract

Modern federated networks, such as those com-
prised of wearable devices, mobile phones, or
autonomous vehicles, generate massive amounts
of data each day. This wealth of data can help to
learn models that can improve the user experience
on each device. However, the scale and hetero-
geneity of federated data presents new challenges
in research areas such as federated learning, meta-
learning, and multi-task learning. As the machine
learning community begins to tackle these chal-
lenges, we are at a critical time to ensure that
developments made in these areas are grounded
with realistic benchmarks. To this end, we pro-
pose LEAF, a modular benchmarking framework
for learning in federated settings. LEAF includes
a suite of open-source federated datasets, a rigor-
ous evaluation framework, and a set of reference
implementations, all geared towards capturing the
obstacles and intricacies of practical federated
environments.

1. Introduction

With data increasingly being generated on federated net-
works of remote devices, there is growing interest in em-
powering on-device applications with models that make use
of such data (McMabhan et al., 2016; McMahan & Ramage,
2017; Smith et al., 2017). Learning on data generated in fed-
erated networks, however, introduces several new obstacles:

Statistical: Data is generated on each device in a heteroge-
neous manner, with each device associated with a different
(though perhaps related) underlying data generating distri-
bution. Moreover, the number of data points typically varies
significantly across devices.

Systems: The number of devices in federated scenarios
is typically order of magnitudes larger than the number of
nodes in a typical distributed setting, such as datacenter
computing. In addition, each device may have significant
constraints in terms of storage, computational, and commu-
nication capacities. Furthermore, these capacities may also
differ across devices due to variability in hardware, network
connection, and power. Thus, federated settings may suffer

from communication bottlenecks that dwarf those encoun-
tered in traditional distributed datacenter settings, and may
require faster on-device inference.

Privacy and Security: Finally, the sensitive nature of
personally-generated data requires methods that operate on
federated data to balance privacy and security concerns with
more traditional considerations such as statistical accuracy,
scalability, and efficiency (McMahan et al., 2017; Bonawitz
etal., 2017).

Recent works have proposed diverse ways of dealing with
these challenges, but many of these efforts fall short when
it comes to their experimental evaluation. As an example,
consider the federated learning paradigm, which focuses on
training models directly on federated networks (McMahan
et al., 2016; Smith et al., 2017; Pihur et al., 2018). Experi-
mental works focused on federated learning broadly utilize
three types of datasets: (1) datasets that do not provide a re-
alistic model of a federated scenario and yet are commonly
used, e.g., artificial partitions of MNIST, MNIST-fashion
or CIFAR-10 (McMahan et al., 2016; Kone¢ny et al., 2016;
Geyer et al., 2017; Bagdasaryan et al., 2018; Kamp et al.,
2018; Ulm et al., 2018; Wang et al., 2018); (2) realistic but
proprietary federated datasets, e.g., data from an unnamed
social network in (McMabhan et al., 2016), crowdsourced
voice commands in (Leroy et al., 2018), and proprietary data
by Huawei in (Chen et al., 2018); and (3) realistic federated
datasets that are derived from publicly available data, but
which are not straightforward to reproduce, e.g., FaceScrub
in (Melis et al., 2018), Shakespeare in (McMahan et al.,
2016) and Reddit in (Konecny et al., 2016; McMahan et al.,
2018; Bagdasaryan et al., 2018).

Along the same lines of federated learning, meta-learning
is another learning paradigm that could use more realistic
benchmarks. The paradigm is a natural fit for federated
settings, as the different devices can be easily interpreted
as meta-learning tasks (Chen et al., 2018). However, the
artificially generated tasks considered in popular bench-
marks such as Omniglot (Lake et al., 2011; Finn et al.,
2017; Vinyals et al., 2016; Snell et al., 2017) and minilma-
geNet (Ravi & Larochelle, 2016; Finn et al., 2017; Vinyals
et al., 2016; Snell et al., 2017) fail to challenge the current
approaches in ways that real-world problems would. More
recently, (Triantafillou et al., 2019) proposed Meta-Dataset
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as a more realistic meta-learning benchmark, but tasks still
have no real-world interpretation. All of these datasets
could thus be categorized as the first type mentioned above
(unrealistic yet popular).

As a final example, LEAF’s datasets can allow researchers
and practitioners to test multi-task learning (MTL) meth-
ods in regimes with large numbers of tasks and samples,
contrary to traditional MTL datasets (e.g., the popular Land-
mine Detection (Zhang & Schneider, 2010; Murugesan &
Carbonell, 2017; Xue et al., 2007; Smith et al., 2017), Com-
puter Survey (Argyriou et al., 2008; Agarwal et al., 2010;
Kumar & Daume 111, 2012) and Inner London Education
Authority School (Murugesan & Carbonell, 2017; Lee et al.,
2016; Agarwal et al., 2010; Argyriou et al., 2008; Kumar &
Daume III, 2012) datasets have at most 200 tasks each).

