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ABSTRACT

The regulatory landscape around the use of personal data to train AI/ML models
is rapidly evolving to protect privacy of sensitive information like user locations
or medical data and improve AI trustworthiness. Practitioners must now provide
the capability to “unlearn” or “forget” data—the forget set—that was used to train
an AI model, without triggering a full model re-train on the remaining data—the
retain set to be computationally efficient. Existing unlearning approaches train
via some combination of fine-tuning pre-trained AI models solely on the retain
set, pruning model weights then unlearning, and model-sparsification-assisted un-
learning. In our research paper, we use deep learning (DL), multi-agent reinforce-
ment learning (MARL) and explainable AI (XAI) methods to formulate a faster,
more robust and interpretable unlearning method than past works. Our method,
multi-agent speedy and interpretable machine unlearning (MASIMU), fine-tunes
a pre-trained model on the retain set, interpretably re-weighting the gradients of
the fine-tuned loss function by computing the similarity influences of the forget set
on the batched retain set based on weights generated by an XAI method. We add
a MARL framework on top to address the challenge of high dimensional training
spaces by having multiple agents learning to communicate positional beliefs and
navigate in image environments. The per-agent observation spaces have lower di-
mensions, leading to the agents focusing on unlearning interpretable gradients of
important superpixels that influence the target labels in the learning criteria. We
provide extensive experiments on four datasets—CIFAR-10, MNIST, high resolu-
tion satellite images in RESISC-45, skin cancer images in HAM-10000 to unlearn
for preserving medical privacy—computing robustness, interpretability, and speed
relative to the dimensionality of the training features, and find that MASIMU out-
competes other unlearning methods.

1 INTRODUCTION

The large-scale adoption of Machine Learning models has led to emergence of legal opportunities
where certain users would like their data to be forgotten in the training set of Artificial Intelligence
(AI) models, as protected by the Right to be Forgotten (Chenou & Radu, 2019), granted by the
European Union to its residents. US residents are covered by medical privacy protection under the
HIPAA Federal Law (Ness et al., 2007) which is helpful to protect sensitive medical data like lung
cancer images (Bandyopadhyay et al., 2021) to train AI models for cancer prediction. This helps to
improve the trustworthiness of AI models. AI models will often have to follow copyright laws and
regulations (Grynbaum & Mac, 2023) which can lead to the models forgetting a part of the training
dataset that is subject to these copyright laws. Machine unlearning applications include lifelong
learning (Liu et al., 2022), toxicity mitigation in Large Language Models (Lu et al., 2022) along
with Reinforcement Learning applications (Nikishin et al., 2022; Ye et al., 2023; Guo et al., 2023).

The goal of Machine Unlearning is to effectively forget the influence of a portion of the training
data, the forget set, on an AI model satisfying a specific objective like classification while retaining
similar or better performance like the original AI model. Retraining the model from scratch on the
held-out training data without including the forget set, called the retain set, takes a long time which
may not be practically sustainable for AI models trained on big datasets that require high compu-
tational costs like many GPUs for training. The NeurIPS 2023 Machine Unlearning competition
(Eleni Triantafillou, 2023) put forth machine unlearning evaluation criteria like unlearning taking
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much less time than retraining and measuring similar performance of the unlearnt model to the orig-
inal model. Another metric is success against Membership Inference Attacks (MIAs) to discern
examples in the forget set from those in the test set. Existing research works perform unlearning
mostly by fine-tuning pre-trained AI models on the retain set which poses the inherent challenge
of not considering the influence of the forget set on the retain set. Latest unlearning research by
pruning model weights then unlearning and with model sparsification assisted unlearning (Jia et al.,
2023) improves on multi-criteria performance unlearning for a few datasets like CIFAR-10. Other
unlearning related works are shared in Appendix A.1. Existing unlearning research poses signif-
icant challenges like robustness, lack of interpretability. They also do not address the unlearning
problem with increasing dimensionality of training feature spaces in high-resolution images having
significant amounts of information, not related to the learning objective.

We propose a baseline Machine Unlearning (MU) Framework for image classification, fine-tuning
a pre-trained model on the retain set. For our Interpretable Machine Unlearning (IMU) Framework,
we compute the forget set influence on the retain set by interpretably re-weighting the gradients of
the fine-tuned loss function using similarity scores of XAI weights on the batched retain set and
the forget set. XAI weights from Local Interpretable Model-Agnostic Explanations (LIME) method
(Ribeiro et al., 2016), for both the retain set and the forget set, are generated faster compared to other
XAI methods like SHAP scores (Lundberg & Lee, 2017) making it lucrative to be a component of
our Machine Unlearning paradigm. The underlying behavior of the LIME XAI method (Garreau
& Mardaoui, 2021a), like selecting local examples, identifying features and calculating weights
per feature, motivate our approach for using interpretable gradients to address machine unlearning,
including the use of cosine similarity and average feature weights for each label.

