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ABSTRACT

As deep reinforcement learning is being applied to more and more tasks, there is a
growing need to better understand and probe the learned agents. Visualizing and
understanding the decision making process can be very valuable to comprehend and
identify problems in the learned behavior. However, this topic has been relatively
under-explored in the reinforcement learning community. In this work we present a
method for synthesizing states of interest for a trained agent. Such states could be
situations (e.g. crashing or damaging a car) in which specific actions are necessary.
Further, critical states in which a very high or a very low reward can be achieved
(e.g. risky states) are often interesting to understand the situational awareness of
the system. To this end, we learn a generative model over the state space of the
environment and use its latent space to optimize a target function for the state
of interest. In our experiments we show that this method can generate insightful
visualizations for a variety of environments and reinforcement learning methods.
We explore these issues in the standard Atari benchmark games as well as in an
autonomous driving simulator. Based on the efficiency with which we have been
able to identify significant decision scenarios with this technique, we believe this
general approach could serve as an important tool for AI safety applications.

1 INTRODUCTION

Humans can naturally learn and perform well at a wide variety of tasks, driven by instinct and practice;
more importantly, they are able to justify why they would take a certain action. Artificial agents
should be equipped with the same capability, so that their decision making process is interpretable
by researchers. Following the enormous success of deep learning in various domains, such as
the application of convolutional neural networks (CNNs) to computer vision (LeCun et al., 1998;
Krizhevsky et al., 2012; Long et al., 2015; Ren et al., 2015), a need for understanding and analyzing
the trained models has arisen. Several such methods have been proposed and work well in this
domain, for example for image classification (Simonyan et al., 2013; Zeiler and Fergus, 2014; Fong
and Vedaldi, 2017), sequential models (Karpathy et al., 2016) or through attention (Xu et al., 2015).

Deep reinforcement learning (RL) agents also use CNNs to gain perception and learn policies directly
from image sequences. However, little work has been so far done in analyzing RL networks. We
found that directly applying common visualization techniques to RL agents often leads to poor results.
In this paper, we present a novel technique to generate insightful visualizations for pre-trained agents.

Currently, the generalization capability of an agent is—in the best case—evaluated on a validation set
of scenarios. However, this means that this validation set has to be carefully crafted to encompass as
many potential failure cases as possible. As an example, consider the case of a self-driving agent,
where it is near impossible to exhaustively model all interactions of the agent with other drivers,
pedestrians, cyclists, weather conditions, even in simulation. Our goal is to extrapolate from the
training scenes to novel states that induce a specified behavior in the agent.

In our work, we learn a generative model of the environment as an input to the agent. This allows us
to probe the agent’s behavior in novel states created by an optimization scheme to induce specific
actions in the agent. For example we could optimize for states in which the agent sees the only
option as being to slam on the brakes; or states in which the agent expects to score exceptionally
low. Visualizing such states allows to observe the agent’s interaction with the environment in critical
scenarios to understand its shortcomings. Furthermore, it is possible to generate states based on an
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objective function specified by the user. Lastly, our method does not affect and does not depend on
the training of the agent and thus is applicable to a wide variety of reinforcement learning algorithms.

2 RELATED WORK

We divide prior work into two parts. First we discuss the large body of visualization techniques
developed primarily for image recognition, followed by related efforts in reinforcement learning.

2.1 FEATURE VISUALIZATION

In the field of computer vision, there is a growing body of literature on visualizing features and
neuron activations of CNNs. As outlined in Grün et al. (2016), we differentiate between saliency
methods, that highlight decision-relevant regions given an input image, methods that synthesize
an image (pre-image) that fulfills a certain criterion, such as activation maximization (Erhan et al.,
2009) or input reconstruction, and methods that are perturbation-based, i.e. they quantify how input
modification affects the output of the model.

