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ABSTRACT

We propose a novel generative model architecture designed to learn representa-
tions for images that factor out a single attribute from the rest of the representa-
tion. A single object may have many attributes which when altered do not change
the identity of the object itself. Consider the human face; the identity of a partic-
ular person is independent of whether or not they happen to be wearing glasses.
The attribute of wearing glasses can be changed without changing the identity of
the person. However, the ability to manipulate and alter image attributes without
altering the object identity is not a trivial task. Here, we are interested in learning
a representation of the image that separates the identity of an object (such as a
human face) from an attribute (such as ‘wearing glasses’). We demonstrate the
success of our factorization approach by using the learned representation to syn-
thesize the same face with and without a chosen attribute. We refer to this specific
synthesis process as image attribute manipulation. We further demonstrate that
our model achieves competitive scores, with state of the art, on a facial attribute
classification task.

1 INTRODUCTION

Latent space generative models, such as generative adversarial networks (GANs) (Goodfellow et al.,
2014; Radford et al., 2015) and variational autoencoders (VAEs) (Rezende et al., 2014; Kingma &
Welling, 2013), learn a mapping from a latent encoding space to a data space, for example, the space
of natural images. It has been shown that the latent space learned by these models is often organized
in a near-linear fashion (Radford et al., 2015; Kingma & Welling, 2013), whereby neighbouring
points in latent space map to similar images in data space. Certain “directions” in latent space
correspond to changes in the intensity of certain attributes. In the context of faces, for example,
directions in latent space would correspond to the extent to which someone is smiling. This may
be useful for image synthesis where one can use the latent space to develop new design concepts
(Dosovitskiy et al., 2017; Zhu et al., 2016), edit an existing image (Zhu et al., 2016) or synthesize
avatars (Wolf et al., 2017; Taigman et al., 2016). This is because semantically meaningful changes
may be made to images by manipulating the latent space (Radford et al., 2015; Zhu et al., 2016;
Larsen et al., 2016).

One avenue of research for latent space generative models has been class conditional image synthesis
(Chen et al., 2016; Odena et al., 2016; Mirza & Osindero, 2014), where an image of a particular
object category is synthesized. Often, object categories may be sub-divided into fine-grain sub-
categories. For example, the category “dog” may be split into further sub-categories of different dog
breeds. Work by Bao et al. (2017) propose latent space generative models for synthesizing images
from fine-grained categories, in particular for synthesizing different celebrities’ faces conditional on
the identity of the celebrity.

Rather than considering fine-grain categories, we propose to take steps towards solving the different,
but related problem of image attribute manipulation. To solve this problem we want to be able to
synthesize images and only change one element or attribute of its content. For example, if we
are synthesizing faces we would like to edit whether or not a person is smiling. This is a different
problem to fine-grain synthesis; we want to be able to synthesize two faces that are similar, with only
a single chosen attribute changed, rather than synthesizing two different faces. The need to synthesis
two faces that are similar makes the problem of image attribute manipulation more difficult than the
fine-grain image synthesis problem; we need to learn a latent space representation that separates an
object category from its attributes.
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In this paper, we propose a new model that learns a factored representation for faces, separating
attribute information from the rest of the facial representation. We apply our model to the CelebA
(Liu et al., 2015) dataset of faces and control several facial attributes.

Our contributions are as follows:

1. Our core contribution is the novel cost function for training a VAE encoder to learn a
latent representation which factorizes binary facial attribute information from a continuous
identity representation (Section 3.2).

2. We provide an extensive quantitative analysis of the contributions of each of the many
loss components in our model (Section 4.2).

3. We obtain classification scores that are competitive with state of the art (Zhuang et al.,
2018) using the classifier that is already incorporated into the encoder of the VAE (Section
4.3).

4. We provide qualitative results demonstrating that our latent variable, generative model may
be used to successfully edit the ‘Smiling’ attribute in more than 90% of the test cases
(Section 4.4).

5. We discuss and clarify the distinction between conditional image synthesis and image at-
tribute editing (Section 5).

6. We present code to reproduce experiments shown in this paper: (provided after review).

2 LATENT SPACE GENERATIVE MODELS

Latent space generative models come in various forms. Two state-of-art generative models are Varia-
tional Autoencoders (VAE) (Rezende et al., 2014; Kingma & Welling, 2013) and Generative Adver-
sarial Networks (GAN). Both models allow synthesis of novel data samples from latent encodings,
and are explained below in more detail.