We formulate a Multi-agent Speedy gated recurrent unit (GRU) based Machine Unlearning
(MASMU) framework with agents communicating their pose beliefs. We compare its unlearning
speed with the Multi-Agent long-short term memory (LSTM) based Unlearning (MALMU). Past
work, using multiple agents to classify images (Mousavi et al., 2019a), compute a spatial state
positioned on each image which agents communicate to update local beliefs and policies. We
combine MASMU with IMU to a Multi-Agent Speedy GRU based Interpretable Machine Unlearn-
ing (MASIMU) framework comparing it with its corresponding LSTM framework of Multi-Agent
LSTM based Interpretable Machine Unlearning (MASIMU) to address the challenge of higher di-
mensionality for high-resolution training image features, needed to train more accurate models e.g.
improving lung cancer detection (Daneshpajooh et al., 2021). The per-agent observation spaces
in the MASIMU framework is small, helping to unlearn gradients of important superpixels faster
that influence the probability distribution of prediction vectors in the learning criteria. We show
our interpretable and robust results on the CIFAR-10, MNIST, and high resolution imagery from
satellites (RESISC-45 (Cheng et al., 2017a)) and skin cancer (HAM-10000 (Tschandl et al., 2018))
data, showing improved unlearning performance with faster unlearning specially with more dimen-
sionality on high resolution training image features using multiple agents. Our Machine Unlearning
evaluation metrics (Nguyen et al., 2022) include completeness (closeness to the original model),
and timeliness (time cost of unlearning as opposed to retraining). Our IMU, MASMU, MALMU,
MASIMU and MALIMU unlearning frameworks are novel for high resolution image classification
tasks.

2 RETAIN AND FORGET DATASETS

In machine unlearning, the forget dataset Df consists of a set of data items within the training
dataset Dtr for an AI model M for which the influence of the data items in the forget set must
be removed (”or unlearnt”) from M without full retraining on the remaining training data items,
defined as the retain dataset Dr. Fully retraining M on Dr is computationally expensive for deep
learning models. A major challenge in Machine Unlearning is to learn the influence of the forget
set on the retain set and to efficiently remove them from the pre-trained AI model. In our proposed
MASIMU framework, we compute the influence of forget set and retain set and efficiently unlearn
the influence on the pre-trained model.

We experiment on the CIFAR-10 dataset (Krizhevsky et al., 2009) with 32×32 color images having
10 labels like vehicles and animals. We also consider the MNIST dataset (Deng, 2012) with 28×28
gray-scale images of digits from 0 to 9 and their corresponding 10 labels. Finally, we unlearn AI
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models on high resolution 256 × 256 satellite imagery in the RESISC-45 dataset (Cheng et al.,
2017b) with 45 labels like mountains, houses and 450× 450 skin-cancer images in the HAM-10000
dataset (Tschandl et al., 2018) with 7 labels including melanoma and melanocytic nevi, investigating
unlearning of sensitive data like locations and medical records. Our train/test and the retain/forget
data splits for all the datasets are provided in Table 3.

3 INTERPRETABLE MACHINE UNLEARNING

Feature-based XAI methods like Locally Interpretable Model-agnostic Explanations (LIME)
(Ribeiro et al., 2016) are useful to explain the influence of training features on the output of an
AI model, post training. LIME works by taking examples and constructing an interpretable approx-
imate linear model around which samples are taken. For each training feature, LIME calculates n
weights in the following manner, where n is the number of local samples used to generate the ex-
planation as in Equation 1. LIME outputs on RESISC-45 in Figure 1 and HAM-10000 in Figure 2
show segmented superpixels on interpretable LIME masks which helps to identify similar retain and
forget images.

wi = e
1

2b2
cosdist(1,xi)

2

∀i ≤ n (1)
Here, b is a bandwidth parameter, xi is a local sample selected by LIME, and cosdist is the cosine
distance between 2 vectors. LIME coefficients segment an image to super-pixels that can help in
improving the unlearning efficiency by calculating their influence on the learning criteria.

For our baseline Machine Unlearning Framework (MU), we fine-tune the pre-trained training model
on the retain set only, which poses the problem of not computing the influence of the forget set
on the retain set. We define our Interpretable Machine Unlearning Framework (IMU) Algorithm
weighing the influence of the LIME coefficients of the forget set on the batched retain set during fine-
tuning and removing the influence of these interpretable LIME weights on the computed gradients
of the super-pixels in our retain set. This is based on the intuition that LIME coefficient outputs are
similar to the sum of the integrated gradients of the training input superpixels for AI models that are
sufficient smooth in comparison to their training datasets (Garreau & Mardaoui, 2021b).