Saliency Methods Saliency methods typically use the gradient of a prediction or neuron at the input
image to estimate importance of pixels. Following gradient magnitude heatmaps (Simonyan et al.,
2013) and class activation mapping (Zhou et al., 2016), more sophisticated methods such as guided
backpropagation (Springenberg et al., 2014; Mahendran and Vedaldi, 2016), excitation backpropaga-
tion (Zhang et al., 2016), GradCAM (Selvaraju et al., 2016) and GradCAM++ (Chattopadhay et al.,
2018) have been developed. Zintgraf et al. (2017) distinguish between regions in favor and regions
speaking against the current prediction. Sundararajan et al. (2017) distinguish between sensitivity
and implementation invariance.

An interesting observation is that such methods seem to generate believable saliency maps even
for networks with random weights (Adebayo et al., 2018). Kindermans et al. (2017b) show that
saliency methods do not produce analytically correct explanations for linear models and further
discuss reliability issues in Kindermans et al. (2017a).

Perturbation Methods Perturbation methods modify a given input to understand the importance of
individual image regions. Zeiler and Fergus (2014) slide an occluding rectangle across the image and
measure the change in the prediction, which results in a heatmap of importance for each occluded
region. This technique is revisited by Fong and Vedaldi (2017) who introduce blurring/noise in the
image, instead of a rectangular occluder, and iteratively find a minimal perturbation mask that reduces
the classifier’s score, while Dabkowski and Gal (2017) train a network for masking salient regions.

Input Reconstruction As our method synthesizes inputs to the agent, the most closely related work
includes input reconstruction techniques. Long et al. (2014) reconstruct an image from an average of
image patches based on nearest neighbors in feature space. Mahendran and Vedaldi (2015) propose
to reconstruct images by inverting representations learned by CNNs, while Dosovitskiy and Brox
(2015) train a CNN to reconstruct the input from its encoding.

When maximizing the activation of a specific class or neuron, regularization is crucial because the
optimization procedure—starting from a random noise image and maximizing an output—is vastly
under-constrained and often tends to generate fooling examples that fall outside the manifold of
realistic images (Nguyen et al., 2015). In Mahendran and Vedaldi (2016) total variation (TV) is used
for regularization, while Baust et al. (2018) propose an update scheme based on Sobolev gradients. In
Nguyen et al. (2015) Gaussian filters are used to blur the pre-image or the update computed in every
iteration. Since there are usually multiple input families that excite a neuron, Nguyen et al. (2016c)
propose an optimization scheme for the distillation of these clusters. Ulyanov et al. (2017) show that
even CNNs with random weights can be used for regularization. More variations of regularization
can be found in Olah et al. (2017; 2018). Instead of regularization, Nguyen et al. (2016a;b) use a
denoising autoencoder and optimize in latent space to reconstruct pre-images for image classification.

2.2 EXPLANATIONS FOR REINFORCEMENT LEARNING

In deep reinforcement learning however, feature visualization is to date relatively unexplored. Zahavy
et al. (2016) apply t-SNE (Maaten and Hinton, 2008) on the last layer of a deep Q-network (DQN) to
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cluster states of behavior of the agent. Mnih et al. (2016) also use t-SNE embeddings for visualization,
while Greydanus et al. (2017) examine how the current state affects the policy in a vision-based
approach using saliency methods. Wang et al. (2016) use saliency methods from Simonyan et al.
(2013) to visualize the value and advantage function of their dueling Q-network. Interestingly, we
could not find prior work using activation maximization methods for visualization. In our experiments
we show that the typical methods fail in the case of RL networks and generate images far outside the
manifold of valid game states, even with all typical forms of regularization. In the next section, we
will show how to overcome these difficulties.

3 METHODS

We will first introduce the notation and definitions that will be used through out the remainder of the
paper. We formulate the reinforcement learning problem as a discounted, infinite horizon Markov
decision process (S,A, γ, P, r), where at every time step t the agent finds itself in a state st ∈ S
and chooses an action at ∈ A following its policy πθ(a|st). Then the environment transitions from
state st to state st+1 given the model P (st+1|st, at). Our goal is to visualize RL agents given a
user-defined objective function, without adding constraints on the optimization process of the agent
itself, i.e. assuming that we are given a previously trained agent with fixed parameters θ.