2.1 VARIATIONAL AUTOENCODER (VAE)

Variational autoencoders (Kingma & Welling, 2013; Rezende et al., 2014) consist of an encoder
qφ(z|x) and decoder pθ(x|z); oftentimes these can be instantiated as neural networks, Eφ(·) and
Dθ(·) respectively, with learnable parameters, φ and θ. A VAE is trained to maximize the evidence
lower bound (ELBO) on log p(x), where p(x) is the data-generating distribution. The ELBO is
given by:

log p(x) ≥ Eqφ(z|x) log pθ(x|z)−KL[qφ(z|x)||p(z)] (1)

where p(z) is a chosen prior distribution such as p(z) = N (0, I). The encoder predicts, µφ(x) and
σφ(x) for a given input x and a latent sample, ẑ, is drawn from qφ(z|x) as follows: ε ∼ N (0, I)
then ẑ = µφ(x) + σφ(x) � ε. By choosing a multivariate Gaussian prior, the KL-divergence
may be calculated analytically (Kingma & Welling, 2013). The first term in the loss function is
typically approximated by calculating the reconstruction error between many samples of x and x̂ =
Dθ(Eφ(x)).

New data samples, which are not present in the training data, are synthesised by first drawing latent
samples from the prior, z ∼ p(z), and then drawing data samples from pθ(x|z). This is equivalent
to passing the z samples through the decoder, Dθ(z).

VAEs offer both a generative model, pθ(x|z), and an encoding model, qφ(z|x), which are useful as
starting points for image editing in the latent space. However, samples drawn from a VAE are often
blurred (Radford et al., 2015).

2.2 GENERATIVE ADVERSARIAL NETWORKS (GAN)

An alternative generative model, which may be used to synthesize much sharper images, is the Gen-
erative Adversarial Network (GAN) (Goodfellow et al., 2014; Radford et al., 2015). GANs consist of
two models, a generator,Gθ(·), and a discriminator,Cχ(·), both of which may be implemented using
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convolutional neural networks (Radford et al., 2015; Denton et al., 2015). GAN training involves
these two networks engaging in a mini-max game. The discriminator, Cχ, is trained to classify
samples from the generator, Gθ, as being ‘fake’ and to classify samples from the data-generating
distribution, p(x), as being ‘real’. The generator is trained to synthesize samples that confuse the
discriminator; that is, to synthesize samples that the discriminator cannot distinguish from the ‘real’
samples. The objective function is given by:

min
χ

max
θ

Ep(x)[log(Cχ(x)] + Epg(x)[log(1− Cχ(x))] (2)

where pg(x) is the distribution of synthesized samples, sampled by: z ∼ p(z), then x = Gθ(z),
where p(z) is a chosen prior distribution such as a multivariate Gaussian.

2.3 BEST OF BOTH GAN AND VAE

The vanilla GAN model does not provide a simple way to map data samples to latent space. Al-
though there are several variants on the GAN that do involve learning an encoder type model (Du-
moulin et al., 2016; Donahue et al., 2016; Li et al., 2017), only the approach presented by Li et al.
(2017) allows data samples to be faithfully reconstructed. The approach presented by Li et al. (2017)
requires adversarial training to be applied to several high dimensional distributions. Training adver-
sarial networks on high dimensional data samples remains challenging (Arjovsky & Bottou, 2017)
despite several proposed improvements (Salimans et al., 2016; Arjovsky et al., 2017). For this rea-
son, rather than adding a decoder to a GAN, we consider an alternative latent generative model that
combines a VAE with a GAN. In this arrangement, the VAE may be used to learn an encoding and
decoding process, and a discriminator may be placed after the decoder to ensure higher quality of
the data samples outputted from the decoder. Indeed, there have been several suggestions on how to
combine VAEs and GANs (Bao et al., 2017; Larsen et al., 2016; Mescheder et al., 2017) each with
a different structure and set of loss functions, however, none are designed specifically for attribute
editing.

The content of image samples synthesized from a vanilla VAE or GAN depends on the latent variable
z, which is drawn from a specified random distribution, p(z). For a well-trained model, synthesised
samples will resemble samples in the training data. If the training data consists of images from
multiple categories, synthesized samples may come from any, or possibly a combination, of those
categories. For a vanilla VAE, it is not possible to choose to synthesize samples from a particular
category. However, conditional VAEs (and GANs) (Chen et al., 2016; Odena et al., 2016; Mirza
& Osindero, 2014) provide a solution to this problem as they allow synthesis of class-specific data
samples.