In this work, we aim to bridge the gap between artificial
datasets that are popular and accessible for benchmarking,
and those that realistically capture the characteristics of a
federated scenario but that, so far, have been either propri-
etary or difficult to process. Moreover, beyond establishing
a suite of federated datasets, we propose a clear methodol-
ogy for evaluating methods and reproducing results. To this
end, we present LEAF, a modular benchmarking framework
geared towards learning in massively distributed federated
networks of remote devices.

2. LEAF

LEAF is an open-source benchmarking framework for fed-
erated settings. It consists of (1) a suite of open-source
datasets, (2) an array of statistical and systems metrics, and
(3) a set of reference implementations. As shown in Figure 1,
LEAF’s modular design allows these three components to
be easily incorporated into diverse experimental pipelines.
We now detail LEAF’s core components.

Datasets Metrics

_O Reference _O
Implementations

Figure 1. LEAF modules and their connections. The Datasets
module preprocesses the data and transforms it into a standardized
JSON format, which can integrate into an arbitrary ML pipeline.
LEAF ’s Reference Implementations module is a growing reposi-
tory of common methods used in the federated setting, with each
implementation producing a log of various different statistical and
systems metrics. This log (or any log generated in an appropriate
format) can be used to aggregate and analyze these metrics in
various ways. LEAF performs this analysis through its Metrics
module.

Datasets: We have curated a suite of realistic federated
datasets for LEAF. We focus on datasets where (1) the data
has a natural keyed generation process (where each key
refers to a particular device); (2) the data is generated from
networks of thousands to millions of devices; and (3) the
number of data points is skewed across devices. Currently,
LEAF consists of three datasets:

o Federated Extended MNIST (FEMNIST), which serves
as a similar (and yet more challenging) benchmark to
the popular MNIST (LeCun, 1998) dataset. It is built by
partitioning the data in Extended MNIST (Cohen et al.,
2017) based on the writer of the digit/character.

o Sentiment140 (Go et al., 2009), an automatically gen-
erated sentiment analysis dataset that annotates tweets
based on the emoticons present in them. In this dataset,
each device is a different twitter user.

o Shakespeare, a dataset built from The Complete Works of
William Shakespeare (William Shakespeare. The Com-
plete Works of William Shakespeare; McMahan et al.,
2016). Here, each speaking role in each play is consid-
ered a different device.

We provide statistics on these datasets in Table 1. In LEAF,
we provide all necessary pre-processing scripts for each
dataset, as well as small/full versions for prototyping and
final testing. Moving forward, we plan to add datasets
from different domains (e.g. audio, video) and to increase
the range of machine learning tasks (e.g. text to speech,
translation, compression, etc.).

Metrics: Rigorous evaluation metrics are required to ap-
propriately assess how a learning solution behaves in feder-
ated scenarios. Currently, LEAF establishes an initial set of
metrics chosen specifically for this purpose. For example,
we introduce metrics that better capture the entire distribu-
tion of performance across devices: performance at the 10th
and 90th percentiles and performance stratified by natural
hierarchies in the data (e.g. play in the case of the Shake-
speare dataset). We also introduce metrics that account
for the amount of computing resources needed from the
edge devices in terms of number of FLOPS and number of
bytes downloaded/uploaded. Finally, LEAF also recognizes
the importance of specifying how the accuracy is weighted
across devices, e.g., whether every device is equally impor-
tant, or every data point equally important (implying that
power users/devices get preferential treatment). Notably,
considering stratified systems and accuracy metrics is par-
ticularly important in order to evaluate whether a method
will systematically exclude groups of users (e.g., because
they have lower end devices) and/or will underperform for
segments of the population (e.g., because they produce less
data).

Reference implementations: In order to facilitate repro-
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Table 1. Statistics of datasets in LEAF.

Dataset Number of devices Total samples Samples per device
mean stdev
FEMNIST 3,550 805, 263 226.83 88.94
Sent140 660, 120 1,600, 498 2.42 4.71
Shakespeare 1,129 4,226,158 3,743.28 6,212.26

ducibility, LEAF also contains a set of reference imple-
mentations of algorithms geared towards federated scenar-
ios. Currently, this set is limited to the federated learning
paradigm, and in particular includes reference implementa-
tions of minibatch SGD, FedAvg (McMahan et al., 2016)
and Mocha (Smith et al., 2017). Moving forward we aim
to equip LEAF with implementations for additional meth-
ods and paradigms with the help of the broader research
community.

3. LEAF in action

We now show a glimpse of LEAF in action. In particular,
we highlight three of LEAF’s characteristics:

LEAF enables reproducible science: To demonstrate
the reproducibility enabled via LEAF, we focus on qualita-
tively reproducing the results that (McMahan et al., 2016)
obtained on the Shakespeare dataset for a next character
prediction task. In particular, it was noted that for this par-
ticular dataset, the FedAvg method surprisingly diverges
as the number of local epochs increases. This is therefore
a critical setting to understand before deploying methods
such as FedAvg. To show how LEAF allows for rapid
prototyping of this scenario, we use the reference FedAvg
implementation and subsample 118 devices (around 5% of
the total) in our Shakespeare data (which can be easily done
through our framework). Results are shown in Figure 2,
where we indeed see similar divergence behavior in terms
of the training loss as we increase the number of epochs.