We calculate the LIME coefficient weights for each superpixel in each image and average them over
each label. Then we use the pcs function defined in the IMU Algorithm to compute pair-wise cosine
similarity of LIME weight of every batched image in the retain set for batches b with the LIME
weights of all f forget set images. This leads to a b×f cosine similarity matrix. We average along the
rows for non-zero cosine similarity values to only compute rsim the influence of forget set images
which are more similar with retain set images. Then we average the similarity weightage of all the
batched retain images in crsim which is our interpretable weight Iw highlighting the importance
of the training superpixels generated by LIME. During the backpropagation of the loss function,
when gradients of the loss function are computed, we update the gradients with this interpretable
weight and remove their influence from the original gradients by subtraction. The computation
of cosine similarity on the interpretable approximately linear LIME coefficient weights, is helpful
to ensure the differentiability of the gradients of the loss function. For the unlearning problem of
image classification models, we use the widely used multi-class classification loss function of Cross
Entropy Loss in Equation 2. There, x is a given example, n is the number of classes, yi is the truth
label, and pi(x) =

exi∑n
j=1 exj is the softmax probability of x being class i.

LCE(x) = −
n∑

i=1

yi log pi(x) (2)

4 MULTI-AGENT INTERPRETABLE MACHINE UNLEARNING

A Multi-Agent (MA) Machine Unlearning (MAMU) framework has been devised in Algorithm 1
where multiple agents traverse a limited observation space based on learning the underlying belief
and decision Recurrent Neural Networks (RNN) (Rumelhart et al., 1986). The RNN can be config-
ured as either a Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) or a Gated
Recurrent Unit (GRU) (Chung et al., 2014) in the MALMU (Multi-Agent LSTM based Machine
Unlearning) framework or the MASMU (Multi-Agent Speedy GRU based Machine Unlearning)
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(a) Farm Image (b) Segmentation (c) LIME Mask

(d) Most Similar (e) Segmentation (f) LIME Mask

(g) Least Similar (h) Segmentation (i) LIME Mask

Figure 1: (a) Farm Image from RESISC-45 retain set (d) Farm Image from RESISC-45 forget set
with its LIME coefficient vector and that of the original image having the highest cosine similarity
(g) Lakes Image from RESISC-45 forget set with its LIME coefficient vector and that of the original
image having the lowest cosine similarity.

framework. We use the RNN to represent belief that is propagated across the agents per step with
the incentive of speeding up image unlearning using MA-REINFORCE algorithm. For unlearning,
we load the model trained with MA-REINFORCE algorithm on the entire dataset and fine-tune it
using the retain set with MA-REINFORCE to unlearn the forget set images. This MA framework
can improve unlearning for high resolution images, e.g. RESISC-45 satellite images, reducing the
dimensionality with less observation dimensions per agent. MALMU and MASMU are inspired
by the training of MARL algorithms (Mousavi et al., 2019b) using LSTM RNNs classifying high
resolution images.

We model our MAMU frameworks, MALMU and MASMU, as Partially Observable Markov De-
cision Processes (POMDPs). For an agent classifying an image I , the state consists of the position
of the center of the agent on I , as well as the history of the belief RNN and the decision RNN.
When GRUs are used to compute the beliefs, only a hidden state is updated. Actions available to the
agent are to move the position a pixel up, down, left or right. This is constrained by the requirement
that the agent’s observation window fits entirely within I . Using a window size reduces the dimen-
sionality of the observation space when supplied with high-resolution images like in RESISC-45
or HAM-10000. Transitions come from policy function π conditioned on the hidden cell state of
the decision RNN in the case of updates to the spatial state (position), and from the output of a
parameterized function supplied with the previous state and information input in the case of the be-
lief and decision RNNs. Differentiable rewards across classification model network parameters are
calculated by taking the difference of a random loss and cross entropy loss at each step. A detailed
mathematical discussion on computing LSTM and GRU based belief RNNs along with correspond-
ing decision RNNs to sample actions based on the policy gradients of MA-REINFORCE algorithm
has been shared in the Appendix A.4.

For an image I with ground truth label i ∈ {1 . . .M}, to incentive speedy unlearning, rewards for
a particular trajectory with positive probability τ are calculated by grouping the various parameters
in our algorithm into one single parameter Θ. The differentiable reward across network parameters

4
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(a) Melanoma Image (b) Segmentation (c) LIME Mask

(d) Most Similar (e) Segmentation (f) LIME Mask

(g) Least Similar (h) Segmentation (i) LIME Mask

Figure 2: (a) (Melanoma Image from HAM-10000 retain set (d) A Melanoma Image from HAM-
10000 forget set for which its LIME coefficient vector and that of the original image has the highest
cosine similarity (g) Melanocytic Nevi Image from HAM-10000 forget set for which its LIME co-
efficient vector and that of the original image has the lowest cosine similarity.

rτ is computed in Equation 3 to follow the aggregate prediction of the agents where ei is the unit
vector along the ground truth’s direction.

rτ = −L(p̄− ei) (3)

Our multi-agent learning paradigms use a LSTM RNN in MALMU similar to the same MA-
REINFORCE approach as (Mousavi et al., 2019a) with also while using a GRU RNN in MASMU.
For MALIMU and MASIMU, we update the parametric gradients of the loss function, used to com-
pute the differentiable rewards for MA-REINFORCE algorithm, by subtracting, thereby removing
the interpretable weight of similar super-pixels in the retain set and the forget set which is computed
using LIME interpretable AI method as shown in Algorithm 2. Our goal is to adjust the parameters
of our system Θ in such a way that we maximize the objective function in Equation 4.