2.4 CONDITIONAL VAES

Autoencoders may be augmented in many different ways to achieve category-conditional image
synthesis (Bao et al., 2017). It is common to append a one-hot label vector, y, to inputs of the
encoder and decoder (Sohn et al., 2015). However, for small label vectors, relative to the size of the
inputs to the encoder and the decoder model, it is possible for the label information, y, to be ignored.
1. A more interesting approach, for conditional (non-variational and semi-supervised) autoencoders
is presented by Makhzani et al. (2015), where the encoder outputs both a latent vector, ẑ, and an
attribute vector, ŷ. The encoder is updated to minimize a classification loss between the true label,
y, and ŷ. We incorporate a similar architecture into our model with additional modifications to the
training of the encoder for the reasons explained below.

There is a drawback to incorporating attribute information in the way described above (Makhzani
et al., 2015; Perarnau et al., 2016) when the purpose of the model is to edit specific attributes, rather
than to synthesize samples from a particular category. We observe that in this naive implementation
of conditional VAEs, varying the attribute (or label) vector, ŷ, for a fixed ẑ can result in unpre-
dictable changes in synthesized data samples, x̂. Consider for example the case where, for a fixed ẑ,
modifying ŷ does not result in any change in the intended corresponding attribute. This suggests that

1The label information in y is less likely to be ignored when y has relatively high dimensions compared to
z (Yan et al., 2016; Perarnau et al., 2016).
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information about the attribute one wishes to edit, y, is partially contained in ẑ rather than solely in
ŷ. Similar problems have been discussed and addressed to some extent in the GAN literature (Chen
et al., 2016; Mirza & Osindero, 2014; Odena et al., 2016), where it has been observed that label
information in ŷ is often ignored during sample synthesis.

In general, one may think that ẑ and ŷ should be independent. However, if attributes, y, that should
be described by ŷ remain unchanged for a reconstruction where only ŷ is changed, this suggests that
ẑ contains most of the information that should have been encoded within ŷ. We propose a process to
separate the information about y from ẑ using a mini-max optimization involving y, ẑ, the encoder
Eφ, and an auxiliary network Aψ . We refer to our proposed process as ‘Adversarial Information
Factorization’.

2.5 ADVERSARIAL INFORMATION FACTORIZATION

For a given image of a face, x, we would like to describe the face using a latent vector, ẑ, that
captures the identity of the person, along with a single unit vector, ŷ ∈ [0, 1], that captures the
presence, or absence, of a single desired attribute, y. If a latent encoding, ẑ, contains information
about the desired attribute, y, that should instead be encoded within the attribute vector, ŷ, then a
classifier should be able to accurately predict y from ẑ. Ideally, ẑ contains no information about y
and so, ideally, a classifier should not be able to predict y from ẑ. We propose to train an auxiliary
network to predict y from ẑ accurately while updating the encoder of the VAE to output ẑ values
that cause the auxiliary network to fail. If ẑ contains no information about the desired attribute, y,
that we wish to edit, then the information can instead be conveyed in ŷ since x̂must still contain that
information in order to minimize reconstruction loss. We now formalize these ideas.

3 METHOD

In what follows, we explain our novel approach to training the encoder of a VAE, to factor (sepa-
rate) out information about y from ẑ, such thatH(y|ẑ) ≈ H(y). We integrate this novel factorisation
method into a VAE-GAN. The GAN component of the model is incorporated only to improve image
quality. Our main contribution is our proposed adversarial method for factorising the label informa-
tion, y, out of the latent encoding, ẑ.

3.1 MODEL ARCHITECTURE

A schematic of our architecture is presented in Figure 1. In addition to the encoder, Eφ, decoder,
Dθ, and discriminator, Cχ, we introduce an auxiliary network, Aψ : ẑ → ỹ, whose purpose is
described in detail in Section 3.2. Additionally, the encoder also acts as a classifier, outputting an
attribute vector, ŷ, along with a latent vector, ẑ.

The parameters of the decoder, θ, are updated with gradients from the following loss function:
Ldec = Lrec − δLgan (3)

where δ is a regularization coefficient, Lrec = Lbce(x̂, x) is a reconstruction loss. The
GAN loss is given by Lgan = 1

3 [Lbce(yreal, Cχ(x)) + Lbce(yfake, Cχ(Dθ(Eφ(x)))) +
Lbce(yfake, Cχ(Dθ(z, y)))] (Bao et al., 2017), where yreal and yfake are vectors of ones and
zeros respectively and z ∼ p(z). Note that Lbce is the binary cross-entropy loss given by
Lbce(a, b) =

1
M

∑M
i=1 a log b+ (1− a) log(1− b). The discriminator parameters, χ, are updated to

minimize Lgan.