We approach visualization via a generative model over the state space S and synthesize states that
lead to an interesting, user-specified behavior of the agent. This could be, for instance, states in which
the agent expresses high uncertainty regarding which action to take or states in which it sees no
good way out. This approach is fundamentally different than saliency-based methods as they always
need an input for the test-set on which the saliency maps can be computed. The generative model
constrains the optimization of states to induce specific agent behavior.

3.1 STATE MODEL

Often in feature visualization for CNNs, an image is optimized starting from random noise. However,
we found this formulation too unconstrained, often ending up in local minima or fooling examples
(Figure 4a). To constrain the optimization problem we learn a generative model on a set S of states
generated by the given agent that is acting in the environment. The model is inspired by variational
autoencoders (VAEs) (Kingma and Welling, 2013) and consists of an encoder f(s) = (µ, σ) ∈
R2×n that maps inputs to a Gaussian distribution in latent space and a decoder g(µ, σ, z) = ŝ that
reconstructs the input. The training of our generator has three objectives. First, we want the generated
samples to be close to the manifold of valid states s. To avoid fooling examples, the samples should
also induce correct behavior in the agent and lastly, sampling states needs to be efficient. We encode
these goals in three corresponding loss terms.

L(s) = Lp(s) + ηLa(s) + λKL( f(s),N (0, In) ). (1)

The role of Lp(s) is to ensure that the reconstruction g(f(s), z) is close to the input s such that
‖ g(f(s), z)− s ‖22 is minimized. We observe that in the typical reinforcement learning benchmarks,
such as Atari games, small details—e.g. the ball in Pong or Breakout—are often critical for the
decision making of the agent. However, a typical VAE model tends to yield blurry samples that are
not able to capture such details. To address this issue, we model the reconstruction error Lp(s) with
an attentive loss term, which leverages the saliency of the agent to put focus on critical regions of the
reconstruction. The saliency maps are computed by guided backpropagation of the policy’s gradient
with respect to the state.

Lp(s) = ‖ g(f(s), z)− s ‖22 �
‖∇π(s) ‖1∑d
i=1 ‖∇π(s)i ‖1

. (2)

Since we are interested in the actions of the agent on synthesized states, the second objective La(s)
is used to model the perception of the agent:

La(s) = ‖A(s)−A( g(f(s), z) ) ‖22, (3)

where A is a generic formulation of the output of the agent. For a DQN for example, π(s) =
maxaA(s)a, i.e. the final action is the one with the maximal Q-value. This term encourages the
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reconstructions to be interpreted by the agent the same way as the original inputs s. The last term
KL( f(s),N (0, In) ) ensures that the distribution predicted by the encoder f stays close to a Gaussian
distribution. This allows us to initialize the optimization with a reasonable random vector later and
forms the basis of a regularizer. Thus, after training, the model approximates the distribution of states
p(s) by sampling z from N (0, In). We will now use the generator inside an optimization scheme to
generate state samples that satisfy a user defined target objective.

3.2 SAMPLING STATES OF INTEREST

Training a generator with the objective function of Equation 1 allows us to sample states that are not
only visually close to the real ones, but which the agent can also interpret and act upon as if they
were states from a real environment.

We can further exploit this property and formulate an energy optimization scheme to generate samples
that satisfy a specified objective. The energy operates on the latent space of the generator and is
defined as the sum of a target function T on agent’s policy and a regularizer R

E(x) = T (π( g(x, z ) ) + αR(x). (4)

The target function can be defined freely by the user and depends on the agent that is being visualized.
For a DQN, one could for example define T as the Q-value of a certain action, e.g. pressing the
brakes of a car. In section 3.3, we show several examples of targets that are interesting to analyze.
The regularizer R can again be chosen as the KL divergence between x and the normal distribution:

R(x) = KL(x,N (0, In) ), (5)

forcing the samples that are drawn from the distribution x to be close to the Gaussian distribution that
the generator was trained with. We can optimize Equation 4 with gradient descent on x = (σ, µ).