J(Θ) = Eτ∈T[rτ ] (4)

T is the set of possible trajectories for our agents. The original REINFORCE algorithm (Sutton et al.,
2000), extended to MA-REINFORCE, computes gradients of the objective function in Equation 5.

∇J(Θ) = E[
∑
τ∈T

∇(log pτ )rτ +∇rτ ] (5)

which can be approximated with an unbiased estimator for J , obtained by sampling N trajectories:

Ĵ(Θ) =
1

N

N∑
i=1

(log pτi)r
d
τi + rτi =⇒ E[∇Ĵ(Θ)] = ∇J(Θ) (6)
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Algorithm 1 Multi-Agent Machine Unlearning (MAMU) (for both MALMU and MASMU)

1: Input: retain data Dr of size r, pre-trained model M
2: Training Parameters: epochs e, batches on retain data b, loss function Lf , optimizer O, batch

size g, agents N , steps T
3: Initialize Mu = M
4: for i = 1 to e do
5: for j = 1 to b do
6: for k = 1 to g do
7: for v = 1 to N do
8: Initialize sv(0) on a random pixel in image Ik
9: Initialize hv(0) = 0, cv(0) = 0

10: for w = 1 to |Nv| do
11: mw(0) = 0
12: end for
13: end for
14: for t = 0 to T − 1 do
15: for v = 1 to N do
16: Make observation ov(t) = observe(Ik, sv(t))
17: Get feature extraction bv(t) = bθ4(ov(t))
18: Get state representation qv(t) = qθ5

(sv(t))

19: Calculate aggregate message d̄v(t) =
1

in-deg(v)

∑N
n=1 dn(t)

20: Form information input uv(t) = [bv(t)
T qv(t)

T d̄v(t)
T ]

21: Run belief RNN using uv(t) as input
22: Generate message mv(t) = mθ2(hv(t))
23: Run decision RNN using uv(t) as input
24: Update policy π on πθ5(·, ĥv(t+ 1))
25: Get action av(t+ 1) from π
26: Go to new spatial state sv(t+ 1) = transition(sv(t), av(t+ 1))
27: end for
28: end for
29: for v = 1 to N do
30: Generate prediction vector pv
31: end for
32: Calculate mean prediction vector p̄
33: Compute discounted differentiable rewards with MA-REINFORCE policy gradients in

Equation (6) and update parameters
34: end for
35: end for
36: end for
37: return Mu

rdτi in Equation 6 denotes the reward of sampled trajectory τi detached from the computational graph
and treated as a scalar, as in (Mousavi et al., 2019a).

The resilient performance with increasing dimensionality of high resolution training images, allows
our MASMU framework to be applicable in scenarios requiring the unlearning of very detailed
and therefore potentially extremely sensitive images. This also motivates our framework of Multi-
Agent Speedy and Interpretable Machine Unlearning (MASIMU) as described in Algorithm 2, in-
terpretably unlearning the influence of specific super-pixels in high resolution sensitive images by
re-weighting the gradient weights during fine-tuning just like in the IMU Algorithm without multiple
agents. After the agents are initialized, MASIMU algorithm goes through a number of steps where
information is exchanged between agents through the use of a RNN structure like LSTM or GRU.
Using this information as well as an observation of the immediate environment (pixels of the image
in the neighborhood of the agent), the agent makes a prediction of an image’s class and then takes
an action. After each batch of predictions, losses are calculated for the policy-based actor deciding
which action to take and the critic network assigning values to the actions taken by each agent, and
their weights are updated accordingly.

6
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Algorithm 2 Multi-Agent Interpretable Unlearning (MAIMU) (for both MALIMU and MASIMU)

1: Input: training data Dtr of size tr, test data Dte of size te, retain data Dr of size r, forget
data Df of size f , LIME coefficients on retain data IDr

, LIME coefficients on forget data IDf
,

baseline model M
2: Note: f = tr − r
3: Training Parameters: epochs e, batches on retain data b, loss function Lf , batch size g, agents

N , steps T
4: Mu = M
5: repeat
6: for i = 1 to e do
7: repeat
8: for i = 1 to b do
9: Use N agents to run an episode of MA-REINFORCE as in Algorithm 1

10: Obtains batch input features Dbf
r and target labels Dbt

r for br batched images
11: Obtains LIME scores for batched images IDb

r

12: Note: LIME scores are
∑

of interpretable gradients over batched superpixels
13: Clears gradients of parameters in M tracked by O
14: sim = pcs(IDb

r
, IDf

)

15: rsim = rowwise average(sim for sim ̸= 0)
16: crsim = columnwise average(rsim)
17: Iw = crsim (Interpretable weight of similar super-pixels in retain & forget sets)
18: output = Mu(D

bf
r )

19: loss = Lf (output,D
bt
r )