The parameters of the encoder, φ, intended for use in synthesizing images from a desired category,
may be updated by minimizing the following function:

Lenc = Lrec + αLKL + ρLclass − δLgan (4)

where α and ρ are additional regularization coefficients; LKL = KL[qφ(z|x)||p(z)] and Lclass =
Lbce(ŷ, y) is the classification loss on the input image. Unfortunately, the loss function in Equation
(4) is not sufficient for training an encoder used for attribute manipulation. For this, we propose an
additional network and cost function, as described below.
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(a) Current work

(b) Previous work (Bao et al., 2017)

Figure 1: (a) Current work (adversarial information factorization) This figure shows our model
where the core, shown in blue, is a VAE with information factorization. Note that Eφ is split in two,
Ez,φ and Ey,φ, to obtain both a latent encoding, ẑ, and the label, ŷ, respectively. Dθ is the decoder
and Aψ the auxiliary network. The pink blocks show how a GAN architecture may be incorporated
by placing a discriminator, Cχ, after the encoder, Eφ, and training Cχ to classify decoded samples
as “fake” and samples from the dataset as “real”. For simplicity, the KL regularization is not shown
in this figure. (b) Previous work: cVAE-GAN (Bao et al., 2017) Architecture most similar to our
own. Note that there is no auxiliary network performing information factorization and a label, ˆ̂y, is
predicted only for the reconstructed image, rather than for the input image (ŷ).

3.2 ADVERSARIAL INFORMATION FACTORISATION

To factor label information, y, out of ẑ we introduce an additional auxiliary network, Aψ , that
is trained to correctly predict y from ẑ. The encoder, Eφ, is simultaneously updated to promote
Aψ to make incorrect classifications. In this way, the encoder is encouraged not to place attribute
information, y, in ẑ. This may be described by the following mini-max objective:

min
ψ

max
φ

Lbce(Aψ(Ez,φ(x)), y) = min
ψ

max
φ

Lbce(ỹ, y) = min
ψ

max
φ
Laux (5)

where Ez,φ(x) is the latent output of the encoder.

Training is complete when the auxiliary network, Aψ , is maximally confused and cannot predict y
from ẑ = Ez,φ(x), where y is the true label of x. The encoder loss is therefore given by:

LIFcV AE−GAN = Lenc − Laux (6)

We call the conditional VAE-GAN trained in this way an Information Factorization cVAE-GAN
(IFcVAE-GAN). The training procedure is presented in Algorithm 1.

3.3 ATTRIBUTE MANIPULATION

To edit an image such that it has a desired attribute, we encode the image to obtain a ẑ, the identity
representation, append it to our desired attribute label, ŷ ← y, and pass this through the decoder.
We use ŷ = 0 and ŷ = 1 to synthesize samples in each mode of the desired attribute e.g. ‘Smiling’
and ‘Not Smiling’. Thus, attribute manipulation becomes a simple ‘switch flipping’ operation in the
representation space.

4 RESULTS

In this section, we show both quantitative and qualitative results to evaluate our proposed model.
We begin by quantitatively assessing the contribution of adversarial information factorization in an
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Algorithm 1 Training Information Factorization cVAE-GAN (IFcVAE-GAN): The prior, p(z) =
N (0, I).

1: procedure TRAINING CVAE WITH INFORMATION FACTORIZATION
2: for i in range(N) do . N is no. of epochs
3: . forward pass through all networks
4: x ∼ D . D is the training data
5: z ∼ p(z)
6: ẑ, ŷ ← Eφ(x)
7: x̂← Dθ(ŷ, ẑ)
8: ỹ ← Aψ(ẑ) . output of the auxiliary network
9: # Calculate updates, u

10: # do updates
11: θ ← RMSprop(θ,−∇θLdec)
12: φ← RMSprop(φ,−∇φLIFcV AE−GAN ) . update the encoder to max. Laux
13: χ← RMSprop(χ,+∇χLgan)
14: ψ ← RMSprop(ψ,−∇ψLaux) . update auxiliary network to min. Laux
15: end for
16: end procedure

ablation study. Following this we perform facial attribute classification using our model. We use
a standard deep convolutional GAN, DCGAN, architecture for the ablation study (Radford et al.,
2015), and subsequently incorporate residual layers (He et al., 2016) into our model in order to
achieve competitive classification results compared with a state of the art model (Zhuang et al.,
2018). We finish with a qualitative evaluation of our model, demonstrating how our model may be
used for image attribute editing. For our qualitative results we continue to use the same residual
networks as those used for classification, since these also improved visual quality.