3.3 TARGET FUNCTIONS

Depending on the agent, one can define several interesting target functions T . For a DQN the
previously discussed action maximization is interesting to find situations in which the agent assigns a
high value to a certain action e.g. Tleft(s) = −Aleft(s). Other states of interest are those to which the
agent assigns a low (or high) value for all possible actions A(s) = q = (q1, . . . , qm). Consequently,
one can optimize towards a low Q-value for the highest valued action with the following objective:

T−(q) =

∑m
i=1 qie

βqi∑m
k=1 e

βqk
, (6)

where β > 0 controls the sharpness of the soft maximum formulation. Analogously, one can
maximize the lowest Q-value with T+(q) = −T−(−q). We can also optimize for interesting
situations in which one action is of very high value and another is of very low value by defining

T±(q) = T−(q)− T+(q). (7)

4 EXPERIMENTS

In this section we thoroughly evaluate and analyze our method on Atari games (Bellemare et al.,
2013) using the OpenAI Gym (Brockman et al., 2016) and a driving simulator. We present qualitative
results for three different reinforcement learning algorithms, show examples on how the method helps
finding flaws in an agent, analyze the loss contributions and compare to previous techniques.

Implementation details In all our experiments we use the same factors to balance the loss terms
in Equation 6: λ = 10−4 for the KL divergence and η = 10−3 for the agent perception loss.
The generator is trained on 10, 000 frames (using the agent and an ε-greedy policy with ε = 0.1).
Optimization is done with Adam (Kingma and Ba, 2015) with a learning rate of 10−3 and a batch size
of 16 for 2000 epochs. Training takes approximately four hours on a Titan Xp. Our generator uses a
latent space of 100 dimensions, and consists of four encoder stages comprised of a 3× 3 convolution
with stride 2, batch-normalization (Ioffe and Szegedy, 2015) and ReLU layer. The starting number of
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(a) Pong - T+

scoring a point
(b) Space Invaders - T+

shooting an enemy
(c) Enduro - T+

overtaking an opponent

(d) Name This Game - T±

whether to refill air
(e) Seaquest - T−

out of oxygen
(f) Beamrider - Tleft

avoiding the enemy

(g) Kung Fu Master - T±

enemies on both sides
(h) Kung Fu Master - T+

easy, many points to score
(i) Kung Fu Master - T−

no enemies

Figure 1: Qualitative Results: Visualization of different target functions (Sec. 3.3). T+ generates
high reward and T− low reward states; T± generates states in which one action is highly beneficial
and another is bad.

filters is 32 and is doubled at every stage. A fully connected layer is used for mean and log-variance
prediction. Decoding is inversely symmetric to encoding, using deconvolutions and halving the
number of channels at each of the four steps.

For the experiments on the Atari games we train a double DQN (Wang et al., 2016) for two million
steps with a reward discount factor of 0.95. The input size is 84× 84 pixels. Therefore, our generator
performs up-sampling by factors of 2, up to a 128 × 128 output, which is then center cropped to
84× 84 pixels. The agents are trained on grayscale images, for better visual quality however, our
generator is trained with color frames and convert to grayscale using a differentiable, weighted sum
of the color channels. In the interest of reproducibility we will make the visualization code available.

4.1 VISUALIZATIONS ON ATARI GAMES

In Figure 1, we show qualitative results from various Atari games using different target functions T ,
as described in Section 3.3. From these images we can validate that the general visualizations that
are obtained from the method are of good quality and can be interpreted by a human. T+ generates
generally high value states independent of a specific action (first row of Figure 1), while T− generates
low reward situations, such as close before losing the game in Seaquest (Figure 1.e) or when there
are no points to score (Figure 1.i). Critical situations can be found by maximizing the difference
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Figure 2: Seaquest with ACKTR. Visualization results for a network trained with ACKTR on
Seaquest. The objective is T± indicating situations that can be rewarding but also have a low scoring
outcome. The generated states show low oxygen or close proximity to enemies.

between lowest and highest estimated Q-value with T±. In those cases, there is clearly a right and
a wrong action to take. In Name This Game (Figure 1.d) this occurs when close to the air refill
pipe, which prevents suffocating under water; in Kung Fu Master when there are enemies coming
from both sides (Figure 1.g), the order of attack is critical, especially since the health of the agent
is low (yellow/blue bar on top). An example of maximizing the value of a single action (similar to
maximizing the confidence of a class when visualizing image classification CNNs) can be seen in
(Figure 1.f) where the agent sees moving left and avoiding the enemy as the best choice of action.