LEAF provides granular metrics: As illustrated in Fig-
ure 3 and Figure 4, our proposed systems and statistical
metrics are important to consider when serving multiple
clients simultaneously. For statistical metrics, in Figure 3
we show the effect of varying the minimum number of sam-
ples per user in Sentiment140 (which we denote as k). We
see that, while median performance degrades only slightly
with data-deficient users (i.e., kK = 3), the 25th percentile
(bottom of box) degrades dramatically. Meanwhile, for
systems metrics, we run minibatch SGD and FedAvg for
FEMNIST and calculate the systems budget needed to reach
an accuracy threshold of 0.75 in Figure 4. We characterize
the budget in terms of total number of FLOPS across all
devices and total number of bytes uploaded to network. Our
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Figure 2. Convergence behavior of FedAvg on a subsample of the
Shakespeare dataset. We use a learning rate of 0.8 and 10 devices
per round for all experiments. We are able to achieve test accuracy
comparable to the results obtained in (McMahan et al., 2016). We
also qualitatively replicate the divergence in training loss that is
observed for large numbers of local epochs (E).

results demonstrate the improved systems profile of FedAvg
when it comes to the communication vs. local computation
trade-off, though we note that in general methods may vary
across these two dimensions, and it is thus important to
consider both aspects depending on the problem at hand.

LEAF is modular: To demonstrate LEAF’s modularity,
we incorporate its Datasets module into two different experi-
mental pipelines besides FedAvg (which has been our focus
so far). In particular, we wish to validate the hypothesis
that personalization strategies (be it MTL or meta-learning)
outperform competing approaches in statistically heteroge-
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Figure 3. Statistical analyses for Sent140. k is the minimum num-
ber of samples per user. Orange lines represent the median device
accuracy, green triangles represent the mean, boxes cover the 25th
and 75th percentile, and whiskers cover the 10th to the 90th per-
centile. We subsample 50% of the data, pick 2 clients per round
of FedAvg and use a learning rate of 3 - 10™%,

neous scenarios.

1. Our first pipeline explores our hypothesis in regimes
where each device holds little data. We use three dif-
ferent kinds of models:

e A global SVM which is trained in all of the de-
vices’ data at once (Global-SVM).

e A local SVM per device that is trained solely on
the device’s data (Local-SVM).

e The same SVM model but trained in the multi-
task setting presented in (Smith et al., 2017) (MTL-
SVM).

2. Our second pipeline corroborates the hypothesis in
regimes with no restrictions on the amount of data per
device. To do this, we run the popular algorithm Rep-
tile (Nichol et al., 2018) (which can be shown to be a
re-weighed, fine-tuned version of FedAvg) over FEM-
NIST and compare it against FedAvg when trained
under similar conditions.

Results for both sets of experiments are presented in Table 2.
For the first set of experiments, we re-cast FEMNIST as a
binary classification task (digits vs. characters) and discard
devices with more than 192 samples. For the second set, we
run each algorithm for 1, 000 rounds, use 5 clients per round,
a local learning rate of 1073, a training mini-batch size of
10 for 5 mini-batches, and evaluate on an unseen set of test
devices. Furthermore, for Reptile we use a linearly decaying
meta-learning rate that goes from 2 to 0, and evaluate by
fine-tuning each test device for 50 mini-batches of size 5.

1e1l Systems analysis (FEMNIST)
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Figure 4. Systems analyses for FEMNIST. C' is the number of
clients selected per round, and E is the number of epochs each
client trained locally for FedAvg. For minibatch SGD we report
the percentage of data used per client. We subsample 5% of the
data and use a learning rate of 4 - 10~ for FedAvg and of 6 - 102
for minibatch SGD.

It is clear that the personalized strategies outperform the
competing approaches.

Table 2. Results for different personalization pipelines on FEM-
NIST. For all pipelines we subsampled 5% of the data and
weighted the accuracies per device.

Method | Test Accuracy
Global-SVM 73.7%
Local-SVM 82.5%
MTL-SVM 84.88%
Reptile 80.24%
FedAvg 74.71%

4. Conclusion

We present LEAF, a modular benchmarking framework for
learning in federated settings, or ecosystems marked by mas-
sively distributed networks of devices. Learning paradigms
applicable in such settings include federated learning, meta-
learning, multi-task learning, and on-device learning. LEAF
allows researchers and practitioners in these domains to
reason about new proposed solutions under more realis-
tic assumptions than previous benchmarks. We intend to
keep LEAF up to date with new datasets, metrics and open-
source solutions in order to foster informed and grounded
progress in this field.
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