We refer to any cVAE-GAN that is trained without an Laux term in the cost function as a naive
cVAE-GAN and a cVAE-GAN trained with the Laux term as an Information Factorization cVAE-
GAN (IFcVAE-GAN).

4.1 QUANTITATIVE EVALUATION OF (EDITED) IMAGE SAMPLES

When performing image attribute manipulation, there are two important things that we would like to
quantify. The first, is reconstruction quality, approximated by the mean squared error, MSE, between
x and x̂ = Dθ(Ey,φ(x), Ez,φ(x)).

The second, is the proportion of edited images that have a desired attribute. To approximate this, we
train an independent classifier on real images to classify the presence (y = 1) or absence (y = 0)
of a desired attribute. We apply the trained classifier to edited images, synthesized using ŷ = 1 and
ŷ = 0 to obtain classification scores, ĈSmiling and ĈNot−Smiling respectively.

4.2 QUANTIFYING THE CONTRIBUTION OF ADVERSARIAL INFORMATION FACTORIZATION

Table 1 shows the contributions of each component of our novel function (Equation 6). We consider
reconstruction error and classification scores on edited image samples. Smaller reconstruction error
indicates better reconstruction, and larger classification scores (ĈSmiling and ĈNot−Smiling) suggest
better control over attribute changes. Note that all input test images for this experiment were from
the ‘Smiling’ category. From Table 1, we make the following observations:

(1) Our model: Our model is able to successfully edit an image to have the ‘Not Smiling’ attribute
in 81.3% of cases and the ‘Smiling’ attribute in all cases.

(2) Effect of Removing Information Factorization: Without our proposed Laux term in the en-
coder loss function, the model fails completely to perform attribute editing. Since ĈSmiling +
ĈNot−Smiling ≈ 100%, this strongly suggests that samples are synthesized independently of ŷ and
that the synthesized images are the same for ŷ = 0 and ŷ = 1.
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(3) Effect of classifying reconstructed samples: We explored the effect of including a classifica-
tion loss on reconstructed samples, Lbce(y, ˆ̂y), where ˆ̂y = Ey,φ(Dθ(x̂)). A similar loss had been
proposed by both Bao et al. (2017) and in the GAN literature (Chen et al., 2016; Odena et al., 2016)
for conditional image synthesis (rather than attribute editing). To the best of our knowledge, this
approach has not been used in the VAE literature. This term is intended to maximise I(x; y) by
providing a gradient containing label information to the decoder, however, it does not contribute to
the factorization of attribute information, y, from ẑ and does not provide any clear benefit in our
model.

(4) IcGAN Perarnau et al. (2016): We choose to include the IcGAN in our ablation study, since it
is similar to our model without LKL and Laux. While the IcGAN achieves a similar reconstruction
error to our model it performs less well at attribute editing tasks.

Table 1: What are the essential parts of the IFcVAE-GAN? This table shows how novel compo-
nents of the IFcVAE-GAN loss function affect reconstruction quality, MSE, and the model’s ability
to edit attributes, ĈSmiling and ĈNot−Smiling . We used hyper-parameters: {ρ = 0.1, δ = 0.1, α =
0.2}. IcGAN reconstruction results are those reported by Lample et al. (2017).
∗ Results obtained by Lample et al. (2017) using humans to evaluate the images.

Model MSE ĈNot−Smiling ĈSmiling
(1) Ours 0.028 81.3% 100.0%
(2) Without Laux 0.028 18.8% 81.3%
(3) With classification loss on x̂ 0.028 93.8% 93.8%
(4) IcGAN (Perarnau et al., 2016) 0.028 9.9∗% 91.9∗%

4.3 FACIAL ATTRIBUTE CLASSIFICATION

We have proposed a model that learns a representation, {ẑ, ŷ}, for faces such that the identity of the
person, encoded in ẑ, is factored from a particular facial attribute. We achieve this by minimizing
the mutual information between the identity encoding and the facial attribute encoding to ensure
that H(y|ẑ) ≈ H(y), while also training Ey,φ as an attribute classifier. Our training procedure
encourages the model to put all label information into ŷ, rather than ẑ. This suggests that our model
may be useful for facial attribute classification.