20: Compute gradients ∇(loss) on the loss function during backward propagation
21: Note: There are p parameters in the pre-trained model
22: Note: Interpretably unlearning influence of retain set on the forget set
23: repeat
24: for i = 1 to p do
25: ∇p(loss) = ∇p(loss) - Iw * ∇p(loss)
26: end for
27: until all ∇p(loss) are updated
28: end for
29: until all b batches are processed
30: end for
31: until all e epochs are updated
32: Returns Mu unlearnt model

We measure the unlearning accuracy and loss (as in Equation 2) on AI models classifying each
dataset to measure the quality and accuracy of our unlearning frameworks. For successful unlearn-
ing, it is good for the accuracy of the unlearned model on the forget set to be close to the accuracy
of the unlearned model on the test set, as it indicates that the “forgotten” examples have never been
seen by the model to begin with, just like the test samples. Similarly, unlearned model on the retain
set should have a similar accuracy to the training accuracy of the original model. We also measure
completeness (Cao & Yang, 2015) of how close the unlearned model is to the original model. A high
completeness indicates better unlearning where the unlearned model is less distinguishable from the
original model when evaluated on unseen examples. We use the accuracy of Membership Infer-
ence Attacks (MIAs) (Shokri et al., 2017), to measure how successfully we can guess that a given
example is part of retain set or forget set. Details of the above metrics are described in Appendix
A.5.

5 RESULTS

We train our Machine Unlearning (MU), Interpretable Machine Unlearning (IMU), Multi-Agent
Speedy MU (MASMU) and Multi-Agent Speedy IMU (MASIMU) frameworks using a stochastic
gradient descent (SGD) optimizer, a learning rate of 0.1 and a cross-entropy loss function. A compar-
ative analysis of the unlearning performance for IMU and MU frameworks on the low-dimensional

7
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Table 1: Unlearning Results for Baseline Unlearning (MU) and our Interpretable Unlearning IMU
Experiments (Exp) on Completeness (Comp) and Membership-Inference Attack (MIA) metrics

EXPERIMENT DATASET MIA COMP

MU RESISC-45 0.532 0.817
IMU RESISC-45 0.536 0.813
MU HAM-10000 0.640 0.781
IMU HAM-10000 0.640 0.760
MU CIFAR-10 0.503 0.832
IMU CIFAR-10 0.513 0.849
MU MNIST 0.545 0.998
IMU MNIST 0.545 0.995

images in MNIST and the high-dimensional satellite images in RESISC-45 datasets indicates im-
proved unlearning with increasing accuracy and decreasing loss across 25 epochs for IMU in Figure
3 when the gradients are interpretably re-weighted. Table 1 indicates that IMU framework is better
for unlearning, increasing the completeness measure and taking the MIA accuracy score closer to 0.5
in comparison to MU. MASIMU computes local beliefs with GRU. Local beliefs are also computed
with LSTMs in MALIMU framework for comparative analysis. Figure 5 shows that the benefits of
using Multiple agents on unlearning time scale with the dimensionality of the dataset. MASIMU
and MALIMU outperform all other frameworks on the very high dimensional HAM-10000 dataset
and are not far behind in the high dimensional RESISC-45 dataset. Comparison of with retraining
on retain set from scratch can be found in Table 4 showing that retraining from scratch is slower.

(a) HAM-10000 Unlearning Accuracy (b) HAM-10000 Unlearning Loss

(c) RESISC-45 Unlearning Accuracy (d) RESISC-45 Unlearning Loss

Figure 3: Machine Unlearning (MU) and Interpretable MU (IMU) Accuracy and Loss Plots

For our MASMU & MASIMU experiments, we use 3 agents, 5 steps per episode, an observation
window size of 6, and a learning rate of 1 · 10−3, for the low-resolution MNIST images. On higher
resolution images like RESISC-45, we use 16 agents, 16 steps per episode, an observation window
size of 12, and a learning rate of 1 · 10−4. We reduce the learning rate for our multi-agent frame-
works to make smaller learning steps by multiple agents for the optimal solution. This leads to the
MASIMU and MASMU comparison over 5 epochs in Figure 4 on MNIST and RESISC-45 datasets

8
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Table 2: Unlearning Results for our Baseline Multi-Agent Speedy Machine Unlearning (MASMU)
and our Multi-Agent Speedy and Interpretable Machine Unlearning Framework (MASIMU) on
Completeness (Comp), and Membership-Inference Attack (MIA) metrics.

EXPERIMENT DATASET BELIEF MIA COMP

MALMU RESISC-45 LSTM 0.531 0.615
MASMU RESISC-45 GRU 0.531 0.596
MALIMU RESISC-45 LSTM 0.538 0.595
MASIMU RESISC-45 GRU 0.533 0.603
MALMU HAM-10000 LSTM 0.640 0.828
MASMU HAM-10000 GRU 0.640 0.807
MALIMU HAM-10000 LSTM 0.640 0.814
MASIMU HAM-10000 GRU 0.640 0.838
MALMU CIFAR-10 LSTM 0.498 0.645
MASMU CIFAR-10 GRU 0.501 0.647
MALIMU CIFAR-10 LSTM 0.498 0.648
MASIMU CIFAR-10 GRU 0.501 0.636
MALMU MNIST LSTM 0.545 0.756
MASMU MNIST GRU 0.545 0.729
MALIMU MNIST LSTM 0.545 0.770
MASIMU MNIST GRU 0.545 0.732

showing a trend of MASIMU being better at unlearning in comparison to MASMU. Completeness
increases and MIA values are closer to 0.5 in case of MASIMU as shown in Table 2.