4.2 ACKTR

To show that this visualization technique generalizes over different RL algorithms, we also visualize
ACKTR (Wu et al., 2017). We use the code and pretrained models from a public repository (Kostrikov,
2018) and train our generative model with the same hyperparameters as above and without any
modifications on the agent. We present the T± objective for the ACKTR agent in Figure 2 to
visualize states with both high and low rewards, for example low oxygen (surviving vs. suffocating)
or close proximity to enemies (earning points vs. dying). Compared to the DQN visualizations
the ACKTR visualizations, are almost identical in terms of image quality and interpretability. This
supports the notion that our proposed approach is independent of the specific RL algorithm.

4.3 INTERPRETATION OF VISUALIZATIONS

Analyzing the visualizations on Seaquest, we make an interesting observation. When maximizing the
Q-value for the actions, in many samples we see a low or very low oxygen meter. In these cases the
submarine would need to ascend to the surface to avoid suffocation. Although the up action is the
only sensible choice in this case, we also obtain visualized low oxygen states for all other actions.
This implies that the agent has not understood the importance of resurfacing when the oxygen is low.
We then run several roll outs of the agent and see that the major cause of death is indeed suffocation
and not collision with enemies. This shows the impact of visualization, as we are able to understand a
flaw of the agent. Although it would be possible to identify this flawed behavior directly by analyzing
the 10, 000 frames of training data for our generator, it is significantly easier to review a handful of
samples from our method. Further, as the generator is a generative model, we can synthesize states
that are not part of its training set.

4.4 ABLATION STUDIES (LOSS TERMS)

In this section we analyze the three loss terms of our generative model. The human perceptual loss is
weighted by the (guided) gradient magnitude of the agent in Equation 2. In Figure 3 we visualize this
mask for a DQN agent for random frames from the dataset. The masks are blurred with an averaging
filter of kernel size 5. We observe that guided backpropagation results in precise saliency maps
focusing on player and enemies that then focus the reconstructions on what is important for the agent.

To study the influence of the loss terms we perform an experiment in which we evaluate the agent not
on the real frames but on their reconstructions. If the reconstructed frames are perfect, the agent with
generator goggles achieves the same score as the original agent. We can use this metric to understand
the quantitative influence of the loss terms. In Pong, the ball is the most important visual aspect of
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Table 1: Loss Study. We compare the performance of the original agent with the agent operating on
reconstructed frames instead. The original performance represents an upper bound for the score of
the same agent which is operating on reconstructions instead. Shown are average scores over 20 runs.

Agent VAE baseline Ours (Lp only) Ours (full)

Pong 14 -8 4 14
Atlantis 108 95 98 109
Q*bert 64 26 28 31

Figure 3: Weight Visualization. We visualize the weighting (second row) of the reconstruction loss
from Equation 2 for eight randomly drawn samples (first row) of the dataset. Most weight lies on the
player’s submarine and close enemies, supporting their importance for the decision making.

the game for decision making. In Table 1 we see that the VAE baseline scores much lower than our
model. Since the ball is very small, it is mostly ignored by the reconstruction loss of a VAE. Our
formulation is built to regain the original performance of the agent. Overall, we see that our method
always improves over the baseline but does not always match the original performance.

4.5 COMPARISON WITH ACTIVATION MAXIMIZATION

For image classification tasks, activation maximization works well when optimizing the pre-image
directly (Mahendran and Vedaldi, 2015; Baust et al., 2018). However we find that for reinforcement
learning, the features learned by the network are not complex enough to reconstruct meaningful
pre-images, even with sophisticated regularization techniques. The pre-image converges to a fooling
example maximizing the class but being far away from the manifold of states of the environment.