To further illustrate that our model is able to separate the representation of particular attributes
from the representation of the person’s identity, we can measure the model’s ability, specifically the
encoder, to classify facial attributes. We proceed to useEy,φ directly for facial attribute classification
and compare the performance of our model to that of a state of the art classifier proposed by Zhuang
et al. (2018). Results in Figure 2 show that our model is highly competitive with a state of the art
facial attribute classifier Zhuang et al. (2018). We outperformed by more than 1% on 2 out of 10
categories, underperformed by more than 1% on only 1 category and remained competitive with all
other attributes. These results demonstrate that the model is effectively factorizing out information
about the attribute from the identity representation.

4.4 QUALITATIVE RESULTS

In this section, we focus on attribute manipulation (described previously in Section 3.3). Briefly,
this involves reconstructing an input image, x, for different attribute values, ŷ ∈ {0, 1}.
We begin by demonstrating how a cVAE-GAN (Bao et al. Bao et al. (2017)) may fail to edit desired
attributes, particularly when it is trained to achieve low reconstruction error. The work of Bao et
al. Bao et al. (2017) focused solely on the ability to synthesise images with a desired attribute,
rather than to reconstruct a particular image and edit a specific attribute. It is challenging to learn
a representation that both preserves identity and allows factorisation Higgins et al. (2016). Figure
3(c,e) shows edited images, setting ŷ = 0 for ‘Not Smiling’ and ŷ = 1 for ‘Smiling’. We found that
the cVAE-GAN (Bao et al. Bao et al. (2017)) failed to edit samples for the y = 0 (‘Not Smiling’)
case. This failure demonstrates the need for models that learn a factored latent representation, while
maintaining good reconstruction quality. Note that we achieve good reconstruction by reducing
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Figure 2: Facial Attribute Classification. We compare the performance of our classifier, Ey,φ, to a
state of art classifier (Zhuang et al., 2018).

weightings on theKL and GAN loss terms, using α = 0.005 and δ = 0.005 respectively. We trained
the model using RMSProp Tieleman & Hinton (2012) with momentum = 0.5 in the discriminator.

We train our proposed IFcVAE-GAN model using the same optimiser and hyper-parameters that
were used for the Bao et al. (2017) model above. We also used the same number of layers (and
residual layers) in our encoder, decoder and discriminator networks as those used by Bao et al.
(2017). Under this set-up, we used the following additional hyper-parameter: {ρ = 1.0} in our
model. Figure 3 shows reconstructions when setting ŷ = 0 for ‘Not Smiling’ and ŷ = 1 for
‘Smiling’. In contrast to the naive cVAE-GAN (Bao et al., 2017), our model is able to achieve
good reconstruction, capturing the identity of the person, while also being able to change the desired
attribute. Table 2 shows that the model was able to synthesize images with the ‘Not Smiling’ attribute
with a 98% success rate, compared with a 22% success rate using the naive cVAE-GAN Bao et al.
(2017).

(a) Original Smiling Faces.

(b) Smiling (ours). (c) Smiling (Bao et al., 2017).

(d) Not Smiling (ours). (e) (Failed) Not Smiling (Bao et al., 2017).

Figure 3: Reconstructions, ‘Smiling’ and ‘Not Smiling’. The goal here was to reconstruct the
face, changing only the desired ‘Smiling’ attribute. This demonstrates how other conditional models
(Bao et al., 2017) may fail at the image attribute editing task, when high quality reconstructions are
required. Both models are trained with the same optimizers and hyper-parameters.
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Table 2: Comparing our model, the IFcVAE-GAN, to the naive cVAE-GAN Bao et al. (2017).
ĈSmiling and ĈNot−Smiling denote the proportion of edited samples that have the desired attribute.
We see that both models achieve comparable (MSE) reconstruction errors, however, only our model
is able to synthesize images of faces without smiles. A complete ablation study for this model (with
residual layers) is given in the appendix (Table 3).

.
Model MSE ĈNot−Smiling ĈSmiling

Ours (with residual layers) 0.011 98% 100%
cVAE-GAN Bao et al. (2017) (with residual layers) 0.011 22% 85%

4.5 EDITING OTHER FACIAL ATTRIBUTES

In this section we apply our proposed method to manipulate other facial attributes where the initial
samples, from which the ẑ’s are obtained, are test samples whose labels are y = 1 indicating the
presence of the desired attribute (e.g. ‘Blonde Hair’). In Figure 4, we observe that our model is able
to both achieve high quality reconstruction and edit the desired attributes.