(a) HAM-10000 Unlearning Accuracy (b) HAM-10000 Unlearning Loss

(c) RESISC-45 Unlearning Accuracy (d) RESISC-45 Unlearning Loss

Figure 4: Multi-Agent Unlearning Accuracy and Loss Plots
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The accuracy on the forget set is comparable with that on the test set for the interpretative unlearning
frameworks, showing robustness for IMU, MALIMU or MASIMU. This achieves a major part of
the unlearning objective, which is that a member of the forget set should be evaluated as if the model
had never seen it in the first place. Unlearning time significantly reduces for MASMU, MALMU,
MASIMU and MALIMU, on the HAM-10000 and RESISC-45 datasets with respect to IMU and MU
as shown in Figure 5. For HAM-10000, GRU-based MASMU is faster than LSTM-based MALMU
while MASIMU is slightly faster than MALIMU. For RESISC-45, MASMU and MALMU have
comparable unlearning times and so do MALIMU and MASIMU with MALMU being slightly
faster than MASMU. More importantly, unlearning time significantly decreases for MALIMU and
MASIMU in comparison to MALMU and MASU, even with the additional computational cost of
interpretatively re-weighting gradients during back-propagation in the fine-tuning process. Multiple
agents reduce observation space dimensionality per agent, leading to faster unlearning which is
important for AI applications sensitive to latency like disaster management detecting satellite images
(e.g. RESISC-45) or protecting medical privacy in skin cancer images (e.g. HAM-10000).

(a) HAM-10000 (b) RESISC-45

Figure 5: Unlearning Time Plots comparing our Frameworks

6 CONCLUSION AND FUTURE WORK

We have presented a Machine Unlearning (MU) framework with an interpretative component (IMU)
that we have extended with multiple agents (MA) in MALMU, MASMU, MALIMU and MASIMU
frameworks. Interpretation is important for providing insights into the behavior of the unlearned
model so that we understand how our model is unlearning by forgetting the influence of major
superpixels of images in the forget set, a part of the original training set. Our results show that Inter-
pretable Machine Unlearning (IMU) is better than fine-tuning on the retain set (MU) when it comes
to completeness and accuracy on an MIA. When it comes to increased dimensionality with high
resolution training examples, MALIMU, MASIMU, MALMU and MASMU frameworks are sig-
nificantly faster than IMU and MU for the MNIST and RESISC-45 datasets, which is an important
factor in weighing the compute costs and benefits of unlearning versus retraining a model. Notably
MASIMU and MALIMU are both faster than MALMU and MASMU, even with added compute
cost for interpretability, showing that multiple agents unlearn faster by reducing observation space
per agent. Furthermore, both IMU, MALIMU and MASIMU share the desirable robustness property
that an unlearned model has similar accuracy on the forget set and the test set, leading to a decreased
probability that an adversary can use performance of the model on a member of the forget set to
infer membership in the training set. In future, we hope to explore how state-of-the-art cooperative
decision making algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and Multi-Agent PPO (MAPPO) (Yu et al., 2022) along with single agent algorithms like self-play
(Bai et al., 2020) can be used to further increase the unlearning performance of MASIMU.
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A APPENDIX

A.1 ADDITIONAL RELATED WORKS

Machine Unlearning is a formulated as a problem (Nguyen et al., 2022) where there is a dataset D,
a forget set Df ⊂ D, and a model trained on the dataset A(D) passed into an unlearning algorithm
U(·). The unlearning algorithm returns a model where the influence of the members of Df on the
output of the model has been reduced. Reasons are given to motivate the task of machine unlearn-
ing, namely the removal of sensitive data from models used in sensitive industries such as healthcare
and finance. Several challenges arise when tackling machine unlearning, such as the stochasticity
of many training methods and reduction in performance for models that have been unlearned. The
survey also posits some desired properties of unlearning algorithms: having similar accuracy to the
original model (completeness) and being fast enough to justify not retraining the model (timeliness).
These two properties have a trade-off that must be considered when deciding whether to retrain or
unlearn a model. A summary and comparison of many unlearning methods is provided, covering
different types of methods (model-agnostic, model-intrinsic, data-driven), scenarios where the meth-
ods can be applied (few-shot, zero-shot, zero-glance, exact, approximate), properties of the methods
(completeness, timeliness, etc.) and the kinds of data that can be unlearned (items, features, etc.).
No reinforcement-learning based or multi-agent unlearning method was mentioned in this survey,
unlike our novel multi-agent reinforcement learning frameworks.