In Figure 4.a we compare our results with the reconstructions generated using the method of Baust
et al. (2018) for a DQN agent. We obtain similarly bad pre-images with TV-regularization (Mahendran
and Vedaldi, 2016), Gaussian blurring (Nguyen et al., 2015) and other regularization tricks such
as random jitter, rotations, scaling and cropping (Olah et al., 2017). One explanation for the low
performance of standard methods for activation maximization can be found when visualizing the first
layer filters of Atari agents. We show Conv1 of a DQN in Figure 5. We stack the representations
for the temporal component vertically and the 32 filters horizontally. Looking at the filters of Pong,
we make two observations. The agent only needs five distinct filters to play the game and due to
the strong temporal changes in patterns, it is mostly focused on moving parts. This aligns with the
reactive game play of pong and its visual simplicity. Instead, a complex game such as Seaquest uses
all available filters.

These observations bring up interesting points. Indeed the CNN architecture of Mnih et al. (2015)
contains enough filters for the most visually complex games that are not needed for the simpler
environments such as Pong. Also, the temporal component seems to only be important for some of the
environments. This, and the strong visible differences between the weights of different environments
leaves the open question whether a common feature extractor exists that could work for all games.
However, poor Conv1 weights are an indicator that it is easier to distract the model by activating
“unused” filters with imperceptible noise which can be the cause for the poor visualizations with
classical activation maximization techniques.
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(a) Activation Maximization (b) Ours

Figure 4: Comparison with activation maximization. The visual features learned by the agents are
not complex enough to reconstruct typical frames from the game via activation maximization. This
problem is mitigated in our method by learning a low-dimensional embedding of games states first.

(a) Pong (b) Alien

(c) Sea Quest (d) Yar’s Revenge

(e) Krull (f) Name This Game

Figure 5: Conv1 Weights DQN. We display the weights of the first layer of DQNs trained on several
Atari games. Columns represent the 32 different 8× 8 filters, while the four rows correspond the to
four frames that are stacked as an input for the network. The vertically stacked weights represent the
temporal component with the current frame at the bottom and frame t− 3 at the top.

4.6 EXPERIMENTS WITH A DRIVING SIMULATOR

We have created a 3D driving simulation environment and trained an A2C agent maximizing speed
while avoiding pedestrians that are crossing the road. The agent is trained with four temporal semantic
segmentation frames (128× 128 pixels) as input (Figure 6). With this safety-critical application we
can assess multiple points. First, driving is a continuous task in a much more complex environment
than Atari games. Second, we use the simulator to build two custom environments and validate that
we can identify problematic behavior in the agent. Specifically, we train the agent in a “reasonable
pedestrians” environment, where pedestrians cross the road carefully, when no car is coming or at
traffic lights. With these choices, we model data collected in the real world, where it is unlikely
that people unexpectedly run in front of the car. We visualize states in which the agent expects a
low future return (T− objective) in Figure 6. It shows that the agent is aware of other cars, traffic
lights and intersections. However, there are no generated states in which the car is about to collide
with a person, meaning that the agent does not recognize the criticality of pedestrians. To verify our
suspicion, we test this agent in a “distracted pedestrians” environment where people cross the road
looking at their phones without paying attention to approaching cars. We find that the agent does
indeed run over humans. With this experiment, we show that our visualization technique can identify
biases in the training data just by critically analyzing the sampled frames.

While one could simply examine the experience replay buffer to find scenarios of interest, our
approach allows unseen scenarios to be synthesized. To quantitatively evaluate the assertion that our
generator is capable of generating novel states, we sample states and compare them to their closest
frame in the training set under an MSE metric. We count a pixel as different if the relative difference
in a channel exceeds 25% and report the histogram in Table 2. The results show that there are very
few samples that are very close to the training data. On average a generated state is different in 25%
of the pixels, which is high, considering the overall common layout of the road, buildings and sky.
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Figure 6: Driving simulator. We show 16 samples for the T− objective of an agent trained in the
reasonable pedestrians environment. From these samples one can infer that the agent is aware of
traffic lights (red) and other cars (blue) but has very likely not understood the severity of hitting
pedestrians (yellow). Deploying this agent in the distracted pedestrians environment shows that the
agent indeed collides with people that cross the road in front of the agent.