Figure 4: Editing other attributes. We obtain a ẑ, the identity representation, by passing an image,
x through the encoder. We append ẑ with a desired attribute label, ŷ ← y, and pass this through the
decoder. We use ŷ = 0 and ŷ = 1 to synthesize samples in each mode of the desired attribute

We have presented the novel IFcVAE-GAN model, and (1) demonstrated that our model learns to
factor attributes from identity, (2) performed an ablation study to highlight the benefits of using
an auxiliary classifier to factorize the representation and (3) shown that our model may be used to
achieve competitive scores on a facial attribute classification task. We now discuss this work in the
context of other related approaches.

5 COMPARISON TO RELATED WORK

We have used adversarial training (involving an auxiliary classifier) to factor attribute label informa-
tion, y, out of the encoded latent representation, ẑ. Schmidhuber (2008) and Lample et al. (2017)
perform similar factorization of the latent space. Similarly to us, Lample et al. (2017) incorporate
this factorisation technique into the encoder of a generative model, however, unlike in our model,
their encoder does not predict attribute information and so may not be used as a classifier.

Belghazi et al. (2018) proposed a general approach for predicting the mutual information, which may
then be minimized via an additional model. Rather than predicting mutual information (Belghazi
et al., 2018) between latent representations and labels, we implicitly minimize it via adversarial
information factorization.

Our work has the closest resemblance to the cVAE-GAN architecture (see Figure 1) proposed by
Bao et al. (2017). cVAE-GAN is designed for synthesizing samples of a particular class, rather than
manipulating a single attribute of an image from a class. In short, their objective is to synthesize
a “Hathway” face, whereas our objective would be to make “Hathway smiling” or “Hathway not
smiling”, which has different demands on the type of factorization in the latent representation. Sep-
arating categories is a simpler problem since it is possible to have distinct categories and changing
categories may result in more noticeable changes in the image. Changing an attribute requires a
specific and targeted change with minimal changes to the rest of the image. Additionally, our model
simultaneously learns a classifier for input images unlike the work by Bao et al. (2017).
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In a similar vein to our work, Antipov et al. (2017) acknowledge the need for “identity preservation”
in the latent space. They achieve this by introducing an identity classification loss between an
input data sample and a reconstructed data sample, rather than trying to separate information in the
encoding itself. Similar to our work, Larsen et al. (2016) use a VAE-GAN architecture. However,
they do not condition on label information and their image “editing” process is not done in an end-
to-end fashion (likewise with Upchurch et al. (2017)).

Our work highlights an important difference between category conditional image synthesis (Bao
et al., 2017) and attribute editing in images (Lample et al., 2017; Perarnau et al., 2016): what works
for category conditional image synthesis may not work for attribute editing. Furthermore, we have
shown (Section 4.2) that for attribute editing to be successful, it is necessary to factor label informa-
tion out of the latent encoding.

In this paper, we have focused on latent space generative models, where a small change in latent
space results in a semantically meaningful change in image space. Our approach is orthogonal to a
class of image editing models, called “image-to-image” models, which aim to learn a single latent
representation for images in different domains. Recently, there has been progress in image-to-image
domain adaptation, whereby an image is translated from one domain (e.g. a photograph of a scene)
to another domain (e.g. a painting of a similar scene) (Zhu et al., 2017; Liu et al., 2017; Liu &
Tuzel, 2016). Image-to-image methods may be used to translate smiling faces to non-smiling faces,
however, these models (Liu et al., 2017; Liu & Tuzel, 2016) require significantly more resources
than ours2. By performing factorization in the latent space, we are able to use a single generative
model, to edit an attribute by simply changing a single unit of the encoding, y, from 0 to 1 or vice
versa.

Finally, while we use labelled data to learn representations, we acknowledge that there are many
other models that learn factored, or disentangled, representations from unlabelled data including
several VAE variants (Higgins et al., 2016; Burgess et al., 2018; Kumar et al., 2018). The β-VAE
(Higgins et al., 2016) objective is similar to the information bottleneck (Burgess et al., 2018), min-
imizing mutual information, I(x; z), which forces the model to exploit regularities in the data and
learn a disentangled representation. In our approach we perform a more direct, supervised, fac-
torisation of the latent space, using a mini-max objective, which has the effect of approximately
minimizing I(z; y).