Machine unlearning has been applied to a wide variety of settings, including lifelong learning (Liu
et al., 2022) and toxicity mitigation in Large Language Models (Lu et al., 2022). This includes
applying it to Reinforcement Learning (Nikishin et al., 2022) (Ye et al., 2023) (Guo et al., 2023).
Unlike prior work, however, we are focused on using Reinforcement Learning to forget examples
from a subset of a training set rather than having agents unlearn deleterious behavior learned early
on in training, attempting to forget an environment, or mitigating attacks by a trojan agent. Multi-
objective Reinforcement Learning has been discussed as a possible future direction for machine
unlearning (Kassem et al., 2023) but has not yet been attempted as far as we are aware.

(Laroche & Tachet Des Combes, 2022) address the issue of unlearning bad convergences when
making policy updates in Reinforcement Learning. It does not really have anything to do with
machine unlearning as the problem is formulated in works like (Nguyen et al., 2022). Nonetheless,
it proposes to speed up the unlearning process through a modified cross-entropy-based approach, in
contrast to traditional policy gradient updates.

In order to address the problem of models that deal with outdated, irrelevant, or private data, (Shaik
et al., 2023) introduce FRAMU, a framework that uses Reinforcement Learning and Federated
Learning to achieve machine unlearning. Attention-based Machine Unlearning using Federated
Reinforcement Learning. FRAMU can work with both single-modal and multi-modal data, and is
suited for situations where the data distribution is dynamic. However, FRAMU is not very scalable
and is computationally complex.
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There have been attempts to apply machine unlearning to multi-modal data with potentially dynamic
data distributions (Shaik et al., 2023) but so far they have not been scalable or computationally
complex. As we value time complexity, we only consider single-modal data.

An approach to machine unlearning by sparsifying model parameters is posited by (Jia et al., 2023).
While this research work achieves good results in metrics such as accuracy and Membership Infer-
ence attacks using resnet18 models and the CIFAR-10 dataset, the time cost associated with making
the models sparse makes it less appealing as an unlearning method, given the possibility of retraining
the model from scratch if time is not a concern. Furthermore, unlearning through making models
sparse is not interpretable. These unlearning methods are not applicable for high resolution image
classification tasks.

A.2 STATISTICS OF RETAIN AND FORGET SETS

Table 3: Statistics on the train, retain, forget and test datasets

DATASET TRAIN RETAIN FORGET TEST

RESISC-45 26775 24098 2677 4725
HAM-10000 8512 7661 851 1503
CIFAR-10 50000 45000 5000 10000
MNIST 60000 54000 6000 10000

A.3 ALGORITHM FOR INTERPRETABLE MACHINE UNLEARNING

A.4 COMMUNICATION IN MULTI-AGENT MACHINE UNLEARNING

For MASMU, our agents are represented via vertices in a directed graph G for N agents denoted
by {1, ..., N}, the state of agent i ∈ N at step t by si(t), the observation of agent i at step t by
oi(t), and the sampled action of agent i at time step t by ai(t). The set of edges in G is given by
E ⊂ {(i, j) : i ̸= j}, where (i, j) ∈ E represents that i communicates messages to j. We let Ni

denote the set of neighbors of i, i.e., Ni = {j : (i, j) ∈ E}. An RNN is used to calculate the belief
of the agent as it progresses through the task. We denote the hidden state of agent i’s belief LSTM
at time step t via hi(t), and similarly denote the cell state (if the RNN is an LSTM) with ci(t). The
hidden state of the belief RNN is used to create a message in Equation 7

mi(t) = mθ1(hi(t)) (7)
where mθ1 is a function parameterized on θ1. This message is shared with agents in Ni. An agent
receives its messages from its neighbors and decodes them via a trainable parameterized function

di(t) = dθ2(mi(t)) (8)
with θ2 parameters on d, aggregated by averaging to get

d̄i(t) =
1

indeg(i)

N∑
j=1

dj(t) (9)

where indeg(i) is the number of nodes in G pointing to i. Features are extracted from the local
observation by a trainable function

bi(t) = bθ3(oi(t)) (10)
where θ3 represents the parameters of b. We prepare the position of i for input to the belief RNN
through parameterized mapping and thereby update the belief RNN.

q(t) = qθ4(si(t)
. (11)

If the RNN is an LSTM, it is updated according to the Equation 12.[
hi(t+ 1)
ci(t+ 1)

]
= fθ5(

[
hi(t)
ci(t)

]
, ui(t)) (12)
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Algorithm 3 Interpretable Machine Unlearning (IMU)

1: Input: training data Dtr, test data Dte, retain data Dr ⊆ Dtr, forget data Df = Dtr \ Dr,
LIME coefficients on retain data IDr

, LIME coefficients on forget data IDf
, baseline model M .