Table 2: Synthesizing unseen states. We compare generated samples to their closest neighbor in the
training set and compute the percentage of pixels whose values differ by at least 25%, e.g. 73% of the
synthesized samples differ in more than 20% pixels in comparison to their closest training sample.

#pixels different > 10% > 20% > 30% > 40% > 50% > 60% > 70%

samples 99% 73% 16% 4% 1% 1% 0%

5 DISCUSSION AND CONCLUSIONS

We have presented a method to synthesize inputs to deep reinforcement learning agents based on
generative modeling of the environment and user-defined objective functions. Training the generator
to produce states that the agent perceives as those from the real environment enables optimizing its
latent space to sample states of interest. We believe that understanding and visualizing agent behavior
in safety critical situations is a crucial step towards creating safer and more robust agents using
reinforcement learning. We have found that the methods explored here can indeed help accelerate the
detection of problematic situations for a given learned agent. As such we intend to build upon this
work.
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APPENDIX

To show an unbiased and wide variety of results, in the following, we will show four random samples
generated by our method for a DQN agent trained on many of the Atari benchmark environments.
We show visualizations optimized for a meaningful objective for each game (e.g. not optimizing for
unused buttons). All examples were generated with the same hyperparameter settings.

Please note that for some games better settings can be found. Some generators on visually more
complex games would benefit from longer training to generate sharper images. Our method is able to
generate reasonable images even when the DQN was unable to learn a meaningful policy such as
for Montezuma’s revenge. We show two additional objectives maximizing/minimizing the expected
reward of the state under a random action: S+(q) =

∑m
i=1 qi and S−(q) = −S+(q). Results in

alphabetical order.

Figure 7: Air Raid. Target function: S+.

Figure 8: Alien. Target function: right.

Figure 9: Amidar. Target function: up.
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Figure 10: Assault. Target function: S−.

Figure 11: Asterix. Target function: T−.

Figure 12: Asteroids. Target function: up-fire.

Figure 13: Atlantis. Target function: T+.

Figure 14: Bank Heist. Target function: T+.
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Figure 15: Battlezone. Target function: T−.

Figure 16: Beamrider. Target function: T+.

Figure 17: Berzerk. Target function: S+.

Figure 18: Bowling. Target function: S+.

Figure 19: Boxing. Target function: S+.
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Figure 20: Breakout. Target function: T−.

Figure 21: Breakout. Target function: Left.

Figure 22: Carnival. Target function: right.

Figure 23: Centipede. Target function: T±.

Figure 24: Chopper Command. Target function: S+.
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Figure 25: Crazy Climber. Target function: T−.

Figure 26: Demon Attack. Target function: T+.

Figure 27: Elevator Action. Target function: no-op.

Figure 28: Enduro. Target function: S+.

Figure 29: Freeway. Target function: T+.

17



Under review as a conference paper at ICLR 2019

Figure 30: Frostbite. Target function: no-op.

Figure 31: Gopher. Target function: S−.

Figure 32: Gravitar. Target function: T±.

Figure 33: Hero. Target function: S+.

Figure 34: JamesBond. Target function: S+.
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Figure 35: Kangaroo. Target function: S−.

Figure 36: Krull. Target function: fire.

Figure 37: Kung Fu Master. Target function: up.

Figure 38: Montezuma’s Revenge. Target function: T−.

Figure 39: Ms. Pacman. Target function: no-op.
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Figure 40: Name This Game. Target function: T±.

Figure 41: Phoenix. Target function: T±.

Figure 42: Pong. Target function: no-op.

Figure 43: Pooyan. Target function: S−.

Figure 44: Q-Bert. Target function: left.
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Figure 45: River Raid. Target function: T+.

Figure 46: Space Invaders. Target function: left.

Figure 47: Star Gunner. Target function: T±.

Figure 48: Tutankham. Target function: no-op.

Figure 49: Venture. Target function: S+.
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Figure 50: Video Pinball. Target function: T−.

Figure 51: Wizard Of Wor. Target function: left.
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