6 CONCLUSION

We have proposed a novel perspective and approach to learning representations of images which
subsequently allows elements, or attributes, of the image to be modified. We have demonstrated
our approach on images of the human face, however, the method is generalisable to other objects.
We modelled a human face in two parts, with a continuous latent vector that captures the identity
of a person and a binary unit vector that captures a facial attribute, such as whether or not a person
is smiling. By modelling an image with two separate representations, one for the object and the
other for the object’s attribute, we are able to change attributes without affecting the identity of
the object. To learn this factored representation we have proposed a novel model aptly named
Information Factorization conditional VAE-GAN. The model encourages the attribute information
to be factored out of the identity representation via an adversarial learning process. Crucially, the
representation learned by our model both captures identity faithfully and facilitates accurate and
easy attribute editing without affecting identity. We have demonstrated that our model performs
better than pre-existing models intended for category conditional image synthesis (Section 4.4), and
have performed a detailed ablation study (Table 1) which confirms the importance and relevance of
our proposed method. Indeed, our model is highly effective as a classifier, achieving state of the art
accuracy on facial attribute classification for several attributes (Figure 2). Our approach to learning
factored representations for images is both a novel and important contribution to the general field of
representation learning.

2While our approach requires a single generative model, the approaches of Liu et al. (2017); Liu & Tuzel
(2016) require a pair of generator networks, one for each domain.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Cvae-gan: Fine-grained image
generation through asymmetric training. arXiv preprint arXiv:1703.10155, 2017.

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and Aaron C. Courville. Mine:
Mutual information neural estimation. CoRR, abs/1801.04062, 2018.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Des-
jardins, and Alexander Lerchner. Understanding disentangling in β-vae. arXiv preprint
arXiv:1804.03599, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets. In
Advances in Neural Information Processing Systems, pp. 2172–2180, 2016.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In Advances in neural information processing systems,
pp. 1486–1494, 2015.
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(2017) using humans to evaluate the images.
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APPENDIX

ABLATION STUDY FOR OUR MODEL WITH RESIDUAL LAYERS

For completeness we include a table (Table 3) demonstrating an ablation study for our model with
the residual network architecture discussed in Section 4.4, note that this is the same architecture that
was used by Bao et al. (2017). Table 3 and additionally, Figure 5, demonstrate the need for the Laux
loss and shows that increased regularisation reduces reconstruction quality. The table also shows
that there is no significant benefit to using the L̂class loss. These findings are consistent with those
of the ablation study in the main body of the text for the IFcVAE-GAN with a the GAN architecture
of Radford et al. (2015).

We additionally show results without LKL and Lgan. Results show that small amounts of KL
regularisation are required to achieve good reconstruction. Models trained without Lgan achieve
slightly lower reconstruction error than other models, however, the reconstructed images are blurred
(see Figure 6). Interestingly, when our model is trained without the Lgan or LKL loss, it is still able
to edit attributes with high accuracy, however, the visual quality of samples is poor. This shows that
the attribute information is still factored from the rest of the latent representation, which is the main
contribution of our work.

ADDITIONAL CLASSIFICATION PERFORMANCE COMPARISON WITH A MODEL TRAINED TO
PERFORM DISENTANGLEMENT

In our model we use labelled data to learn factored representations, however, there are many other
models that learn factored, or disentangled, representations from unlabelled data including several
variational autoencoder (Rezende et al., 2014; Kingma & Welling, 2013) variants (Higgins et al.,
2016; Burgess et al., 2018; Kumar et al., 2018). Once trained, the representation learned by each of
these models may be evaluated by training a linear classifier on latent encodings (Kumar et al., 2018;
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(a) Original Smiling Faces.

(b) Smiling (ours). (c) Smiling (without Laux).

(d) Not Smiling (ours). (e) (Failed) Not Smiling (without Laux).

Figure 5: Reconstructions, ‘Smiling’ and ‘Not Smiling’, with and without Laux. The goal here
was to reconstruct the face, changing only the desired ‘Smiling’ attribute. This figure demonstrates
the need for the Laux term in our model. Both models are trained with the same optimizers and
hyper-parameters.

(a) Original Smiling Faces.

(b) Smiling (ours without Lgan). (c) Not Smiling (ours without Lgan).

Figure 6: Reconstructions, ‘Smiling’ and ‘Not Smiling’, without Lgan. This figure demonstrates
that without Lgan, reconstructions are blurred. To achieve sharp reconstructions it is necessary to
incorporate Lgan in the loss function.

Higgins et al., 2016). Figure 7 shows classification results achieved using our model compared to
one of the best models (Kumar et al., 2018) proposed for learning disentangled representations.
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Figure 7: Facial Attribute Classification. We compare the performance of our classifier, Ey,φ, to
a linear classifier trained on latent representations extracted from a trained DIP-VAE (Kumar et al.,
2018). DIP-VAE is one of the best models for learning disentangled (, or factored,) representations
from unlabelled data.
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