2: Training Parameters: epochs e, batches on retain data b, loss function Lf , learning rate sched-
uler LS, optimizer O

3: Mu = M
4: repeat
5: for i = 1 to e do
6: repeat
7: for i = 1 to b do
8: Obtains batch input features Dbf

r and target labels Dbt
r for br batched images

9: Obtains LIME scores for batched images IDb
r

10: Note: LIME scores are
∑

of interpretable gradients over batched superpixels
11: Clears gradients of parameters in M tracked by O
12: sim = pcs(IDb

r
, IDf

)

13: rsim = rowwise average(sim for sim ̸= 0)
14: crsim = columnwise average(rsim)
15: Iw = crsim (Interpretable weight of similar super-pixels in retain & forget sets)
16: output = Mu(D

bf
r )

17: loss = Lf (output,D
bt
r )

18: Computes gradients ∇(loss) on the loss function during backward propagation
19: Note: There are p parameters in the pre-trained model
20: Note: Interpretably unlearning influence of retain set on the forget set
21: repeat
22: for i = 1 to p do
23: ∇p(loss) = ∇p(loss) - Iw * ∇p(loss)
24: end for
25: until all ∇p(loss) are updated
26: end for
27: until all b batches are processed
28: end for
29: until all e epochs are updated
30: Returns Mu unlearnt model

.
If the RNN is a GRU then the update question will take the form:

hi(t+ 1) = fθ5(hi(t), ui(t)) (13)
.
where fθ5 is a trainable function, ui(t) = [bi(t)

T d̄i(t)
T qi(t)

T ] consists of a three-part information
input containing extracted features from the local observation, a representation of the agent’s posi-
tion within the example image, and the aggregate of the messages received by i. A decision LSTM
with hidden state ĥi(t) and cell state ˆci(t) is used for updating the policy.

π(a) = πθ6(a, ĥi(t+ 1)) (14)
for action a ∈ A. The decision LSTM is updated using the same information as the belief LSTM in
Equation 15. [

ĥi(t+ 1)
ĉi(t+ 1)

]
= fθ7(

[
hi(t)
ĉi(t)

]
, ui(t)) (15)

If a decision GRU is used instead of an LSTM, we only need to update the hidden state with Equation
16.

ĥi(t+ 1) = fθ7(hi(t)ui(t)) (16)
We can sample an action ai(t) from the action space using π, and update our spatial state si(t+ 1)
accordingly. Each agent generates a raw prediction vector per step, with a value for each class using
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parameterized mapping pi = pθ8(ci(T )). Finally, we calculate the shared prediction vector by
averaging the raw prediction vectors across the agents. Thus our agents collaborate to form a final
prediction vector.

A.5 MULTI-AGENT MACHINE UNLEARNING EVALUATION

In order to evaluate the Multi-Agent Machine Unlearning frameworks, we compute the accuracy
of the AI models, on the retain set Dret, the forget set Df , the test set Dte and the training set
Dtr. For a given dataset D and AI model M , we calculate accuracy by calculating the number of
correct predictions by M on D and then dividing it by the number of examples in D. Multi-label
classification losses on each dataset are calculated using standard Cross Entropy Loss in Equation 2.

Another important comparison to make is the predictions of the unlearned model itself with those of
the original model using distance metrics to quantify how “close” these two models are. To assess
how often the predictions made by the original model M align with the predictions made by an
unlearned model U , we calculate the “completeness” of the unlearned model in Equation 17. There,
X is the test set of examples and 1{C(U(x))}C(M(x)) is the indicator function equal to one when
the predicted class of the unlearned model U is the same as that of the original model M , and zero
otherwise.

completeness(U,M) =

∑
x∈X 1{C(U(x))}C(M(x))

|X|
(17)

The concept of computing the accuracy of Membership Inference Attacks (MIA) (Shokri et al.,
2017) lends itself naturally to unlearning, where given a model M and a combination of examples
from the forget set Df , and test set Dte, we see how accurately we can distinguish examples used
to train the model (members of the forget set) and examples not seen by the model during training
(the test set). Intuitively, we want the MIA’s accuracy closer to 0.5 (a random guess). Our baseline
models fine-tuned on the retain set Dr are scored in Equation 18 with a simple MIA attack consist-
ing of 10-fold cross-validation score for a simple logistic regression model trained on losses from
samples of Df and Dte and categorized based on their inclusion in the training set (i.e. members of
the forget set are also in the training set, whereas member of the test set are not).

MIA(SL, inTrain) = CV10(LR,SL, inTrain) (18)
where SL ∈ Rn is a set of losses for n examples, inTrain ∈ {0, 1}n is a set of 0s and 1s categoriz-
ing whether the example is in the training set (1) or not (0), LR is a logistic regression model, and
CV10 is a standard 10-fold cross validation procedure that returns an accuracy score of how well the
logistic regression model distinguishes the members of the forget set from the test set based on their
example losses.

A.6 RETRAINING TIME ON RETAIN SET

Dataset Multi-Agent Retraining Time (seconds)
RESISC-45 5291.96
HAM10000 3556.20

Table 4: Multi-Agent Retraining Time on Retain Set re-training from scratch (25 Epochs)
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